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Preface

The 6th International Conference on Large-Scale Scientific Computations
(LSSC 2007) was held in Sozopol, Bulgaria, June 5–9, 2007. The conference was
organized by the Institute for Parallel Processing at the Bulgarian Academy of
Sciences in cooperation with SIAM (Society for Industrial and Applied Math-
ematics). Partial support was also provided from project BIS-21++ funded by
the European Commission in FP6 INCO via grant 016639/2005.

The conference was devoted to the 60th anniversary of Richard E. Ewing.
Professor Ewing was awarded the medal of the Bulgarian Academy of Sciences for
his contributions to the Bulgarian mathematical community and to the Academy
of Sciences. His career spanned 33 years, primarily in academia, but also included
industry. Since 1992 he worked at Texas A&M University being Dean of Science
and Vice President of Research, as well as director of the Institute for Scientific
Computation (ISC), which he founded in 1992. Professor Ewing is internation-
ally well known with his contributions in applied mathematics, mathematical
modeling, and large-scale scientific computations. He inspired a generation of
researchers with creative enthusiasm for doing science on scientific computa-
tions. The preparatory work on this volume was almost done when the sad news
came to us: Richard E. Ewing passed away on December 5, 2007 of an apparent
heart attack while driving home from the office.

Plenary Invited Speakers and Lectures:

– O. Axelsson, Mesh-Independent Superlinear PCG Rates for Elliptic
Problems

– R. Ewing, Mathematical Modeling and Scientific Computation in Energy
and Environmental Applications

– L. Grüne, Numerical Optimization-Based Stabilization: From Hamilton-Ja-
cobi-Bellman PDEs to Receding Horizon Control

– M. Gunzburger, Bridging Methods for Coupling Atomistic and Continuum
Models

– B. Philippe, Domain Decomposition and Convergence of GMRES
– P. Vassilevski, Exact de Rham Sequences of Finite Element Spaces on

Agglomerated Elements
– Z. Zlatev, Parallelization of Data Assimilation Modules

The success of the conference and the present volume in particular are the
outcome of the joint efforts of many colleagues from various institutions and
organizations. First, thanks to all the members of the Scientific Committee for
their valuable contribution forming the scientific face of the conference, as well as
for their help in reviewing contributed papers. We especially thank the organizers
of the special sessions. We are also grateful to the staff involved in the local
organization.



VI Preface

Traditionally, the purpose of the conference is to bring together scientists
working with large-scale computational models of environmental and industrial
problems and specialists in the field of numerical methods and algorithms for
modern high-speed computers. The key lectures reviewed some of the advanced
achievements in the field of numerical methods and their efficient applications.
The conference lectures were presented by the university researchers and practi-
cal industry engineers including applied mathematicians, numerical analysts and
computer experts. The general theme for LSSC 2007 was “Large-Scale Scientific
Computing” with a particular focus on the organized special sessions.

Special Sessions and Organizers:

– Robust Multilevel and Hierarchical Preconditioning Methods — J. Kraus,
S. Margenov, M. Neytcheva

– Domain Decomposition Methods — U. Langer
– Monte Carlo: Tools, Applications, Distributed Computing — I. Dimov,

H. Kosina, M. Nedjalkov
– Operator Splittings, Their Application and Realization — I. Farago
– Large-Scale Computations in Coupled Engineering Phenomena with Multi-

ple Scales — R. Ewing, O. Iliev, R. Lazarov
– Advances in Optimization, Control and Reduced Order Modeling —

P. Bochev, M. Gunzburger
– Control Systems — M. Krastanov, V. Veliov
– Environmental Modelling — A. Ebel, K. Georgiev, Z. Zlatev
– Computational Grid and Large-Scale Problems — T. Gurov, A. Karaivanova,

K. Skala
– Application of Metaheuristics to Large-Scale Problems — E. Alba,

S. Fidanova

More than 150 participants from all over the world attended the conference
representing some of the strongest research groups in the field of advanced large-
scale scientific computing. This volume contains 86 papers submitted by authors
from over 20 countries.

The 7th International Conference LSSC 2009 will be organized in June 2009.

December 2007 Ivan Lirkov
Svetozar Margenov

Jerzy Waśniewski
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1 Department of Information Technology, Uppsala University,
Sweden & Institute of Geonics AS CR, Ostrava, Czech Republic
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Abstract. In solving large linear systems arising from the discretization
of elliptic problems by iteration, it is essential to use efficient precondi-
tioners. The preconditioners should result in a mesh independent linear
or, possibly even superlinear, convergence rate. It is shown that a general
way to construct such preconditioners is via equivalent pairs or compact-
equivalent pairs of elliptic operators.

1 Introduction

Preconditioning is an essential part of iterative solution methods, such as con-
jugate gradient methods. For (symmetric or unsymmetric) elliptic problems, a
primary goal is then to achieve a mesh independent convergence rate, which
can enable the solution of extremely large scale problems. An efficient way to
construct such a preconditioner is to base it on an, in some way, simplified differ-
ential operator. The given and the preconditioning operators should then form
an equivalent pair, based on some inner product. Then the finite element dis-
cretization of these operators form the given matrix and its preconditioner, that
is, if the given elliptic boundary value problem

Lu = f

is suitably discretized to an algebraic system Lhuh = fh, then another, equivalent
operator S considerably simpler than L, is discretized in the same FEM subspace
to form a preconditioner Sh, and the system which is actually solved is

S−1
h Lhuh = S−1

h fh.

By use of equivalent pairs of operators, one can achieve a mesh indepen-
dent linear convergence rate. If, in addition, the operator pairs are compact-
equivalent, then one can achieve a mesh independent superlinear convergence
rate. The purpose of this presentation is to give a comprehensive background
to the above, and to illustrate its applications for some important classes of
elliptic problems. Mesh independence and equivalent operator pairs have been
rigorously dealt with previously in [12,15], while superlinear rate of convergence
and compact-equivalent pairs have been treated in [6,8] (see also the references

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 3–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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therein). Since in general the problems dealt with will be nonsymmetric, we first
recall some basic results on generalized conjugate gradient methods, which will
be used here. Equivalent and compact-equivalent pairs of operators are then dis-
cussed. Then some applications are shown, including a superlinear convergence
result for problems with variable diffusion coefficients.

2 Conjugate Gradient Algorithms and Their Rate of
Convergence

Let us consider a linear system
Au = b (1)

with a given nonsingular matrix A ∈ Rn×n, f ∈ Rn and solution u. Letting 〈., .〉
be a given inner product on Rn and denoting by A∗ the adjoint of A w.r.t. this
inner product, in what follows we assume that

A + A∗ > 0,

i.e., A is positive definite w.r.t. 〈., .〉. We define the following quantities, to be
used frequently in the study of convergence:

λ0 := λ0(A) := inf{〈Ax, x〉 : ‖x‖ = 1} > 0, Λ := Λ(A) := ‖A‖, (2)

where ‖.‖ denotes the norm induced by the inner product 〈., .〉.

2.1 Self-adjoint Problems: The Standard CG Method

If A is self-adjoint, then the standard CG method reads as follows [3]: let u0 ∈ Rn

be arbitrary, d0 := −r0; for given uk and dk, with residuals rk := Auk − b, we
let

uk+1 = uk + αkdk, dk+1 = −rk+1 + βkdk, (3)

where αk = − 〈rk, dk〉
〈Adk, dk〉

, βk =
‖rk+1‖2
‖rk‖2

.

To save computational time, normally the residual vectors are also formed by
recursion:

rk+1 = rk + αkAdk, (4)

further we use 〈rk, dk〉 = −‖rk‖2 for αk, i.e, αk = ‖rk‖2/〈Adk, dk〉. In the study
of convergence, one considers the error vector ek = u − uk and is generally
interested in its energy norm

‖ek‖A = 〈Aek, ek〉1/2. (5)

Now we briefly summarize the minimax property of the CG method and two
convergence estimates, based on [3]. We first note that the construction of the
algorithm implies ek = Pk(A)e0 with some Pk ∈ π1

k, where π1
k denotes the set
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of polynomials of degree k, normalized at the origin. Moreover, we have the
optimality property

‖ek‖A = min
Pk∈π1

k

‖Pk(A)e0‖A . (6)

If 0 < λ1 ≤ . . . ≤ λn are the eigenvalues of A, then (6) implies

‖ek‖A
‖e0‖A

≤ min
Pk∈π1

k

max
λ∈σ(A)}

|Pk(λ)| , (7)

which is a basis for the convergence estimates of the CG method.
Using elementary estimates via Chebyshev polynomials, we obtain from (7)

the linear convergence estimate(
‖ek‖A
‖e0‖A

)1/k

≤ 21/k

√
λn −

√
λ1√

λn +
√
λ1

= 21/k

√
κ(A)− 1√
κ(A) + 1

(k = 1, 2, ..., n), (8)

where κ(A) = λn/λ1 is the standard condition number.
To show a superlinear convergence rate, another useful estimate is derived if

we consider the decomposition

A = I + E (9)

and choose Pk(λ) :=
∏k

j=1

(
1− λ

λj

)
in (7), where λj := λj(A) are ordered

according to |λ1 − 1| ≥ |λ2 − 1| ≥ ... Then a calculation [3] yields(
‖ek‖A
‖e0‖A

)1/k

≤ 2
k λ0

k∑
j=1

∣∣λj(E)
∣∣ (k = 1, 2, ..., n). (10)

Here by assumption |λ1(E)| ≥ |λ2(E)| ≥ .... If these eigenvalues accumulate
in zero then the convergence factor is less than 1 for k sufficiently large and
moreover, the upper bound decreases, i.e. we obtain a superlinear convergence
rate.

2.2 Nonsymmetric Systems

For nonsymmetric matrices A, several CG algorithms exist (see e.g. [1,3,11]).
First we discuss the approach that generalizes the minimization property (6) for
nonsymmetric A and avoids the use of the normal equation, see (18) below.
A general form of the algorithm, which uses least-square residual minimization,
is the generalized conjugate gradient–least square method (GCG-LS method)
[2,3]. Its full version uses all previous search directions when updating the new
approximation, whose construction also involves an integer t ∈ N, further, we
let tk = min{k, t} (k ≥ 0). Then the algorithm is as follows: let u0 ∈ Rn be
arbitrary, d0 := Au0 − b; for given uk and dk, with rk := Auk − b, we let
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = uk +
k∑

j=0

α
(k)
k−jdk−j and dk+1 = rk+1 +

tk∑
j=0

β
(k)
k−jdk−j ,

where β
(k)
k−j = −〈Ark+1, Adk−j〉/‖Adk−j‖2 (j = 0, . . . , sk)

and the numbers α
(k)
k−j (j = 0, . . . , k) are the solution of

k∑
j=0

α
(k)
k−j〈Adk−j , Adk−l〉 = −〈rk, Adk−l〉 (0 ≤ l ≤ k).

(11)

There exist various truncated versions of the GCG-LS method that use only a
bounded number of search directions, such as GCG-LS(k), Orthomin(k), and
GCR(k) (see e.g. [3,11]). Of special interest is the GCG-LS(0) method, which
requires only a single, namely the current search direction such that (11) is
replaced by{

uk+1 = uk + αkdk, where αk = −〈rk, Adk〉/‖Adk‖2 ;

dk+1 = rk+1 + βkdk, where βk = −〈Ark+1, Adk〉/‖Adk‖2.
(12)

Proposition 1. (see, e.g., [2]). If there exist constants c1, c2 ∈ R such that
A∗ = c1A + c2I , then the truncated GCG-LS(0) method (12) coincides with the
full version (11) .

The convergence estimates in the nonsymmetric case often involve the residual

rk = Aek = Auk − b. (13)

as this is readily available. It follows from [2] that

‖rk+1‖ ≤
(

1−
(λ0

Λ

)2
)k/2

‖r0‖ (k = 1, 2, ..., n). (14)

The same estimate holds for the GCR and Orthomin methods together with
their truncated versions, see [11].

An important occurrence of the truncated GCG-LS(0) algorithm (12) arises
when the decomposition

A = I + E (15)

holds for some antisymmetric matrix E, which often comes from symmetric part
preconditioning. In this case A∗ = 2I − A and hence Proposition 1 is valid
[2]. The convergence of this iteration is then determined by E, and using that
E has imaginary eigenvalues, one can easily verify as in [7] that 1 − (λ0/Λ)2 =
‖E‖2/(1+‖E‖2). Hence (14) yields that the GCG-LS(0) algorithm (12) converges
as (

‖rk‖
‖r0‖

)1/k

≤ ‖E‖√
1 + ‖E‖2

(k = 1, 2, ..., n). (16)
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On the other hand, if A is normal and we have the decomposition (9), then
the residual errors satisfy a similar estimate to (10) obtained in the symmetric
case, see [3]: (

‖rk‖
‖r0‖

)1/k

≤ 2
kλ0

k∑
j=1

∣∣λj(C)
∣∣ (k = 1, 2, ..., n). (17)

Again, this shows superlinear convergence if the eigenvalues λj(C) accumulate in
zero. If A is non-normal then, as shown in [3], the superlinear estimate remains
uniform in a family of problems if the order of the largest Jordan block is bounded
as n→∞.

Another common way to solve (1) with nonsymmetric A is the CGN method,
where we consider the normal equation

A∗Au = A∗b (18)

and apply the symmetric CG algorithm (3) for the latter [13]. In order to preserve
the notation rk for the residual Auk − b, we replace rk in (3) by sk and let
rk = A−∗sk, i.e., we have sk = A∗rk. Further, A and b are replaced by A∗A
and A∗b, respectively. From this we obtain the following algorithmic form: let
u0 ∈ Rn be arbitrary, r0 := Au0 − b, s0 := d0 := A∗r0; for given dk, uk, rk and
sk, we let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk = Adk,

αk = −〈rk, zk〉
‖zk‖2

, uk+1 = uk + αkdk , rk+1 = rk + αkzk ;

sk+1 = A∗rk+1,

βk =
‖sk+1‖2
‖sk‖2

, dk+1 = sk+1 + βkdk.

(19)

The convergence estimates for this algorithm follow directly from the sym-
metric case. Using ‖ek‖A∗A = ‖Aek‖ = ‖rk‖ and that (2) implies κ(A∗A)1/2 =
κ(A) ≤ Λ/λ0, we obtain(

‖rk‖
‖r0‖

)1/k

≤ 21/k Λ − λ0

Λ + λ0
(k = 1, 2, ..., n). (20)

On the other hand, having the decomposition (9), using the relation ‖(A∗A)−1‖
= ‖A−1‖2 ≤ λ−2

0 and A∗A = I+(C∗+C+C∗C), the analogue of the superlinear
estimate (10) for equation A∗Au = A∗b becomes(
‖rk‖
‖r0‖

)1/k

≤ 2
kλ2

0

k∑
i=1

(∣∣λi(C∗ + C)
∣∣+ λi(C∗C)

)
(k = 1, 2, ..., n). (21)



8 O. Axelsson and J. Karátson

3 Equivalent Operators and Linear Convergence

We now give a comprehensive presentation of the equivalence property between
pairs of operators, followed by a basic example for elliptic operators. First a brief
outline of some theory from [12] is given.

Let B : W → V and A : W → V be linear operators between the Hilbert
spaces W and V . Let B and A be invertible and let D := D(A)∩D(B) be dense,
where D(A) denotes the domain of an operator A. The operator A is said to be
equivalent in V -norm to B on D if there exist constants K ≥ k > 0 such that

k ≤ ‖Au‖V
‖Bu‖V

≤ K (u ∈ D \ {0}). (22)

The condition number of AB−1 in V is then bounded by K/k. Similarly, the W -
norm equivalence of B−1 and A−1 implies this bound for B−1A. If Ah and Bh are
finite element approximations (orthogonal projections) of A and B, respectively,
then the families (Ah) and (Bh) are V -norm uniformly equivalent with the same
bounds as A and B.

In practice for elliptic operators, it is convenient to use H1-norm equivalence,
since this avoids unrealistic regularity requirements (such as u ∈ H2(Ω)). We
then use the weak form satisfying

〈Awu, v〉H1
D

= 〈Au, v〉L2 (u, v ∈ D(A)), (23)

where H1
D(Ω) is defined in (26). The fundamental result on H1-norm equivalence

in [15] reads as follows: if A and B are invertible uniformly elliptic operators, then
A−1

w and B−1
w are H1-norm equivalent if and only if A and B have homogeneous

Dirichlet boundary conditions on the same portion of the boundary.
In what follows, we use a simpler Hilbert space setting of equivalent operators

from [8] that suffices to treat most practical problems. We recall that for a
symmetric coercive operator, the energy space HS is the completion of D(S)
under the inner product 〈u, v〉S = 〈Su, v〉, and the coercivity of S implies HS ⊂
H . The corresponding S-norm is denoted by ‖u‖S, and the space of bounded
linear operators on HS by B(HS).

Definition 1. Let S be a linear symmetric coercive operator in H . A linear
operator L in H is said to be S-bounded and S-coercive, and we write L ∈
BCS(H), if the following properties hold:

(i) D(L) ⊂ HS and D(L) is dense in HS in the S-norm;
(ii) there exists M > 0 such that

|〈Lu, v〉| ≤M‖u‖S‖v‖S (u, v ∈ D(L));

(iii) there exists m > 0 such that

〈Lu, u〉 ≥ m‖u‖2S (u ∈ D(L)).
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The weak form of such operators L is defined analogously to (23), and produces
a variationally defined symmetrically preconditioned operator:

Definition 2. For any L ∈ BCS(H), let LS ∈ B(HS) be defined by

〈LSu, v〉S = 〈Lu, v〉 (u, v ∈ D(L)).

Remark 1. (i) Owing to Riesz representation theorem the above definition makes
sense. (ii) LS is coercive on HS . (iii) If R(L) ⊂ R(S) (where R(. ) denotes the
range), then LS

∣∣
D(L)

= S−1L.

The above setting leads to a special case of equivalent operators:

Proposition 2. [9] Let N and L be S-bounded and S-coercive operators for the
same S. Then

(a) NS and LS are HS-norm equivalent,
(b) N−1

S and L−1
S are HS-norm equivalent.

Definition 3. For given L ∈ BCS(H), we call u ∈ HS the weak solution of
equation Lu = g if 〈LSu, v〉S = 〈g, v〉 (v ∈ HS). (Note that if u ∈ D(L)
then u is a strong solution.)

Example. A basic example of equivalent elliptic operators in the S-bounded
and S-coercive setting is as follows. Let us define the operator

Lu ≡ −div (A∇u) + b · ∇u + cu for u|ΓD
= 0,

∂u

∂νA
+ αu|ΓN

= 0, (24)

where
∂u

∂νA
= Aν · ∇u and ν denotes the outer normal derivative, with the

following properties:

Assumptions 3.1

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD, ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) A ∈ C1(Ω,Rd×d) and for all x ∈ Ω the matrix A(x) is symmetric; b ∈
C1(Ω)d, c ∈ L∞(Ω), α ∈ L∞(ΓN );

(iii) there exists p > 0 such that A(x)ξ · ξ ≥ p |ξ|2 for all x ∈ Ω and ξ ∈ Rd;
ĉ := c− 1

2 div b ≥ 0 in Ω and α̂ := α + 1
2 (b · ν) ≥ 0 on ΓN ;

(iv) either ΓD �= ∅, or ĉ or α̂ has a positive lower bound.

Let S be a symmetric elliptic operator on the same domain Ω:

Su ≡ −div (G∇u) + σu for u|ΓD
= 0, ∂u

∂νG
+ βu|ΓN

= 0, (25)

with analogous assumptions on G, σ, β. Let

H1
D(Ω) = {u ∈ H1(Ω), u|ΓD

= 0}, 〈u, v〉S =
∫

Ω

(G∇u·∇v+σuv)+
∫

ΓN

βuv dσ

(26)
which is the energy space HS of S. Then the following result can be proved:
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Proposition 3. [9]. The operator L is S-bounded and S-coercive in L2(Ω).

The major results in this section are mesh independent convergence bounds
corresponding to some preconditioning concepts. Let us return to a general
Hilbert space H . To solve Lu = g, we use a Galerkin discretization in Vh =
span{ϕ1, . . . , ϕn} ⊂ HS , where ϕi are linearly independent. Let

Lh :=
{
〈LSϕi, ϕj〉S

}n

i,j=1

and, for the discrete solution, solve

Lh c = bh (27)

with bh = {〈g, ϕj〉}nj=1. Since L ∈ BCS(H), the symmetric part of Lh is positive
definite.

First, let L be symmetric itself. Then its S-coercivity and S-boundedness
turns into the spectral equivalence relation

m‖u‖2S ≤ 〈LSu, u〉S ≤M‖u‖2S (u ∈ HS). (28)

Then Lh is symmetric too. Let

Sh =
{
〈ϕi, ϕj〉S

}n

i,j=1
(29)

be the stiffness matrix of S, to be used as preconditioner for Lh. This yields the
preconditioned system

S−1
h Lh c = S−1

h bh . (30)

Now S−1
h Lh is self-adjoint w.r.t. the inner product 〈c,d〉Sh

:= Sh c · d.

Proposition 4. (see, e.g., [10]). For any subspace Vh ⊂ HS,

κ(S−1
h Lh) ≤ M

m
(31)

independently of Vh.

Consider now nonsymmetric problems with symmetric equivalent precondi-
tioners. With Sh from (29) as preconditioner, we use the bounds (2) for the
GCG-LS and CGN methods:

λ0 = λ0(S−1
h Lh) := inf{Lh c · c : Sh c · c = 1}, Λ = Λ(S−1

h Lh) := ‖S−1
h Lh‖Sh

.

These bounds can be estimated using the S-coercivity and S-boundedness

m‖u‖2S ≤ 〈LSu, u〉S , |〈LSu, v〉S | ≤M‖u‖S‖v‖S (u, v ∈ HS). (32)
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Proposition 5. [9]. For any subspace Vh ⊂ HS,

Λ(S−1
h Lh)

λ0(S−1
h Lh)

≤ M

m
(33)

independently of Vh.

Consequently, by (14), the GCG-LS algorithm (11) for system (30) satisfies(
‖rk‖Sh

‖r0‖Sh

)1/k

≤
(
1−

(m

M

)2)1/2

(k = 1, 2, ..., n), (34)

which holds as well for the GCR and Orthomin methods together with their
truncated versions; further, by (20), the CGN algorithm (19) for system (30)
satisfies (

‖rk‖Sh

‖r0‖Sh

)1/k

≤ 21/k M −m

M + m
(k = 1, 2, ..., n). (35)

Finally, let now Sh := (Lh + LT
h )/2 be the symmetric part of Lh. Here Lh =

Sh+Qh with Qh := (Lh−LT
h )/2, and LS = I+QS where QS is antisymmetric in

HS , further, S−1
h Lh = Ih+S−1

h Qh where S−1
h Qh is antisymmetric w.r.t. the inner

product 〈., .〉Sh
. Then the full GCG algorithm reduces to the simple truncated

version (12), further, we obtain the mesh independent estimate ‖S−1
h Qh‖Sh

≤
‖QS‖, whence by (16),(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ ‖QS‖√
1 + ‖QS‖2

(k = 1, 2, ..., n). (36)

4 Compact-Equivalent Operators and Superlinear
Convergence

We now present the property of compact-equivalence between operator pairs,
based on [8], which is a refinement of the equivalence property and provides
mesh independent superlinear convergence. We use the Hilbert space setting of
Definition 1 and include a main example (which, moreover, is a characterization)
for elliptic operators.

Definition 4. Let L and N be S-bounded and S-coercive operators in H . We
call L and N compact-equivalent in HS if

LS = µNS + QS (37)

for some constant µ > 0 and compact operator QS ∈ B(HS).

Remark 2. If R(L) ⊂ R(N), then compact-equivalence of L and N means that
N−1L is a compact perturbation E of constant times the identity in the space
HS , i.e., N−1L = µI + E.
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One can characterize compact-equivalence for elliptic operators. Let us take two
operators as in (24):

L1u ≡ −div (A1∇u) + b1 · ∇u + c1u for u|ΓD
= 0,

∂u

∂νA1

+ α1u|ΓN
= 0,

L2u ≡ −div (A2∇u) + b2 · ∇u + c2u for u|ΓD
= 0,

∂u

∂νA2

+ α2u|ΓN
= 0

where we assume that L1 and L2 satisfy Assumptions 3.1. Then the following
fundamental result holds:

Proposition 6. [8]. The elliptic operators L1 and L2 are compact-equivalent
in H1

D(Ω) if and only if their principal parts coincide up to some constant µ > 0,
i.e. A1 = µA2.

Now we discuss preconditioned CG methods and corresponding mesh indepen-
dent superlinear convergence rates. Let us consider an operator equation Lu = g
in a Hilbert space H for some S-bounded and S-coercive operator L, and its
Galerkin discretization as in (27). Let us first introduce the stiffness matrix Sh

as in (29) as preconditioner.

Proposition 7. [8]. If L and S are compact-equivalent with µ = 1, then the
CGN algorithm (19) for system (30) yields(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, ..., n), (38)

where εk → 0 is a sequence independent of Vh.

A similar result holds for the GCG-LS method, provided however that QS is a
normal compact operator in HS and the matrix S−1

h Qh is Sh-normal [6]. These
properties hold, in particular, for symmetric part preconditioning. The sequence
εk contains similar expressions of eigenvalues as (17) or (21) related to QS , which
we omit for brevity.

For elliptic operators, we can derive a corresponding result. Let L be the
elliptic operator in (24) and S be the symmetric operator in (25). If the principal
parts of L and S coincide, i.e., A = G, then L and S are compact-equivalent by
Proposition 6, and we have µ = 1. Hence Proposition 7 yields a mesh independent
superlinear convergence rate. Further, by [8], an explicit order of magnitude in
which εk → 0 can be determined in some cases. Namely, when the asymptotics for
symmetric eigenvalue problems Su = µu, u|ΓD

= 0, r
(

∂u
∂νA

+ βu
)
|ΓN

= µu

satisfies µi = O(i2/d), as is the case for Dirichlet problems, then

εk ≤ O
( log k

k

)
if d = 2 and εk ≤ O

( 1
k2/d

)
if d ≥ 3. (39)
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5 Applications of Symmetric Equivalent Preconditioners

We consider now symmetric preconditioning for elliptic systems defined on a
domain Ω ⊂ RN . Let

Li ≡ −div(Ai∇ui) + bi · ∇ui +
l∑

j=1

Vijuj = gi

ui = 0 on ∂ΩD, ∂ui

∂νA
+ αiui = 0 on ∂ΩN , i = 1, 2, · · · l.

(40)

Here it is assumed that bi ∈ C1(Ω)N , gi ∈ L2(Ω) and Vij ∈ L∞(Ω), and
the matrix V = {Vij}li,j=1 satisfies the coercivity property pointwise in Ω,
λmin(V +V T )−maxdivbi ≥ 0, pointwise in Ω, where λmin denotes the smallest
eigenvalue.

Then system (40) has a unique solution u ∈ H1
D(Ω)l.

As preconditioning operator we use the l-tuple S = (S1, · · · , Sl) of independent

operators, Siui ≡ −div(Ai∇ui) + hiu, where ui = 0 on ∂ΩD,
∂ui

∂νA
+ βiui = 0

on ∂ΩN and βi ≥ 0, i = 1, 2, · · · l.
Now we choose a FEM subspace Vh ⊂ H1

D(Ω)l and look for the solution uh of
the corresponding system Lhc = b using a preconditioner Sh being the stiffness
matrix of S.

One can readily verify that there occurs a superlinear convergence of the
preconditioned CGM which, furthermore, is mesh independent.

An application where such systems arise is in meteorology, where the chemi-
cal reaction terms have been linearized in a Newton nonlinear iteration method
([16]). Another important application of equivalent pairs of elliptic operators
arises for the separable displacement preconditioning method for elasticity sys-
tems, formulated in displacement variables. There, the equivalence of the given
and the separable displacement operators can be proven using Korn’s inequality,
see [4,5] for details and further references.

We have shown that a superlinear convergence takes place for operator pairs
(i.e., the given and its preconditioner) which are compact-equivalent. The main
theorem states that the principal, i.e., the dominating (second order) parts of the
operators must be identical, apart from a constant factor. This seems to exclude
an application for variable coefficient problems, where for reasons of efficiency we
choose a preconditioner which has constant, or piecewise constant coefficients, as-
suming we want to use a simple operator such as the Laplacian as preconditioner.

However, we show now how to apply some method of scaling or transformation
to reduce the problem to one with constant coefficients in the dominating part.
We use then first a direct transformation of the equation. Let

Lu ≡ −div(a∇u) + b · ∇u + cu = g, (41)

where a ∈ C1(Ω), a(x) ≥ p > 0.
Here a straightforward computation shows that

1
a
Lu = −div(∇u) +

1
a
(b−∇a)∇u +

c

a
u =

g

a
,

i.e.,the principal part consists simply of the Laplacian operator, −∆.
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A case of special importance occurs when a is written in the form a = e−φ, φ ∈
C1(Ω) and b = 0. Then −∇a = e−φ∇φ = a∇φ and (41) takes the form

1
a
Lu = −∆u +∇φ∇u + eφcu = eφg.

This is a convection-diffusion equation with a so called potential vector field,
v = ∇φ. Such problems occur frequently in practice, e.g. in modeling of semi-
conductors.

When the coefficient a varies much over the domain Ω one can apply transfor-
mations of both the equation and the variable, to reduce variations of gradients
(‖∇u‖) of O(max(a)/min(a)) to O(max

√
a/min(

√
a)). Let then u = a1/2v and

assume that a ∈ C2(Ω). Then a computation shows that

−a−1/2 ∂

∂xi
(a

∂u

∂xi
) = −a−1/2 ∂

∂xi
(a−1/2 ∂v

∂xi
− 1

2
a−1/2 ∂a

∂xi
v

= −∂2v

∂x2
i

+ a−1/2 ∂
2(a−1/2)
∂x2

i

,

and a−1/2b∇u = a−1b∇v − 1
2 (b · ∇u/a2)v. Hence

a−1/2(Lu− g) = ∆v + b̂ · ∇v + ĉv − ĝ, (42)

where b̂ = a−1b, ĉ = a−1c− 1
2b · ∇u/a2 + a−1/2∆(a−1/2) and ĝ = a−1/2g.

Remark 3. It is seen that when b = 0 both the untransformed (41) and trans-
formed (42) operators are selfadjoint.

The relation Nv ≡ a−1/2Lu shows that

〈Nv, v〉L2(Ω = 〈a−1/2Lu, a1/2u〉L2(Ω = 〈Lu, u〉L2(Ω

holds for all u ∈ D(L). The positivity of the coefficient a shows hence that
‖u‖H1 and ‖v‖H1 are equivalent, and N inherits the H1-coercivity of L, i.e.,
the relation 〈Lu, u〉L2(Ω ≥ m‖u‖2H1(Ω) is replaced by 〈Nv, v〉L2(Ω ≥ m̂‖v‖2H1(Ω)

for a certain constant m̂ > 0. This shows the we may apply e.g. the Laplacian
operator (−∆) as preconditioner to N which, being a compact equivalent pair,
implies a superlinear and meshindependent rate of convergence of CGM.
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7. Axelsson, O., Karátson J.: Symmetric part preconditioning of the CGM for Stokes
type saddle-point systems. Numer. Funct. Anal. Optim. (to appear)
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Abstract. We review some recent developments in the coupling of
atomistic and continuum models based on the blending of the two models
in a bridge region connecting the other two regions in which the models
are separately applied. We define four such models and subject them to
patch and consistency tests. We also discuss important implementation
issues such as: the enforcement of displacement continuity constraints in
the bridge region; and how one defines, in two and three dimensions, the
blending function that is a basic ingredient in the methods.

Keywords: Atomistic to continuum coupling, blended coupling,
molecular statics.

1 Coupling Atomistic and Continuum Models

For us, continuum models are PDE models that are derived by invoking a (phys-
ical) continuum hypothesis. In most situations, these models are local in nature,
e.g., forces at any point and time depend only on the state at that point. Atom-
istic models are discrete models. In particular, we consider molecular statics
models; these are particle models in which the position of the particles are de-
termined through the minimization of an energy, or, equivalently, by Newton’s
laws expressing force balances. These models are, in general, nonlocal in nature,
e.g., particles other than its nearest neighbors exert a force on a particle.

There are two types of situations in which the coupling of atomistic and
continuum models arise. In the concurrent domain setting, the atomistic model
is used to determine information, e.g., parameters such as diffusion coefficients,
viscosities, conductivities, equations of state, etc., or stress fields, etc., that are
needed by the continuum model. Both models are assumed to hold over the
same domain. Typically, these parameters are determined by taking statistical
averages of the atomistic solution at points in the domain and, in this setting,

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 16–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Non-overlapping (left) and overlapping (right) coupling of atomistic and con-
tinuum models

usually, only one-way coupling is needed, e.g., the atomistic model is used to
determine the continuum parameters. However, in more realistic situations, two-
way coupling is needed, e.g., the atomistic model may need the macroscopic
temperature as an input.

In the domain decomposition setting (which is the one we consider in this pa-
per), the atomistic and continuum models are applied in different subdomains.
The atomistic model is valid everywhere but is computationally expensive to
use everywhere. So, it is applied only in regions where “singularities” occur, e.g.,
cracks, dislocations, plastic behavior, etc., and a continuum model is applied in
regions where, e.g., ordinary elastic behavior occurs. There remains the ques-
tion of how one couples the atomistic to the continuum model; there are two
approaches to effect this coupling. For non-overlapping coupling, the atomistic
and continuum models are posed on disjoint domains that share a common inter-
face. For overlapping coupling, the regions in which the atomistic and continuum
model are applied are connected by a bridge region in which both models are
applied. See the sketches in Fig. 1.

Atomistic-to-continuum (AtC) coupling is distinct from most continuum-to-
continuum couplings due to the non-local nature of atomistic models. Although
the are no “active” particles in the region in which only the continuum model is
applied, in a setting in which particles interact nonlocally, the forces exerted by
the missing particles on the active particles are not accounted for; this discrep-
ancy gives rise to what is known as ghost force phenomena.

In this paper, we consider AtC coupling methods that use overlapping regions
because, in that case, it is easier to mitigate the ghost force effect. Note that
one should not simply superimpose the two models in the bridge region since
this leads to a non-physical “doubling” of the energy in Ωb. Instead, the two
models must be properly blended in this region. Such models are considered in
[1,2,3,4,6]; here, we review the results of [1,2,6].

2 Blended AtC Coupled Models

We assume that the atomistic model is valid in the atomistic and bridge re-
gions, Ωa and Ωb, respectively; see Fig. 1. The continuum model is valid in the
continuum region Ωc and the bridge region Ωb but is not valid in the atom-
istic region Ωa. We want to “seamlessly” blend the two models together using
the bridge region Ωb according to the following principles: the atomistic model
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Fig. 2. Left: forces acting on the particle located at xα. Right: forces acting on a point
x in the continuum region.

“dominates” the continuum model near the interface surface between the atom-
istic and bridge regions and the continuum model “dominates” the atomistic
model near the interface surface between the continuum and bridge regions.

In the atomistic region Ωa, we assume that the force on the particle α located
at the position xα is due to externally applied force fe;α and the forces exerted
by other particles fα,β within the ball Bα = {x ∈ Ω : |x − xα| ≤ δ} for some
given δ. See the sketch in Fig. 2.

The inter-particle forces are determined from a potential function, e.g., if xα

and xβ denote the positions of the particles α and β, then fα,β = −∇Φ
(
|xα−xβ |

)
,

where Φ(·) is a prescribed potential function. Instead of using the particle posi-
tions xα, one instead often uses the displacements uα from a reference configu-
ration.

Let Nα = {β | xβ ∈ Bα, β �= α}, i.e., Nα is the set of the indices of the
particles1 located within Bα, other than the particle located at xα itself. Then,
for any particle α, force equilibrium gives

fα + fe;α = 0,

where fα =
∑

β∈Nα
fα,β . We assume that in Ωa there are two kinds of particles:

particles whose positions are specified in advance and particles whose positions
are determined by the force balance equations. The set of indices of the second
kind of particles is denoted by Na. It is convenient to recast the force balance
equation for the remaining particles in an equivalent variational form∑

α∈Na

vα·fα = −
∑

α∈Na

vα·fe;α ∀vα ∈ Rd , α ∈ Na.

In the continuum region Ωc, the Cauchy hypothesis implies that the forces
acting on any continuum volume ω enclosing the point x are given by the ex-
ternally applied volumetric force fe and the force exerted by the surrounding

1 Note that for some α, the set Nα may include the indices of some particles whose
positions are specified.
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material fc = −
∫
γ
σ · n dγ, where γ denotes the boundary of ω and σ denotes

the stress tensor. See the sketch in Fig. 2. Note that −σ · n is the stress force
acting on a point on γ.

We assume that σ(x) = σ
(
x,∇u(x)

)
and is possibly nonlinear in both its

arguments. Here, u(x) denotes the continuous displacement at the point x. For
a homogeneous material, σ(x) = σ

(
∇u(x)

)
, i.e., the stress does not explicitly

depend on position. In the equilibrium state, we have that

−
∫

γ

σ · n dγ +
∫

ω

fe dω = 0, so that
∫

ω

(
∇ · σ + fe

)
dω = 0.

Then, since ω is arbitrary, we conclude that at any point x in the continuum
region, we have the force balance

∇ · σ + fe = 0.

For simplicity, we assume that we only have displacement boundary conditions.
Again, it will be convenient if we recast the continuum force balance equations

in the equivalent variational form∫
Ωc

σ(u): ε(v) dΩ =
∫

Ωc

fe·v dΩ ∀v ∈ H1
0(Ωc),

where we have the strain tensor ε(v) = 1
2 (∇v + ∇vT ) and the homogeneous

displacement test space H1
0(Ωc).

2.1 Blended Models in the Bridge Region

We introduce the blending functions θa(x) and θc(x) satisfying θa + θc = 1 in
Ω with 0 ≤ θa, θc ≤ 1, θc = 1 in Ωc and θa = 1 in Ωa. Let θα = θa(xα) and
θα,β = θa

(
xα+xβ

2

)
or θα,β = θα+θβ

2 .
We introduce four ways to blend the atomistic and continuum models. Let Nb

denote the set of indices of the particles in Ωb whose positions are not fixed by
the boundary conditions.

Blended model I

−
∫

Ωb

θcσ(u) : ε(v) dΩ +
∑

α∈Nb

θαvα · fα = −
∫

Ωb

θcfe · v dΩ −
∑

α∈Nb

θαvα · fe;α

∀v ∈ H1
0(Ωc) and vα ∈ Rd , α ∈ Nb.

Blended model II

−
∫

Ωb

θcσ(u) : ε(v) dΩ +
∑

α∈Nb

vα ·
∑

β∈Nα

θα,βfα,β = −
∫

Ωb

θcfe · v dΩ

−
∑

α∈Nb

θαvα · fe;α ∀v ∈ H1
0(Ωc) and vα ∈ Rd , α ∈ Nb.
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Blended model III

−
∫

Ωb

σ(u) : ε(θcv) dΩ +
∑

α∈Nb

θαvα · fα = −
∫

Ωb

θcfe · v dΩ

−
∑

α∈Nb

θαvα · fe;α ∀v ∈ H1
0(Ωc) and vα ∈ Rd , α ∈ Nb.

Blended model IV

−
∫

Ωb

σ(u) : ε(θcv) dΩ +
∑

α∈Nb

vα ·
∑

β∈Nα

θα,βfα,β = −
∫

Ωb

θcfe · v dΩ

−
∑

α∈Nb

θαvα · fe;α ∀v ∈ H1
0(Ωc) and vα ∈ Rd , α ∈ Nb.

Methods I and II were introduced in [1,6] while Method III and IV were intro-
duced in [2]. An important observation is that in the bridge region Ωb, near the
continuum region Ωc, we have that θa is small so that θα,β and θα are small
as well. Thus, blended models of the type discussed here automatically mitigate
any ghost force effects, i.e., any ghost force will be multiplied by a small quantity
such as θα,β or θα.

2.2 Displacement Matching Conditions in the Bridge Region

In order to complete the definition of the blended model, one must impose con-
straints that tie the atomistic displacements uα and the continuum displace-
ments u(x) in the bridge region Ωb. These take the form of

C
(
uα,u(x)

)
= 0 for α ∈ Nb and x ∈ Ωb

for some specified constraint operator C(·, ·).
One could slave all the atomistic displacements in the bridge region to the

continuum displacements, i.e., set

uα = u(xα) ∀α ∈ Nb.

We refer to such constraints as strong constraints. Alternatively, the atomistic
and continuum displacements can be matched in an average sense to define
loose constraints. For example, one can define a triangulation T H = {∆t}Tb

t=1 of
the bridge region Ωb; this triangulation need not be the same as that used to
effect a finite element discretization of the continuum model. Let Nt �= ∅ denote
indices of the particles in ∆t. One can then match the atomistic and continuum
displacements in an average sense over each triangle ∆t:∑

α∈Nt

u(xα) =
∑

α∈Nt

uα for t = 1, . . . , Tb.

Once a set of constraints has been chosen, one also has to choose a means for
enforcing them. One possibility is to enforce them weakly through the use of the
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Lagrange multiplier rule. In this case, the test functions vα and v(x) and trial
functions uα and u(x) in the variational formulations are not constrained; one
ends up with saddle-point type discrete systems⎛⎜⎝Aa,θa 0 Ca

0 Ac,θc Cc
C∗a C∗c 0

⎞⎟⎠ ·
⎛⎜⎜⎝

atomistic unknowns

continuum unknowns

Lagrange multipliers

⎞⎟⎟⎠ = RHS.

Note that the coupling of the atomistic and continuum variables is effected only
through the Lagrange multipliers.

A second possibility is to enforce the constraints strongly, i.e., require that
all candidate atomistic and continuum displacements satisfy the constraints. In
this case, the test functions vα and v(x) in the variational formulations should
be similarly constrained. One ends up with simpler discrete systems of the form

Ãa,θa,θc ·
(
atomistic unknowns

)
+ Ãc,θc,θa ·

(
continuum unknowns

)
= RHS.

Note that the atomistic and continuum variables are now tightly coupled. The
second approach involves fewer degrees of freedom and results in better behaved
discrete systems but may be more cumbersome to apply in some settings.

2.3 Consistency and Patch Tests

To define an AtC coupled problem, one must specify the following data sets:

– F =
{
fe
α

}
α∈Na∪Nb

(external forces applied to the particles);

– P =
{
uα

}
α�∈Na∪Nb

(displacements of the particles whose positions are fixed)

– B =
{
fe(x)

}
x∈Ωc∪Ωb

(external forces applied in the continuum region);

– D =
{
u(x)

}
x∈∂(Ωc∪Ωb)

(continuum displacements on the boundary).

We subject the AtC blending methods we have defined to two tests whose
passage is crucial to their mathematical and physical well posedness. To this end,
we define two types of test problems. The set {F, P,B,D} defines a consistency
test problem if the pure atomistic solution uα and the pure continuum solution
u(x) are such that the constraint equations, i.e, C

(
uα,u(x)

)
= 0, are satisfied

on Ω. Further, a consistency test problem defines a patch test problem if the pure
continuum solution u(x) is such that ε(u) = constant, i.e., it is a solution with
constant strain.

If we assume that {F, P,B,D} defines a patch test problem with atomistic
solution uα and continuum solution u(x), then, an AtC coupling method passes
the patch test if {uα,u(x)} satisfies the AtC model equations. Similarly, an AtC
coupling method passes the consistency test if {uα,u(x)} satisfies the AtC model
equations for any consistency test problem. Note that passing the consistency
test implies passage of the patch test, but not conversely.
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Our analyses of the four blending methods (see [2]) have shown that Methods
I and IV are not consistent and do not pass patch test problems; Method III
is consistent and thus also passes any patch test problem; and Method II is
conditionally consistent: it is consistent if, for a pair of atomistic and continuum
solutions uα and u, respectively

−
∫

Ω

θcσ(u) : ε(v) dΩ +
∫

Ω

σ(u) : ε(θcv) dΩ

+
∑

α∈Na∪Nb

vα ·
∑

β∈Nα

θα,βfα,β −
∑

α∈Na∪Nb

θαvα ·
∑

β∈Nα

fα,β = 0

and passes patch tests if this condition is met for patch test solutions.
From these results, we can forget about Methods I and IV and it seems that

Method III is better than Method II. The first conclusion is valid but there are
additional considerations that enter into the relative merits of Methods II and
III. Most notably, Method II is the only one of the four blended models that
satisfies2 Newton’s third law. In addition, the violation of patch and consistency
tests for Method II is tolerable, i.e., the error introduced can be made smaller by
proper choices for the model parameters, e.g., in a 1D setting, we have shown (see
[1]) that the patch test error is proportional to s2

Lbh , where s = particle lattice
spacing (a material property), h = finite element grid size, and Lb = width of
the bridge region Ωb. While we cannot control the size of s, it is clear that in
realistic models this parameter is small. Also, the patch test error for Method II
can be made smaller by making Lb larger (widening the bridge region) and/or
making h larger (having more particles in each finite element).

2.4 Fully Discrete Systems in Higher Dimensions

We now discuss how the fully discrete system can be defined in 2D; we only
consider Method II for which we have

−
∫

Ωb∪Ωc

θcσ(u) : ε(v) dΩ +
∑

α∈Nb∪Na

vα ·
∑

β∈Nα

θα,βfα,β =

−
∫

Ωb∪Ωc

θcfe · v dΩ −
∑

α∈Nb∪Na

θαvα · fe;α

∀v ∈ H1
0(Ωb ∪Ωc) and vα ∈ Rd , α ∈ Nb ∪ Na.

We also consider the case of the strong enforcement of the hard constraints

uα = u(xα) ∀α ∈ Nb.

The other methods and looser constraints handled using the Lagrange multiplier
rule can be handled in a similar manner.
2 Related to this observation is the fact that Method II is the only blended method

that has symmetric weak form provided the weak forms of the pure atomistic and
continuum problems are also symmetric.
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To discretize the continuum contributions to the blended model, we use a
finite element method. Let Wh ⊂ H1

0(Ωb ∪ Ωc) be a nodal finite element space
and let {wh

j (x)}Jj=1 denote a basis for Wh. Then, the continuum displacement
u(x) is approximated by

u(x) ≈ uh(x) =
J∑

j=1

cjwh
j (x).

Let Sc =
{
j ∈ {1, . . . , J} | xj ∈ Ωc

}
and Sb =

{
j ∈ {1, . . . , J} | xj ∈ Ωb

}
denote the set of indices of the nodes in Ωc and Ωb, respectively. We use contin-
uous, piecewise linear finite element spaces with respect to partition of Ωb ∪Ωc

into a set of T triangles T h = {∆t}Tt=1; higher-order finite element spaces can
also be used.

For j = 1, . . . , J , we let T h
j = {t : ∆t ∈ supp(wj)}, i.e., T h

j is the set of
indices of the triangles sharing the finite element node xj as a vertex. Thus, we
have that ∫

supp(wh
j )

F (x) dΩ =
∑

t∈T h
j

∫
∆t

F (x) dΩ.

The standard choice for the quadrature rule, since we are using piecewise lin-
ear finite element functions, is the mid-side rule for triangles. Thus, if x̂∆;k,
k = 1, . . . , 3, are the vertices of a triangle ∆, we have the quadrature rule∫

∆
F (x) dΩ ≈ V∆

3

∑3
q=1 F (x∆;q), where V∆ denotes the volume of the triangle

∆, x∆;1 = x̂∆;1+x̂∆;2
2 , x∆;2 = x̂∆;2+x̂∆;3

2 , and x∆;3 = x̂∆;3+x̂∆;1
2 .

In the continuum region Ωc, we have the discretized continuum model

−
∑

t∈T h
j

V∆t

3

3∑
q=1

σ
(
(x∆t;q),∇uh(x∆t;q)

)
: ∇wh

j (x∆t;q)

= −
∑

t∈T h
j

V∆t

3

3∑
q=1

fe(x∆t;q) ·wh
j (x∆t;q) for j ∈ Sc.

Of course, in the atomistic region Ωa, we have that∑
β∈Nα

fα,β = −fe
α for α ∈ Na.

Due to the way we are handling the constraints, we have that the atomistic test
and trial functions in the bridge region Ωb are slaved to the continuum test and
trial functions, i.e., uα = uh(xα) and vα = wh

j (xα).
For j ∈ Sb, let Nj = {α | xα ∈ supp(wh

j )} denote the set of particle indices
such that the particles are located within the support of the finite element basis
function wh

j . Then, in the bridge region Ωb, we have that
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−
∑

t∈T h
j

V∆t

3

3∑
q=1

θc(x∆t;q)σ
(
(x∆t;q),∇uh(x∆t;q)

)
: ∇wh

j (x∆t;q)

+
∑

α∈Nj

∑
β∈Nα

θα,βfα,β ·wh
j (xα)

= −
∑

t∈T h
j

V∆t

3

3∑
q=1

θc(x∆t;q)f
e(x∆t;q) ·wh

j (x∆t;q)

−
∑

α∈Nj

θαfe
α ·wh

j (xα) for j ∈ Sb.

In 3D, one cannot use mid-face or mid-edge quadrature rules as one can in 1D
and 2D, even for uncoupled continuum problems. Instead, one must use rules for
which at least some of the quadrature points are in the interior of tetrahedra.
Other than this, the development of a fully discretized method follows the same
process as in the 2D case.

2.5 Choosing the Blending Function in 2D and 3D

For the blending function θc(x) for x ∈ Ωb, we of course have that θa(x) =
1− θc(x), θa(x) = 1, θc(x) = 0 in Ωa, θa(x) = 0. and θc(x) = 1 in Ωc.

In many practical settings, the domain Ωb is a rectangle in 2D or is a rect-
angular parallelepiped in 3D. In such cases, one may simply choose θc(x) in
the bridge region to be the tensor product of global 1D polynomials connect-
ing the atomistic and continuum regions across the bridge region. One could
choose linear polynomials in each direction such that their values are zero at the
bridge/atomistic region interface and one at the bridge/continuum region inter-
face. If one wishes to have a smoother transition from the atomistic to the bridge
to the continuum regions, one can choose cubic polynomials in each direction
such that they have zero value and zero derivative at the bridge/atomisitic re-
gion interface and value one and zero derivative at the bridge/continuum region
interface.

For the general case in 2D, we triangulate the bridge region Ωb into the set
of triangles having vertices {xb;i}li=1. In practice, this triangulation is the same
as that used for the finite element approximation of the continuum model in the
bridge region but, in general, it may be different. For the two triangulations to
be the same, we must have that the finite element triangulation is conforming
with the interfaces between the bridge region and the atomistic and continuum
regions, i.e., those interfaces have to be made up of edges of triangles of the
finite element triangulation. The simplest blending function is then determined
by setting θc(x) = ξh(x), where ξh(x) is a continuous, piecewise linear function
with respect to this triangulation. The nodal values of ξh(x) are chosen as follows.
Set ξh(xb;i) = 0 at all nodes xb;i ∈ Ωa ∩ Ωb, i.e., on the interface between
the atomistic and bridge regions. Then, set ξh(xb;i) = 1 at all nodes xb;i ∈
Ωb ∩ Ωc, i.e., on the interface between the continuum and bridge regions. For
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the remaining nodes xb;i ∈ Ωb, there are several ways to choose the values of ξh.
One way is to choose them according to the relative distances to the interfaces. A
more convenient way is to let ξh be a finite element approximation, with respect
to the grid, of the solution of Laplace’s equation in Ωb that satisfies the specified
values at the interfaces. Once ξh(x) is chosen, we set θa(x) = 1 − ξh(x) for all
x ∈ Ωb and choose θα = θa(xα) = 1− ξh(xα) so that

θα,β = 1− ξh(xα) + ξh(xβ)
2

or θα,β = 1− ξh
(xα + xβ

2

)
.

This recipe can be extended to 3D settings.
One may want θc(x) to have a smoother transition from the atomistic to the

bridge to the continuum regions. To this end, one can choose ξh(x) to not only be
continuous, but to be continuously differentiable in the bridge region and across
the interfaces. Note that in 2D, this requires the use of the fifth-degree piecewise
polynomial Argyris element or the cubic Clough-Tocher macro-element; see [5].
Such elements present difficulties in a finite element approximation setting, but
are less problematical in an interpolatory setting.

3 Simple Computational Examples in 1D

For 0 < a < c < 1, let Ω = (0, 1), Ωa = (0, a), Ωb = (a, c), and Ωc = (c, 1).
In Ωc ∪ Ωb = [a, 1], we construct the uniform partition xj = a + (j − 1)h
for j = 1, . . . , J having grid size h. We then choose Wh to be the continuous,
piecewise linear finite element space with respect to this partition. Without loss
of generality, we define the bridge region Ωb using the finite element grid, i.e., we
assume that there are finite element nodes at x = a and x = c; this arrangement
leads to a more convenient implementation of blending methods in 2D and 3D.
In Ωa ∪ Ωb = [0, c], we have a uniform particle lattice with lattice spacing s
given by xα = (α− 1)s, α = 1, . . . , N . Note that the lattice spacing s is a fixed
material property so that there is no notion of s→ 0. One would think that one
can still let h→ 0; however, it makes no sense to have h < s.

We consider the atomistic model to be a one-dimensional linear mass-spring
system with two-nearest neighbor interactions and with elastic moduli Ka1 and
Ka2 for the nearest-neighbor and second nearest-neighbor interactions; only the
two particles to the immediate left and right of a particle exert a force on that
particle. The continuum model is one-dimensional linear elasticity with elastic
modulus Kc. We set Ka1 = 50, Ka2 = 25, Kc = Ka1 + 2Ka2 = 100. A unit
point force is applied at the finite element node at the end point x = 1 and
the displacement of the particle located at the end point x = 0 is set to zero.
Using either the atomistic or finite element models, the resulting solutions are
ones having uniform strain 0.01; thus, we want a blended model solution to also
recover the uniform strain solution.

We choose h = 1.5s and s = 1/30 so that we have a = 0.3, c = 0.6, 20
particles, and 16 finite element nodes; there are no particles located at either
x = a or x = c, the end points of the bridge region Ωb. For the right-most
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Fig. 3. Strain for Method II (left) and Method III(right)

particle x20 < c, we have that θa(x20) �= 0. To avoid the ghost forces associated
with the missing bond to the right of the 20th particle, a 21st particle is added
to the right of x = c. Since x21 ∈ Ωc, we have that θa(x21) = 0 so that we need
not be concerned with its missing bond to the right; this is a way that blending
methods mitigate the ghost force effect. We see from Fig. 3 that Method III
passes the patch test but Method II does not. However, the degree of failure
for Method II is “small.” From Fig. 4, we see that Method I fails the patch
test; the figure for that method is for the even simpler case of nearest-neighbor
interactions. Similarly, Method IV fails the patch test.

In Fig. 5, we compare the blended atomistic solutions in the bridge region,
obtained using Method III with both strong and loose constraints, with that
obtained using the fully atomistic solution. We consider a problem with a uniform
load and zero displacements at the two ends; we only consider nearest-neighbor
interactions. The loose constraint allows the atomistic solution to be free to
reproduce the curvature of the fully atomistic solution, leading to better results.
The strong constraint is too restrictive, forcing the atomistic solution to follow
the finite element solution; it results in a substantial reduction in the accuracy
in the bridge region.

Fig. 4. Strain for Method I
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Fig. 5. Fully atomistic solution (dashed line);
loose constraints (dash-dotted line); and
strong constraints (solid line)
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Abstract. An advection-diffusion-chemistry module of a large-scale air
pollution model is split into two parts: (a) advection-diffusion part and
(b) chemistry part. A simple sequential splitting is used. This means
that at each time-step first the advection-diffusion part is treated and
after that the chemical part is handled. A discretization technique based
on central differences followed by Crank-Nicolson time-stepping is used
in the advection-diffusion part. The non-linear chemical reactions are
treated by the robust Backward Euler Formula. The performance of the
combined numerical method (splitting procedure + numerical algorithms
used in the advection-diffusion part and in the chemical part) is studied in
connection with six test-problems. We are interested in both the accuracy
of the results and the efficiency of the parallel computations.

1 Statement of the Problem

Large-scale air pollution models are usually described mathematically by systems
of PDEs (partial differential equations):

∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
(1)

+
∂

∂x

(
Kx

∂cs

∂x

)
+

∂

∂y

(
Ky

∂cs

∂y

)
+

∂

∂z

(
Kz

∂cs

∂z

)
+Es − (κ1s + κ2s)cs + Qs(t, c1, c2, . . . , cq), s = 1, 2, . . . , q.

The number q of equations in (1) is equal to the number of chemical species.
The other quantities in (1) are (i) the concentrations cs of the chemical species,
(ii) the wind velocities u, v and w, (iii) the diffusion coefficients Kx,Ky, and Kz,
(iv) the emission sources Es, (v) the deposition coefficients κ1s and κ2s, and (vi)
the non-linear terms Qs(t, c1, c2, . . . , cq) describing the chemical reactions. More
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details about large-scale air pollution models can be found in Zlatev [13] and
Zlatev and Dimov [14] as well as in the references given in these two monographs.

In order to check better the accuracy of the numerical methods used, the
following simplifications in (1) were made: (i) the three-dimensional model was
reduced to a two-dimensional model, (ii) the deposition terms were removed, (iii)
a constant horizontal diffusion was introduced, and (iv) a special wind velocity
wind was designed. The simplified model is given below:

∂c∗s
∂τ

= −(η − 1)
∂c∗s
∂ξ
− (1 − ξ)

∂c∗s
∂η

+ K

(
∂2c∗s
∂ξ2

+
∂2c∗s
∂η2

)
(2)

+E∗
s (ξ, η, τ) + Q∗

s(τ, c
∗
1, c

∗
2, . . . , c

∗
q),

where the independent variables ξ, η and τ vary in the intervals:

ξ ∈ [0, 2], η ∈ [0, 2], τ ∈ [0,M(2π)], M ≥ 1. (3)

The system of PDEs (2) must be considered together with some initial and
boundary conditions. It will be assumed here that some appropriate initial
and boundary conditions are given. Some further discussion related to the initial
and boundary conditions will be presented in the remaining part of this paper.

The replacement of the general wind velocity terms u = u(t, x, y) and v =
v(t, x, y) from (1) with the special expressions η − 1 and 1 − ξ in (2) defines
a rotational wind velocity field (i.e., the trajectories of the wind are concentric
circles with centres in the mid of the space domain and particles are rotated
with a constant angular velocity).

If only the first two terms in the right-hand-side of (2) are kept, i.e., if pure
advection is considered, then the classical rotation test will be obtained. This test
has been introduced in 1968 simultaneously by Crowley and Molenkampf ([3] and
[10]). In this case, the centre of the domain is in the point (ξ1, η1) = (1.0, 1.0).
High concentrations, which are forming a cone (see the upper left-hand-side plot
in Fig. 1) are located in a circle with centre at (ξ0, η0) = (0.5, 1.0) and with
radius r = 0.25. If x̃ =

√
(ξ − ξ0)2 + (η − η0)2, then the initial values for the

original Crowley-Molenkampf test are given by c∗s(ξ, η, 0) = 100(1−x̃/r) for r < x̃
and c∗s(ξ, η, 0) = 0 for r ≥ x̃. It can be proved that c∗s(ξ, η, k 2π) = c∗s(ξ, η, 0)
for k = 1, 2, . . . ,M , i.e., the solution is a periodic function with period 2 π. It
can also be proved that the cone defined as above will accomplish a full rotation
around the centre (ξ1, η1) of the domain when the integration is carried out
from τ = k 2 π to τ = (k+1) 2 π, where k = 0, 1, . . . ,M − 1 (which explains why
Crowley-Molenkampf test is often called the rotation test).

The advection process is dominating over the diffusion process, which is de-
fined mathematically by the next term in the right-hand-side of (2). This means
in practice that the constant K is very small, which is a very typical situation
in air pollution modelling.
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Fig. 1. Graphical representation of the solution of (5) when there are no emission
sources (puff); (a) the initial solution is shown in the upper left-hand-side plot, (b)
the solution at t = 30 when only the advection-diffusion module is run is shown in the
upper right-hand-side plot, (c) the solution at t = 30 when only the chemistry module
is run is shown in the lower left-hand-side plot, and (d) the solution at t = 30 when
both the advection-diffusion module and the chemistry module is run is shown in the
lower right-hand-side plot

If the first two terms and the last term in the right-hand-side of (2) are kept,
i.e., if both advection and chemistry are treated, then an extension of the classical
Crowley-Molenkampf rotation test is obtained, which was proposed and studied,
twenty years later, in Hov et al. [9].

The short discussion given above shows that (2) is a further extension of the
test proposed in Hov et al. [9].
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The intervals for the independent variables ξ, η and τ , which are used in (3)
are very convenient when the original Crowley-Molenkampf test is considered.
For the extended test, where diffusion and chemistry terms are added, it is more
convenient to use the intervals [a1, b1], [a2, b2] and [a, b], which can be obtained
by using the following substitutions in (2):

x = a1 +
b1 − a1

2
ξ, y = a2 +

b2 − a2

2
η, t = a +

b− a

2π
τ. (4)

The result is the following system of partial differential equations, which will
be used in the following part of this paper:

∂cs

∂t
= −µ(y − y1)

∂cs

∂x
− µ(x1 − x)

∂cs

∂y
+ K

(
∂2cs

∂x2
+

∂2cs

∂y2

)
(5)

+Es(x, y, t) + Qs(t, c1, c2, . . . , cq),

where
x1 =

a1 + b1
2

, y1 =
a2 + b2

2
, µ =

2π
b− a

. (6)

The actual intervals used in Section 4 are obtained by setting a1 = a2 = 0.0,
a = 6.0, b1 = b2 = 500.0 and b = 30.0. The units for a1, a2, b1, and b2 are
kilometres, while hours are used for a and b. Note that the length of the time-
interval, which is actually used, is 24 hours, which is important, because this
allows us to study the diurnal variation of some chemical species.

The numerical algorithms which might be used in the solution of (5), the
accuracy of the solutions obtained when different discretizations are applied,
and the possibility to design efficient parallel devices will be studied in this
paper.

2 Sequential Splitting

The advection-diffusion-chemistry module (5) is divided into two parts: advec-
tion-diffusion part and chemistry part. The two parts are combined in a sequen-
tial splitting procedure (i.e., after the discretization the treatment of the first
part is followed by the treatment of the second part at every time-step). The
advection-diffusion part is represented by the following system of PDEs (the
equations of this system are independent, i.e., there is no coupling):

∂gs

∂t
= −µ(y − y1)

∂gs

∂x
− µ(x1 − x)

∂gs

∂y
+ K

(
∂2gs

∂x2
+

∂2gs

∂y2

)
. (7)

The last two terms in (5) form the second part of the splitting procedure, the
chemistry part:

∂hs

∂t
= Es + Qs(t, h1, h2, . . . , hq). (8)

It is necessary to introduce some discretization in order to explain how the
two parts (7) and (8) can be coupled. Assume that t ∈ [a, b], x ∈ [a1, b1] and
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y ∈ [a2, b2] and consider the equidistant increments � t, �x and � y. It will
furthermore be assumed that �x = � y. Introduce the three equidistant grids:

Gt = {tn | t0 = a, tn = tn−1 +� t, n = 1, 2, . . . , Nt, tNt = b}, (9)

Gx = {xi |x0 = a1, xi = xi−1 +�x, i = 1, 2, . . . , Nx, xNx = b1}, (10)

Gy = {yj | y0 = a2, yj = yj−1 +� y, j = 1, 2, . . . , Ny, yNy = b2}. (11)

It will be assumed that Nx = Ny, which together with �x = � y implies that
the space domain is a square. The assumptions Nx = Ny and �x = � y are in
fact not needed, they are only made in order to simplify the further explanations.
The approximations cs,n,i,j ≈ cs(tn, xi, yj), gs,n,i,j ≈ gs(tn, xi, yj), and hs,n,i,j ≈
hs(tn, xi, yj) are obtained by some numerical algorithms (numerical algorithms
will be discussed in the next section). It is convenient to consider the vectors:
c̃n, g̃n and h̃n. Vector c̃n contains all values of cs,n,i,j at time tn, this means that
index n is fixed, while the remaining three indices are varying (s = 1, 2, . . . , q,
i = 0, 1, 2, . . . , Nx, and j = 0, 1, 2, . . . , Ny). The other two vectors, g̃n and h̃n,
are formed in a similar way.

Assume now that all computations up to some time-point tn−1 have been
completed. Then we set g̃n−1 = c̃n−1 and calculate an approximation g̃n by
solving (7) using the selected numerical algorithm with g̃n−1 as initial value.
We continue by setting h̃n−1 = g̃n and solving (8) by using the selected for the
second part numerical algorithm (which is as a rule different from that used in
the solution of the first part) with h̃n−1 as initial value. After the solution of
the (8) we set c̃n = h̃n and everything is prepared for the next time-step (for
calculating c̃n+1). It remains to explain how to start the computational process
(how to calculate c̃1). There is no problem with this because the initial value c̃0
of (5) must be given.

One of the great problems related to the application of splitting techniques is
the problem with the calculation of boundary conditions for the different sub-
problems. This problem does not exist for the splitting technique discussed in
this section, because if good boundary conditions can be obtained for the original
problem (5), then these boundary conditions can be used in the treatment of the
first part (7), while it is obvious that no boundary conditions are needed when
the chemistry part (8) is handled. Thus, the sequential splitting procedure is in
some sense optimal with regard to the boundary conditions when (5) is solved.

The use of splitting procedure is very useful in the case where parallel compu-
tations are to be carried out. It is easily seen that the system of PDEs (7) is in
fact consisting of q independent equations (one equation per each chemical com-
pound). This means that we have q parallel tasks when the advection-diffusion
part is treated. It is also quite obvious that the second system of PDEs, (8), will
contain (Nx + 1)(Ny + 1) independent equations (one per each grid-point in the
space domain) when some suitably chosen discretization is applied, which leads
to (Nx + 1)(Ny + 1) parallel tasks. Thus, parallel tasks appear in a very natural
way when splitting procedures are used in connection with large-scale scientific
models.
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3 Selection of Numerical Algorithms

The operators which appear in the advection-diffusion part (7) and in the chem-
istry part (8) have different properties. Therefore, it is appropriate to apply
different numerical algorithms during the treatment of (7) and (8) in order to
exploit better the properties of the two operators.

3.1 Numerical Algorithms for the Advection-Diffusion Part

It was pointed out in the previous section that the system of PDEs (7) consists
of q independent systems. Therefore, it is quite sufficient to fix some s, s ∈
{1, 2, . . . , q} and to consider the solution of the system obtained in this way.
The discretization of the space derivatives in (7) by central differences followed
by Crank-Nicolson time-stepping (see, for example, [11]) lead to the solution of
a system of linear differential equations:

(I −A) ḡn+1 = (I + A) ḡn + ω̄n. (12)

I−A and I+A are five-diagonal matrices of order (Nx+1)(Ny+1), which depend
on both the wind velocity and the diffusivity coefficient. For the special choice of
the latter two parameters made in Section 1, these matrices are constant in time.
Vector ω̄n is induced by the boundary conditions. Dirichlet boundary conditions
have been used in this study. Vector ḡn is a calculated, in the previous time-step,
approximation of the concentrations of chemical species s at the (Nx+1)(Ny+1)
grid-points of the space domain. Similarly, vector ḡn+1 is the approximation that
is to be calculated at the current time-step.

LAPACK subroutines for banded matrices, [2], can successfully be used when
Nx and Ny are not large, while iterative methods (the simple Gauss-Seidel
method, [8], was actually used) are more efficient when Nx and Ny are large.

3.2 Numerical Algorithms for the Chemistry Part

It was pointed out in the previous section that the system of PDEs (8) consists
of (Nx + 1)(Ny + 1) independent systems after the application of discretization
based on (10) and (11). Therefore, it is quite sufficient to fix some pair (i, j) with
i ∈ {0, 1, 2, . . . , Nx} and j ∈ {0, 1, 2, . . . , Ny} and to consider the solution of the
system with q equations obtained in this way. There are no spatial derivatives in
(8) which means that this system of PDEs will directly be reduced to a system
of ordinary differential equations when the discretization by the grids (9)–(11)
is performed:

dh̄

dt
= Ē + Q̄(t, h̄), (13)

where (a) the indices i and j are omitted and (b) h̄, Ē and Q̄ are vectors
with q components which are concentrations and emissions and right-hand sides
calculated at the grid-point defined by the pair (i, j).

The simple Backward Euler Formula is applied to solve (13). This algorithm
results in the following non-linear system of algebraic equations:
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h̄n+1 = h̄n +� t
[
Ēn+1 + Q̄(tn+1, h̄n+1)

]
, (14)

where (a) Ēn+1 contains the emissions of all chemical species that are emitted
at the grid-point under consideration and at time tn+1, (b) Q̄ is a non-linear
fiction depending on the concentrations of all chemical species at the grid-point
under consideration and calculated at time tn+1, (c) h̄n is a vector containing
concentrations of all species at the grid-point under consideration that have
been calculated in the previous time-step, and (d) h̄n+1 is similar to h̄n, but
its components are the concentrations that are to be computed at the current
time-step.

The non-linear system of algebraic equations (14) is solved by using the New-
ton iterative method [7]. This leads to the solution, at each iteration, of a system
of linear algebraic equations with a coefficient matrix B = I −� t ∂Q̄/∂h̄ con-
taining the Jacobian matrix of function Q̄. It is important to solve the system
of linear algebraic equations efficiently (in many large-scale air pollution codes
the treatment of the chemical part takes about 90% of the CPU time). It is
possible to apply some of the LAPACK subroutines for dense matrices [2], be-
cause matrix B is small (of order 56 in our case). Matrix B is sparse, but not
very sparse and, therefore, the attempts to exploit directly the sparsity by using
the codes from [4,5,6,12] were not very successful. A special matrix technique,
similar to that described in [14] has been applied. This technique is based on a
further sparsifying the matrix by removing small non-zero elements and using
some of the special rules discussed in [14]. The numerical results indicate that
this technique works very well.

It must be emphasized here that although the system (14) is small, it has to
be solved extremely many times. For example, if Nx = Ny = 512 it is necessary
to solve 263169 systems of order 56 at every time-step.

4 Numerical Tests

Several numerical test were performed in order to illustrate (a) the accuracy of
the algorithms chosen and (b) the ability of the code to run in parallel. Some of
the results will be presented and discussed in this section.

4.1 Organization of the Experiments

The advection-diffusion-chemistry module (5) is run over the interval [6, 30],
which means that the computations are started at 6:00, the length of the time-
interval is 24 hours and the end of the computations is at 6:00 on the next
day.

Two types of experiments were run. In the first of them there are no emissions
(this is a simulation of a puff). High concentrations forming a cone are located
in a sub-domain. Now if only advection-diffusion terms are kept, then the cone
is simply rotated around the centre of the space domain. If only chemistry terms
are kept, then there are changes of the size of the concentrations, but without
any transport. If both advection-diffusion and chemistry terms are kept, then
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Fig. 2. Graphical representation of the solution of (5) when there are emission sources
(plume); (a) the initial solution is shown in the upper left-hand-side plot, (b) the
solution at t = 30 when only the advection-diffusion module is run is shown in the
upper right-hand-side plot, (c) the solution at t = 30 when only the chemistry module
is run is shown in the lower left-hand-side plot, and (d) the solution at t = 30 when
both the advection-diffusion module and the chemistry module is run is shown in the
lower right-hand-side plot

the cone is rotated and the size of the concentrations are varied. The solutions
at the end of the time-interval are presented graphically in Fig. 1.

In the second type of experiments, emission sources are inserted at the same
sub-domain where the cone was located in the previous case (a plume is simulated
in these experiments). Again three sub-cases were considered: (a) only advection-
diffusion, (b) only chemistry and (c) both advection diffusion and chemistry. The
solutions at the end of the time-interval are presented graphically in Fig. 2.
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4.2 Graphical Representation of the Solution

The graphical solutions of (5) at the end-point t = 30 are shown in Fig. 1 and
Fig. 2 for the six selected tests.

The case without emission sources (puff) is presented in Fig. 1. The initial
distribution of the nitrogen oxide (one of the 56 chemical species) is given in
the upper left-hand-side plot of Fig. 1. The final solution (obtained after a full
rotation around the centre of the space domain) is shown in the upper right-
hand-side plot when only advection-diffusion is studied. The final solution for
the case of only chemistry is shown in the lower left-hand-side plot of Fig. 1.
Finally, the most general case, in which both advection-diffusion and chemistry
are used, is shown in the lower right-hand-side plot of Fig. 1.

The case with emission sources (plume) is presented in Fig. 2. The initial
distribution of the nitrogen oxide (one of the 56 chemical species) is given in the
upper left-hand-side plot of Fig. 2. The initial field contain only back-ground
concentrations and the emission sources are located in the same sub-domain as
the sub-domain where the cone is located in the corresponding plot of Fig. 1.
The final solution (obtained after a full rotation around the centre of the space
domain) is shown in the upper right-hand-side plot when only advection-diffusion
is studied. The final solution for the case of only chemistry is shown in the
lower left-hand-side plot of Fig. 2. Finally, the most general case, in which both
advection-diffusion and chemistry are used, is shown in the lower right-hand-side
plot of Fig. 2.

The major difficulty for the numerical methods in the last two sub-cases (only
chemistry and advection-diffusion + chemistry) is due to the fact that some
chemical species, as nitrogen oxide, are practically disappearing during the night,
while at the end of the time-interval (t = 30, which corresponds to 6:00 in the
morning) the high concentrations re-appear.

4.3 Checking the Accuracy of the Results

A reference solution was calculated, stored and used to check the accuracy of the
results. The reference solution was calculated by using a discretization defined
by N ref

x = N ref
y = 1024 and N ref

t = 30720. It was not possible to store all
values of the reference solution. Values of the reference solution were stored for
each of the chemical compounds at the end of every hour on a 33× 33 field.

Let vector ĉref
k,s contain the reference solution for the sth chemical compound,

s = 1, 2, . . . , q, q = 56, calculated at the end of hour k, k = 1, 2, . . . , 24. Vector
ĉref
k,s contains 33× 33 = 1089 components.

Let vector ĉk,s be the corresponding vector calculated by another discretiza-
tion with some Nx < N ref

x , Ny < N ref
y and Nt < N ref

t .
The error of the calculated solution for the chemical species s can be obtained

by using the following formula:

ERRORs = max
k=0,1,...,24

(
‖ĉk,s − ĉref

k,s ‖
max(‖ĉref

k,s ‖, 1.0)

)
. (15)
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The global error of the calculated solution (the error over all chemical com-
pounds) can be obtained by using a slight modification of (15):

ERROR = max
k=0,1,...,24, s=1,2,...,56

(
‖ĉk,s − ĉref

k,s ‖
max(‖ĉref

k,s ‖, 1.0)

)
. (16)

It is clear that if Nx = Ny = 16, then the reference solution 33 × 33 fields
must be projected into 17× 17 fields when the error is to be computed.

Some accuracy results are given in Table 1 for the case where there are no
emission sources (puff) and in Table 2 for the case where there are some emission
sources. It is immediately seen that the results obtained when there are emis-
sion sources (plume) are much more accurate than the results obtained without
emissions (puff). Also the rate of convergence is higher in the case of plume.

Table 1. Results obtained when (5) is run by using different discretizations in the case
where there are no emissions (puff). RATE is showing the rate by which the accuracy
is improved (related to the previous run).

Nx Ny Nt ERROR RATE
16 16 480 1.99 ∗ 10+0 -

32 32 960 8.72 ∗ 10−1 2.285

64 64 1920 7.84 ∗ 10−1 1.112

128 128 3840 3.43 ∗ 10−1 2.288

256 256 7680 2.25 ∗ 10−1 1.522

512 512 15360 5.35 ∗ 10−2 4.208

Table 2. Results obtained when (5) is run by using different discretizations in the case
where there are emissions sources (plume). RATE is showing the rate by which the
accuracy is improved (related to the previous run).

Nx Ny Nt ERROR RATE
16 16 480 3.73 ∗ 10−1 -

32 32 960 7.68 ∗ 10−2 4.860

64 64 1920 2.18 ∗ 10−2 3.527

128 128 3840 8.73 ∗ 10−3 2.497

256 256 7680 2.86 ∗ 10−3 3.055

512 512 15360 1.33 ∗ 10−3 2.140

4.4 Parallel Computations

Parallel computations were carried out on the SUN computers of the Danish Cen-
tre for Scientific Computing [15]. These are shared memory computers. Therefore
OpenMP tools were used (see also [1] and [16]). Up to 32 processors were used.

In the advection-diffusion part there are q = 56 parallel tasks (see the end of
Section 2). The number of parallel tasks in the chemistry part is (Nx+1)(Ny+1).
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Table 3. Results obtained when (5) is run on different numbers of processors in the
case where there are no emissions sources (puff). The discretization parameters are:
Nx = Ny = 512 and Nt = 15360. The computing times are measured in CPU hours,
the speed-ups are given in brackets.

Processors Advection Chemistry Total Overhead
1 28.67 33.78 66.14 5.6%

2 15.15 (1.9) 19.69 (1.7) 37.28 (1.8) 6.5%

4 8.33 (3.4) 10.21 (3.3) 20.29 (3.3) 8.6%

8 5.24 (5.5) 5.53 (6.1) 12.08 (5.5) 10.8%

16 2.57 (11.2) 2.49 (13.6) 6.16 (10.8) 17.9%

32 2.19 (13.1) 1.26 (26.8) 4.55 (14.5) 24.1%

Table 4. Results obtained when (5) is run on different numbers of processors in the
case where there are emissions sources (plume). The discretization parameters are:
Nx = Ny = 512 and Nt = 15360. The computing times are measured in CPU hours,
the speed-ups are given in brackets.

Processors Advection Chemistry Total Overhead
1 26.74 35.53 65.97 5.6%

2 14.05 (1.9) 20.36 (1.7) 37.00 (1.8) 7.0%

4 7.59 (3.5) 10.44 (3.4) 19.75 (3.3) 8.7%

8 4.96 (5.4) 5.63 (6.3) 11.90 (5.5) 11.0%

16 2.99 (8.9) 2.70 (13.2) 6.92 (9.6) 17.8%

32 2.10 (12.7) 1.30 (27.3) 4.54 (14.5) 25.1%

Some results are given in Table 3 and Table 4. “Advection”, “Chemistry”,
and “Total” refer to the times spent in the advection-diffusion part, the chemical
part, and the total computing time. The computing times are measured in CPU
hours. The speed-ups are given in brackets. “Overhead” is calculated by using
the formula: Overhead = 100 (Total - Advection - Chemistry) / Total. The
discretization was performed by using: Nx = Ny = 512 and Nt = 15360.
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Abstract. The purpose of this paper is to comment a frequent obser-
vation by the engineers studying acoustic scattering. It is related to the
convergence of the GMRES method when solving systems Ax = b with
A = I − B. The paper includes a theorem which expresses the conver-
gence rate when some eigenvalues of B have modulus larger than one;
that rate depends on the rate measured when solving the system ob-
tained by spectral projection onto the invariant subspace corresponding
to the other eigenvalues. The conclusion of the theorem is illustrated on
the Helmholtz equation.

1 Introduction

The purpose of this paper is to comment a frequent observation by the engineers
studying acoustic scattering. It is related to the convergence of the GMRES
method when solving systems Ax = b with A = I − B ∈ Rn×n. If the spec-
tral radius ρ(B) is smaller than one, it is easy to see that GMRES converges
better than the convergence obtained by the Neumann series A−1 =

∑
k≥0 Bk ;

engineers usually claim that when some eigenvalues of B lie out the unit disk,
GMRES still converges. Our attempt is to explain that effect.

First, let us define the context precisely. For any matrix A ∈ Rn×n and from
an initial guess x0, the GMRES method [12] iteratively builds a sequence of
approximations xk (k ≥ 1) of the solution x such that the residual rk = b−Axk

satisfies

‖rk‖ = min
q ∈ Pk

q(0) = 1

‖q(A)r0‖ , (1)

where Pk is the set of polynomials of degree k or less. Throughout this paper,
the considered norms are the 2-norms.

Since the implementation of the method involves the construction by induction
of an orthonormal system Vk which makes its storage mandatory, the method
needs to be restarted at some point k = m to be tractable. The corresponding
method is denoted GMRES(m).

The studied decomposition, A = I − B, arises from the introduction of a
preconditioner as usually done to improve the convergence. This is a non singular

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 40–51, 2008.
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matrix M that is easy to invert (i.e. solving systems My = c is easy) and such
that M−1 is some approximation of A−1. It can be applied on the left side of the
system by solving M−1Ax = M−1b or on the right side by solving AM−1y = b
with x = M−1y. By considering the corresponding splitting A = M − N , we
shall investigate the behavior of GMRES on the system

(I −B)x = b , (2)

where B is respectively B = M−1N (left side) or B = NM−1 (right side). By
rewriting condition (1) in that context, the sequence of residuals satisfies (see
the proof of Theorem 1) :

‖rk‖ = min
q ∈ Pk

q(1) = 1

‖q(B)r0‖ . (3)

In this paper, after some comments on various interpretations of the conver-
gence of GMRES, we first consider the situation where ρ(B) < 1. We demon-
strate that it is hard to have bounds that illustrate the usual nice behavior of
GMRES in such situations. Therefore, for the situation where some eigenvalues
of B lie outside the unit disk, we propose to link the residual evolution to the
residual evolution of a projected system, which discards all the outer eigenvalues.

2 About the Convergence of GMRES

In exact arithmetic and in finite dimension n, GMRES should be considered
as a direct method since for every x0, there exists a step kend ≤ n such that
xkend

= x. Unfortunately, computer arithmetic is not exact and in most situa-
tions kend = n is much too big to be reached. However, when B is rank deficient,
kend < n. For instance, when the preconditioner M is defined by a step of the
Multiplicative Schwarz method obtained from an algebraic overlapping 1-D do-
main decomposition, it can be proved that kend is no bigger than the sum of the
orders of the overlaps [1].

When the residuals does not vanish at some point k ≤ m where m is the
maximum feasible size for the basis Vk, restarting becomes necessary. In that
situation, the method GMRES(m) builds a sequence of approximations x

(K)
0

corresponding to all the initial guesses of the outer iterations. It is known that,
unless the symmetric part of I − B is positive or negative definite, stagnation
may occur which prevents convergence.

In this paper, we limit the study of the convergence to the observation of the
residual decrease during one outer iteration.

2.1 Existing Bounds

In [5], Embree illustrates the behavior of several known bounds. He proves that,
for non normal matrices, any of the bounds can be overly pessimistic in some
situations. Here, we only consider two bounds in the case where ρ(B) < 1.
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By selecting the special polynomial q(Z) = zk in (3), we get the bound

‖rk‖ ≤ ‖Bk‖ ‖r0‖ . (4)

The bound indicates that asymptotically there should be at least a linear con-
vergence rate when ρ = ρ(B) < 1. For instance, if B can be diagonalized by
B = XDX−1, then the following bound holds :

‖rk‖ ≤ cond(X)ρk ‖r0‖ , (5)

where cond(X) is the condition number of the matrix of eigenvectors. It is clear
that the bound might be very poor for large values of the condition number. For
instance, it might happen that cond(X)ρn > 1, in which case no information
can be drawn from (5).

The bound can be improved by an expression involving the condition numbers
of the eigenvalues [5]. These bounds can be generalized when matrix B involves
some Jordan blocks [13]. However, as mentioned earlier, there are always situa-
tions in which the bounds blow up.

In order to get a bound ‖rk‖ ≤ Kγk with a constant K smaller than the
condition numbers of the eigenvalues, other expressions have been obtained from
the field W (A) of values of A (W (A) = {uHAu|u ∈ Cn, ‖u‖ = 1}). That set
is convex and includes the eigenvalues (and therefore their convex hull). It is
contained in the rectangle limited by the extremal eigenvalues of the symmetric
and skew-symmetric parts of A. It is easy to see that W (A) = 1−W (B). When
A is positive definite (or negative definite), which is equivalent to assuming that
1 �∈ W (B), Beckermann [2] proved that

‖rk‖ ≤ (2 + γ)γk‖r0‖ (6)

where γ = 2 sin
(

β
4−2β/π

)
< sinβ with β defined by : cosβ = dist(0,W (A))

max |W (A)| . That
result slightly improved earlier results [4].

The behaviors of the two bounds (5) and (6) are illustrated on a special
test matrix. The chosen matrix is built by the following instruction (in MAT-
LAB syntax): A=0.5*eye(100)+0.25*gallery(’smoke’,100). The parameters
which are involved in the two bounds are displayed in Table 1. In Figure 1, the
field of values of A is displayed (inner domain of the shaded region) as well as a
zoom of the set at the origin. Below, the explicit bounds are plotted and com-
pared to the residuals of GMRES applied to Ax = b with b = (1, · · · , 1)T /

√
n.

Although that matrix may be considered rather special, the behavior is common
to the situation of non-normal matrices. The expressions of the bounds are of

Table 1. Characteristics of the matrix used in Figure 1

Spectral radius of B = I − A : 0.752

Condition number of the eigenvectors : 6.8 × 1013

Parameter γ (from the field of values) : 0.996
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Fig. 1. Classical behavior of explicit bounds

the shape Kγk, and the non-normality will impact either the constant K which
blows up or the rate γ which will be very close to 1.

From that experience, it is clear that nothing can be expected from explicit
bounds to illustrate the claim of the engineers mentioned in the introduction.
The obstacle is twofold: (i) even for ρ(B) < 1 the bounds are often useless; (ii)
the bounds have a linear behavior. Several authors have attempted to exhibit
superlinear bounds (see for instance [9,10]) but the advantage is more theoretical
than practical.

In that perspective, it is better to show how some eigenvalues of B outside the
unit disk may deteriorate the convergence with respect to the situation ρ(B) < 1.

2.2 When Some Eigenvalues of B Lie Outside the Unit Disk

Let us denote by D = {z ∈ C, |z| < 1} the open unit disk and by (λi)i=1,n the
eigenvalues of B.

Theorem 1. If A = I − B ∈ Rn×n is non singular, with p eigenvalues of B
outside the open unit disk D, then for GMRES and for k ≥ p:

‖rk‖ ≤ K‖rred
k−p‖
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where rred
k is the residual corresponding to the use of GMRES on the system pro-

jected onto the invariant subspace excluding the exterior eigenvalues; the constant
K only depends on the eigenvalues exterior to D and on the operator projected
onto the invariant subspace of all other eigenvalues. All projections considered
are spectral.

Proof. When applied to the system (I − B)x = b and starting from an initial
guess x0, the GMRES iteration builds a sequence of iterates xk such that the
corresponding residual can be expressed in polynomial terms: rk = π(I −B) r0

where the polynomial π ∈ Pk(C) is a polynomial of degree no larger than k and
such that π(0) = 1. The polynomial π minimizes the Euclidean norm ‖rk‖ and
it is uniquely defined as long as the exact solution of the system is not obtained.
Through a change of variable τ(z) = π(1 − z), the residual is expressed as
rk = τ(B) r0 where the normalizing condition becomes τ(1) = 1. Therefore, for
any polynomial τ ∈ Pk(C) such that τ(1) = 1, the following bound stands:

‖rk‖ ≤ ‖τ(B) r0‖. (7)

We shall now build a special residual polynomial. For that purpose, let us de-
compose the problem onto the two supplementary invariant subspaces span(X1)⊕
span(X2) where X1 and X2 are bases of the invariant subspaces corresponding to
respectively the p largest eigenvalues of B and the n−p other eigenvalues. By de-
noting X = [X1, X2], Y = X−T = [Y1, Y2] and Pi = XiY

T
i the spectral projector

onto span(Xi) for i = 1, 2, the matrix B can be decomposed into B = B1 + B2

where Bi = PiBPi for i = 1, 2. Therefore the nonzero eigenvalues of B1 lie outside
D whereas the spectrum of B2 is included in D. Moreover, for any polynomial π,
the decomposition π(B) = π(B1)P1 + π(B2)P2 holds.

Let π1 the polynomial of degree p that vanishes at each eigenvalue λi �∈ D
and such that π1(1) = 1. The polynomial π1 is uniquely defined by

π1(z) =
∏

λi �∈D

z − λi

1 − λi
. (8)

By construction, that polynomial satisfies the following property

π1(B1)P1 = 0. (9)

Let τ2 be the residual polynomial corresponding to the iteration k − p when
solving the system projected onto the invariant subspace span(X2) (spectral
projection): {

(P2 −B2)x = P2b,
P1x = 0.

Therefore the residual of the reduced system is rred
k−p = τ2(B2)P2r0. By consid-

ering the polynomial τ = π1τ2, since τ(B1)P1 = 0 we get

τ(B) r0 = τ(B1) P1r0 + τ(B2) P2r0 ,

= π1(B2) τ2(B2) P2r0 ,

= π1(B2) rred
k−p ,

= π1(B2)P2 rred
k−p .
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The last transformation is not mandatory but highlights that the operator which
defines the constant K is zero on span(X1). By inequality (7), the conclusion of
the theorem holds with K = ‖π1(B2)P2‖.

The result of the theorem may be interpreted informally as saying that p eigenval-
ues of B outside the unit disk only introduce a delay of p steps in the convergence
of GMRES. This fact will be illustrated in the experiments of the next section.

3 Illustration

3.1 Solving a Helmholtz Problem

Let Ωi ⊂ R3 be a bounded obstacle with a regular boundary Γ and Ωe be its
unbounded complementary. The Helmholtz problem models a scattered acoustic
wave propagating through Ωe; it consists in determining u such that⎧⎨⎩

∆u + κ2u = 0 in Ωe,
∂nu = f on Γ,

( x
|x| .∇− iκ)u = eiκ|x|O( 1

|x|2 ) x ∈ V∞,
(10)

where κ is the wave number and where V∞ is a neighborhood of infinity. The last
condition represents the Sommerfeld radiation condition. To solve the boundary
value problem (10), we may consider an integral equation method (eventually
coupled to finite element method for non-constant coefficients). The efficiency of
this approach has been investigated by several authors, e.g. [8,11]. An alternative
approach consists in using a coupled method which combines finite elements
and integral representations [6]. This approach avoids the singularities of the
Green function. The idea simply amounts to introducing a fictitious boundary
Σ surrounding the obstacle. The Helmholtz problem is posed in the truncated
domain Ωc (delimited by Γ and Σ) with a non-standard outgoing condition
using the integral formula which is specified on Σ,

∆u + κ2u = 0 in Ωc, ∂nu = f on Γ, (11)

(∂n − iκ)u(x) =
∫

Γ

(u(y)∂nK(x− y)− f(y)K(x− y))dγ(y), ∀x ∈ Σ, (12)

where K(x) = ( x
|x| .∇− iκ)Gκ(x) and Gκ is the Green function. Observe that the

integral representation is used only on Σ which avoids occurrences of singular-
ities. We suppose that this problem is discretized by a Lagrange finite element
method. Let NΩc be the total number of degrees of freedom on Ωc and NΣ (resp.
NΓ ) be the number of degrees of freedom on Σ (resp. Γ ). The shape function
associated with node xα is denoted wα. Let uα be the approximation of the
solution u at xα and v = (uα)α.

The linear system can be formulated as follows:

(A− C)v = b (13)
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where

Aα,β =
∫

Ωc

(
∇wα(x)∇wβ(x) − κ2wα(x)wβ(x)

)
dx− iκ

∫
Σ

wα(x)wβ(x)dσ(x)

Cα,β =
∫

Σ

∫
Γ

wα(x)∂nK(x− y) dγ(y)wβ(x) dσ(x)

The matrix of the system (13) is complex, non Hermitian and ill-conditioned.
Matrix A is a sparse matrix but matrix C, which represents non-local coupling
terms enforced by the integral term, is dense. Since, solving a system in A is
easier than solving system (13), the matrix A is chosen as a preconditioner. In
other words, the linear system is formulated as follow:

(INΩc
−B)v = c, (14)

where B = A−1C and c = A−1b. Direct methods adapted to sparse matrices are
good candidates for solving the preconditioning step.

3.2 Definition of the Test Problems

The numerical results deal with examples of acoustic scattering with an incident
plane wave. Four tests are defined (see Figure 2).

The scatterer is considered to be a cavity. In the first test, the computational
domain is rectangularly shaped while in the second and third tests, the domains
are nonconvex. The cavity of Test 2 is the same as in Test 1. Cavities and domains
are the same for Test 3 and Test 4. The meshing strategy implies two rows of
finite elements in the non convex cases (Tests 2, 3 and 4). The characteristic
parameters for every test are listed in Table 2.

Table 2. Characteristics of the tests

Nel NΩc NΣ h κ

Test # 1 1251 734 88 0.06 1

Test # 2 543 403 134 0.06 1

Test # 3 2630 1963 656 0.005 1

Test # 4 2630 1963 656 0.005 62

Nel : number of finite elements;
NΩc : number of degrees of freedom in Ωc;
NΣ : number of degrees of freedom in Σ;
h : mean diameter of the mesh;
κ : wave number.

3.3 Numerical Results

For the four tests, system (13) is solved by GMRES preconditioned by A which
corresponds to solving system (14). In Figures 3 and 4, for every test, the plot
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Test problem # 1 Test problem # 2

Test problems # 3 & # 4

Fig. 2. Cavities, domains and characteristics for the test problems

of the eigenvalues of B is reported, with respect to the unit disk (left figure),
as well as the sequence of the GMRES residuals (right figure). Parameter p
denotes the number of eigenvalues outside the unit disk. In order to illustrate
Theorem 1, when p > 0 the residuals of the projected system are plotted with a
shift (delay) p on the iteration numbers (dashed line). The same curve is plotted
(solid line) with the residuals multiplied by the constant K in the bound given
by the theorem.

The study of the spectrum of B = A−1C in Test 1 and Test 2 shows that
when the fictitious boundary is located far from the cavity (Test 1), the whole
spectrum is included in the unit disk. In that situation, GMRES converges in a
few iterations. In Test 2, three eigenvalues exit the unit disk which deteriorates
the convergence. This is foreseeable by reminding the connection between the
method coupling Finite Element Method with an integral representation and
the Schwarz method: the larger computational domain (which corresponds to
the overlapping in the Schwarz method) — the faster the convergence [3,7].

In Test 3 and Test 4, the same cavity with the same domain and the same
discretization are considered. Only the wave numbers differ. The mesh size corre-
sponds to twenty finite elements by wave length when κ = 62. When κ increases,
the number of eigenvalues outside the unit disk decreases. However, it can be
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seen that the convergence is not necessarily improved: the number of iterations
is smaller when κ = 1 inducing p = 29 compared to p = 11 when κ = 62. This
illustrates the difficulty of characterizing the convergence by only considering the
modulus of the eigenvalues of B. Clustering of eigenvalues and non-normality of
the operator play an important role.

In the situations where p > 0 (Test 2, 3 and 4), the bound given by the
theorem appears to be often quite accurate. The worst case arises in Test 3 in
which the number of outer eigenvalues is high (p = 29); in that situation the
delay introduced by the shift p in the iteration number is too high because the
convergence occurs at the same time that all the outer eigenvalues are killed.

4 Conclusion

Exhibiting realistic bounds for the successive residuals obtained when solving a
linear system Ax = b by GMRES is hopeless except in special situations. The
knowledge of the spectrum of the operator is not even sufficient to fully under-
stand the behavior of the convergence. These comments were already discussed
by several authors but in this paper we have tried to explain the favorable sit-
uation where only a few eigenvalues of B (A = I − B) are of modulus larger
than 1.
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Abstract. We present a general framework for analysis and design of
optimization based numerical feedback stabilization schemes utilizing
ideas from relaxed dynamic programming. The application of the frame-
work is illustrated for a set valued and graph theoretic offline optimiza-
tion algorithm and for receding horizon online optimization.

1 Introduction

The design of feedback controls for nonlinear systems is one of the basic prob-
lem classes in mathematical control theory. Among the variety of different design
objectives within this class, the design of stabilizing feedbacks is an important
subproblem, on the one hand because it captures the essential difficulties and
on the other hand because it often occurs in engineering practice. The rapid
development of numerical methods for optimization and optimal control which
has let to highly efficient algorithms which are applicable even to large scale non-
linear systems, naturally leads to the idea of using such algorithms in feedback
stabilization. While the basic principles underlying the relation between optimal
control and stabilization have been understood since the 1960s in the context of
the linear quadratic regulator design, the application to nonlinear systems poses
new problems and challenges. These are caused, for instance, due to the com-
plicated dynamical behavior which even low dimensional nonlinear systems can
exhibit, due to hybrid or switching structures incorporated in the dynamics or
simply due to the size of the problems to be solved, e.g. when discretized PDEs
are to be controlled.

In this paper we investigate the foundation of optimization based feedback
stabilization for nonlinear systems and develop a framework which allows to
design and analyze different numerical approaches. The main goal of our frame-
work is to give rigorous mathematical stability proofs even in the case when
the numerical approximation is inaccurate, in the sense that the optimal control
problem which should be solved theoretically is only very coarsely approximated
by our numerical algorithm. Our approach was motivated and inspired by two
sources: on the one hand by classical Lyapunov function stability theory, and
in this context our condition can be understood as a preservation of the Lya-
punov function property under (not necessarily small) numerical approximation

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 52–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Optimization Based Stabilization of Nonlinear Control Systems 53

errors. On the other hand we make use of relaxed dynamic programming meth-
ods, which essentially ensure that even in the presence of errors we can still give
precise bounds for the performance of the feedback controller derived from the
numerical information.

The organization of this paper is as follows. After describing the setup and
the (theoretical) relation between optimization and stabilization in Section 2, we
develop our conditions for optimization based stabilization with coarse numerical
approximations in Section 3. In Section 4 we apply these conditions to a graph
theoretic offline optimization approach while in Section 5 we show how these
conditions can contribute to the analysis and design of unconstrained receding
horizon control schemes.

2 Setup and Preliminaries

We consider a nonlinear discrete time system given by

x(n + 1) = f(x(n), u(n)), x(0) = x0 (1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. We denote the space of control
sequences u : N0 → U by U and the solution trajectory for some u ∈ U by
xu(n). Here the state space X is an arbitrary metric space, i.e., it can range
from a finite set to an infinite dimensional space.

A typical class of systems we consider are sampled-data systems governed
by a controlled differential equation ẋ(t) = g(x(t), ũ(t)) with solution ϕ(t, x0, ũ)
for initial value x0. These are obtained by fixing a sampling period T > 0 and
setting

f(x, u) := ϕ(T, x, ũ) with ũ(t) ≡ u. (2)

Then, for any discrete time control function u ∈ U the solutions xu of (1),(2)
satisfy xu(n) = ϕ(nT, x0, ũ) for the piecewise constant continuous time control
function ũ : R → U with ũ|[nT,(n+1)T ) ≡ u(n). Note that with this construction
the discrete time n corresponds to the continuous time t = nT .

2.1 Infinite Horizon Optimal Control

Our goal is to find a feedback control law minimizing the infinite horizon cost

J∞(x0, u) =
∞∑

n=0

l(xu(n), u(n)), (3)

with running cost l : X × U → R+
0 . We denote the optimal value function for

this problem by
V∞(x0) = inf

u∈U
J∞(x0, u).

Here a (static state) feedback law is a control law F : X → U which assigns a
control value u to each state x and which is applied to the system according to
the rule

xF (n + 1) = f(xF (n), F (xF (n))), xF (0) = x0. (4)
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From dynamic programming theory (cf. e.g. [2]) it is well known that the optimal
value function satisfies Bellman’s optimality principle, i.e.,

V∞(x) = min
u∈U
{l(x, u) + V∞(f(x, u))} (5)

and that the optimal feedback law F is given by

F (x) := argmin
u∈U

{l(x, u) + V∞(f(x, u))} . (6)

Remark 1. In order to simplify and streamline the presentation, throughout this
paper it is assumed that in all relevant expressions the minimum with respect to
u ∈ Um is attained. Alternatively, modified statements using approximate min-
imizers could be used which would, however, considerably increase the amount
of technicalities needed in order to formulate our assumptions and results.

2.2 Asymptotic Feedback Stabilization

Our main motivation for considering infinite horizon optimal control problems
is the fact that these problems yield asymptotically stabilizing feedback laws.
In order to make this statement precise, we first define what we mean by an
asymptotically stabilizing feedback law.

Let us assume that the control system under consideration has an equilibrium
x∗ ∈ X for some control u∗ ∈ U , i.e.,

f(x∗, u∗) = x∗.

Asymptotic stability can be elegantly formulated using the concept of compari-
son functions. To this end, as usual in nonlinear stability theory, we define the
class K of continuous functions δ : R+

0 → R+
0 which are strictly increasing and

satisfy δ(0) = 0 and the class K∞ of functions δ ∈ K which are unbounded and
hence invertible with δ−1 ∈ K∞. We also define the (discrete time) class KL of
continuous functions β : R+

0 × N0 → R+
0 which are of class K in the first argu-

ment and strictly decreasing to 0 in the second argument. Examples for β ∈ KL
are, for instance,

β(r, n) = Ce−σnr or β(r, n) =
C
√
r

1 + n
.

Then we say that a feedback law F : X → U asymptotically stabilizes the
equilibrium x∗, if there exists β ∈ KL such that for all initial values x0 ∈ X the
solution of (4) satisfies

‖xF (n)‖x∗ ≤ β(‖x0‖x∗ , n) (7)

using the brief notation ‖x‖x∗ = d(x, x∗) for the distance of a point x ∈ X to
the equilibrium x∗, where d(·, ·) is a metric on X . Note that ‖ ·‖x∗ does not need
to be a norm. In less formal words, Condition (7) demands that, by virtue of β



Optimization Based Stabilization of Nonlinear Control Systems 55

being of class K in its first argument, any solution starting close to x∗ remains
close to x∗ for all future times and that, since β is decreasing to 0 in its second
argument, any solution converges to x∗ as n→∞. This KL characterization of
asymptotic stability is actually equivalent to the ε–δ formulation often found in
the literature.

In order to obtain an asymptotically stabilizing optimal feedback F from (6)
we proceed as follows: For the running cost l we define

l∗(x) := inf
u∈U

l(x, u)

and choose l in such a way that there exist γ1 ∈ K∞ satisfying

γ1(‖x‖x∗) ≤ l∗(x). (8)

Then, if an asymptotically stabilizing feedback law exists, under suitable bound-
edness conditions on l (for details see [11, Theorem 5.4]; see also [3] for a treat-
ment in continuous time) there exist δ1, δ2 ∈ K∞ such that the inequality

δ1(‖x‖x∗) ≤ V∞(x) ≤ δ2(‖x‖x∗) (9)

holds. Furthermore, from the optimality principle we can deduce the inequality

V∞(f(x, F (x))) ≤ V∞(x) − l(x, F (x)) ≤ V∞(x)− l∗(x) ≤ V∞(x) − γ1(‖x‖x∗).

Since V∞(x) ≤ δ2(‖x‖x∗) implies ‖x‖x∗ ≥ δ−1
2 (V∞(x)) we obtain

γ1(‖x‖x∗) ≥ γ1(δ−1
2 (V∞(x)))

and thus
V∞(f(x, F (x))) ≤ V∞(x)− γ1(δ−1

2 (V∞(x))).

For the solution xF (n) from (4) this implies

V∞(xF (n)) ≤ σ(V∞(x0), n)

for some suitable σ ∈ KL. Thus, using (9), we eventually obtain

‖xF (n)‖x∗ ≤ δ−1
1 (σ(δ2(‖x0‖x∗ , n))) =: β(‖x0‖x∗ , n).

Using the monotonicity of the involved K∞ functions it is an easy exercise to
show that β ∈ KL. This proves that the infinite horizon optimal feedback indeed
asymptotically stabilizes the equilibrium x∗.

Essentially, this proof uses that V∞ is a Lyapunov function for the closed loop
system (4) controlled by the infinite horizon optimal feedback law F .

3 The Relaxed Optimality Principle

The relation between asymptotic feedback stabilization and infinite horizon op-
timal control paves the way for applying powerful numerical algorithms from
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the area of optimal control to the feedback stabilization problem. Thus, it is no
surprise that in the literature one can find numerous approaches which attempt
to proceed this way, i.e., find a numerical approximation Ṽ ≈ V∞ and compute
a numerical approximation F̃ to the optimal feedback law using

F̃ (x) := argmin
u∈U

{
l(x, u) + Ṽ (f(x, u))

}
. (10)

Examples for such approaches can be found, e.g., in [17,15,8] for general nonlinear
systems and in [6,21] for homogeneous systems; the approach is also closely
related to semi–Lagrangian finite element discretization schemes for Hamilton-
Jacobi PDEs, see, e.g., [1, Appendix 1], [7,4]. All these schemes rely on the fact
that the numerically computed function Ṽ closely approximates the true optimal
value function V∞ and typically fail in case of larger numerical errors.

Unfortunately, however, except for certain special situations like, e.g., uncon-
strained linear quadratic problems, even sophisticated numerical techniques can
only yield good approximations Ṽ ≈ V∞ in low dimensional state spaces X .
Hence, in general it seems too demanding to expect a highly accurate numerical
approximation to the optimal value function and thus we have to develop con-
cepts which allow to prove stability of numerically generated feedback laws even
for rather coarse numerical approximations Ṽ .

The main tool we are going to use for this purpose is a rather straightfor-
ward and easily proved “relaxed” version of the dynamic programming principle.
This fact, which we are going to formalize in the following theorem, has been
used implicitly in many papers on dynamic programming techniques during the
last decades. Recently, it has been extensively studied and used by Lincoln and
Rantzer in [18,20].

In order to formulate the theorem we need to define the infinite horizon value
function V F̃

∞ of a feedback law F̃ : X → U , which is given by

V F̃
∞(x0) :=

∞∑
n=0

l(xF̃ (n), F̃ (xF̃ (n))),

where xF̃ is the solution from (4) with F̃ instead of F .

Theorem 1. (i) Consider a feedback law F̃ : X → U and a function Ṽ : X →
R+

0 satisfying the inequality

Ṽ (x) ≥ αl(x, F̃ (x)) + Ṽ (f(x, F̃ (x))) (11)

for some α ∈ (0, 1] and all x ∈ X. Then for all x ∈ X the estimate

αV∞(x) ≤ αV F̃
∞(x) ≤ Ṽ (x) (12)

holds.
(ii) If, in addition, the inequalities (8) and (9) with Ṽ instead of V∞ hold,

then the feedback law F̃ asymptotically stabilizes the system for all x0 ∈ X.
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Proof. (i) Using (11) for x = xF̃ (n) and all n ∈ N0 we obtain

αl(xF̃ (n), F̃ (xF̃ (n))) ≤ Ṽ (xF̃ (n))− Ṽ (xF̃ (n + 1)).

Summing over n yields

α
m∑

n=0

l(xF̃ (n), F̃ (xF̃ (n))) ≤ Ṽ (xF̃ (0))− Ṽ (xF̃ (m + 1)) ≤ Ṽ (xF̃ (0)).

For m→∞ this yields that Ṽ is an upper bound for αV F̃
∞ and hence (12), since

the first inequality in (12) is obvious.
(ii) From (11) we immediately obtain

Ṽ (f(x, F̃ (x))) ≤ Ṽ (x)− αl(x, F̃ (x)).

Now we can proceed exactly as in Section 2.2 using αγ1 instead of γ1 in order
to conclude asymptotic stability.

The contribution of Theorem 1 is twofold: On the one hand, in (i) it gives an
estimate for the infinite horizon value V F̃

∞ based on Ṽ and α, on the other hand,
in (ii) it ensures that the corresponding feedback F̃ is indeed asymptotically
stabilizing.

We emphasize the fact that no relation between Ṽ and V∞ is needed in order
to obtain these results. Hence, we can use this theorem even if Ṽ is only a very
rough approximation to V∞, provided, of course, that our numerical scheme is
such that α ∈ (0, 1] satisfying (11) can be found.

In the following two sections we present two numerical approaches for which
this is indeed possible. In Section 4 we discuss an offline optimization method
particularly suitable for low dimensional systems, whose main advantages are the
cheap online evaluation of the feedback and its capability to be easily extended
to hybrid systems, i.e., systems with additional discrete states and switching
rules. In this context we will see that a suitable extension of the basic algorithm
results in a method for which the assumptions of Theorem 1 can be verified.

In Section 5 we investigate receding horizon control, an online optimization
technique particularly suitable for smooth dynamics for which fast online op-
timization is possible even for large scale systems. For these schemes we will
see that Theorem 1 induces conditions on the infinite horizon running cost l
which can be used in order to considerably reduce the complexity of the online
optimization problem.

4 A Set Oriented and Graph Theoretic Approach

In this section we describe an offline optimization method which is based on
a set oriented discretization method followed by graph theoretic optimization
methods. Since the method is described in detail in [9], here we only sketch the
main ideas and in particular the relevance of Theorem 1 in this context.
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In order to apply the method, we assume that the state space X is a compact
subset of a finite dimensional Euclidean space and consider a partition P of X
consisting of finitely many disjoint sets P , called cells or boxes. For each cell
P ∈ P we define a map F : P × U → 2P by setting

F (P, u) := {Q ∈ P | f(x, u) ∈ Q for some x ∈ P}.

Furthermore, we fix a target region T consisting of cells in P and containing the
desired equilibrium x∗.

The basic idea of the approach as presented in [16] is to define a weighted
directed graph G = (P , E, w) consisting of nodes P , edges E ⊂ P × P and
weights w : E → R+

0 capturing the dynamics of F and the running cost l. This
is accomplished by setting

E := {(P,Q) ⊂ P × P |Q ∈ F (P,U)}

and
w((P,Q)) := inf{l(x, u) |x ∈ P, u ∈ U : f(x, u) ∈ Q}.

For P,Q ∈ P a path p(P,Q) joining P and Q is a sequence of edges e1 =
(P0, P1), e2 = (P1, P2), . . . , el = (Pl−1, Pl) with P0 = P and Pl = Q. Its length is
defined as

L(p(P,Q)) :=
l∑

k=1

w(ek).

The shortest path problem then consists of computing the value

VP(P ) := inf{L(p(P,Q)) |Q ⊂ T }

with the convention inf ∅ =∞, i.e., it computes the length of the shortest path
in the graph joining P and some cell Q in the target T . Such a shortest path
problem can be efficiently solved using, e.g., Dijkstra’s algorithm, see [16].

This shortest path problem assigns a value to each node of the graph G and
thus to each cell P of the partition P . If for each x ∈ X we denote by ρ(x) ∈ P
the cell containing x, then we can define the numerical value function on X as
ṼP(x) = VP (ρ(x)). For this function it turns out that

ṼP(x) ≤ V∞(x) and ṼPi(x)→ V∞(x),

where the convergence holds for subsequently finer partitions Pi with target sets
Ti → {x∗}, see [16]. Furthermore, as shown in [8], under suitable conditions
this convergence is even uniform and the feedback defined using (10) asymptot-
ically stabilizes the system — due to the use of the target set T not necessarily
exactly at x∗ but at least at a neighborhood of x∗, a property called practical
stabilization.

The main limitation of this approach is that typically rather fine partitions P
are needed in order to make the resulting feedback work, thus the method often
exceeds the computer’s memory capability. In other words, we are exactly in the
situation described at the beginning of Section 3.
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A remedy for this problem can be obtained by analyzing the construction of
ṼP in more detail. In fact, the shortest path problem leads to the optimality
principle

VP (P ) = inf
(P,Q)∈E

{w((P,Q)) + VP (Q)}

which by construction of the graph is equivalent to

ṼP(x) = inf
u∈U,x′∈ρ(x)

{l(x′, u) + ṼP(f(x′, u))}.

If we could change this last equation to

ṼP (x) = inf
u∈U

sup
x′∈ρ(x)

{l(x′, u) + ṼP(f(x′, u))}, (13)

and if F̃ (x) ∈ U denotes the minimizer of (13), then we immediately obtain

ṼP(x) ≥ l(x, F̃ (x)) + ṼP (f(x, F̃ (x))),

i.e., (11) with α = 1 — independently of how fine the partition P is chosen.
This is indeed possible by modifying the shortest path problem defining ṼP :
Instead of a set E of edges e = (P,Q) we now define a set H of hyperedges,

i.e., pairs h = (P,N ) with N ∈ 2P , by

H := {(P,N ) ⊂ P × 2P | N = F (P, u) for some u ∈ U}

with weights

w((P,N )) := inf{sup
x∈P

l(x, u) |u ∈ U : N = F (P, u)}

leading to a directed hypergraph. It turns out (see [10,19]) that Dijkstra’s algo-
rithm can be efficiently extended to hypergraphs, leading to values VP(P ) of the
nodes satisfying the optimality principle

VP (P ) = inf
(P,N )∈H

sup
Q∈N
{w((P,Q)) + VP (Q)}

which is equivalent to the desired equation (13).
In order to illustrate the benefit of this hypergraph approach whose solution

“automatically” satisfies (11) with α = 1, we consider the classical inverted
pendulum on a cart given by(

4
3
−mr cos2 ϕ

)
ϕ̈ +

1
2
mrϕ̇

2 sin 2ϕ− g

�
sinϕ = −u mr

m�
cosϕ,

where we have used the parameters m = 2 for the pendulum mass, mr = m/(m+
M) for the mass ratio with cart mass M = 8, � = 0.5 as the length of the
pendulum and g = 9.8 for the gravitational constant. We use the corresponding
sampled-data system (2) with T = 0.1 and the running cost

l(ϕ0, ϕ̇0, u) =
1
2

∫ T

0

0.1ϕ(t, ϕ0, ϕ̇0, u)2 + 0.05ϕ̇(t, ϕ0, ϕ̇0, u)2 + 0.01u2dt (14)

and choose X = [−8, 8]× [−10, 10] as the region of interest.
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Fig. 1. Approximate optimal value function and resulting feedback trajectory for the
inverted pendulum on a 218 box partition using the graph approach (left) and on a 214

box partition using the hypergraph approach (right)

Figure 1 compares the two approaches on the respective coarsest possible
partitions on which stabilization was achieved. It is clearly visible that the hy-
pergraph approach (right) leads to both considerably fewer partition cells and
to a much faster convergence of the controlled trajectory.

5 A Receding Horizon Approach

Receding horizon control — also known as model predictive control — is proba-
bly the most successful class of optimization based control methods and is widely
used in industrial applications.

In its simplest form, receding horizon control consists in truncating the infinite
horizon functional, i.e., for N ∈ N we consider the functional

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)), (15)

with optimal value function VN (x0) := infu∈U JN (x0, u).
This problem can be solved by various numerical techniques, e.g. by converting

the problem into a static optimization problem with the dynamics as constraints,
which can be solved by the SQP method, cf., e.g., [12].

In order to get a feedback law FN from this finite horizon problem, at each
time instant we measure the current state xn and (online) minimize (15) with
x0 = xn. This yields an optimal control sequence u∗(0), . . . , u∗(N − 1) from
which we obtain the feedback by setting

FN (xn) := u∗(0),

i.e., by taking the first element of the optimal control sequence.
The questions we want to investigate now is whether this scheme does yield

a stabilizing feedback control FN and, if yes, what is the performance of this
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controller, i.e, what is V FN
∞ . Our main motivation for this analysis is to derive

conditions on the running cost l under which we can ensure stability and good
performance even for short optimization horizons N , leading to low complexity
and thus short computational time for solving the online optimization problem.

In the literature, the majority of papers dealing with stability issues of re-
ceding horizon control uses additional terminal constraints and costs, typically
requiring x(N) to lie in a neighborhood of the equilibrium to be stabilized. This
modification is known to enhance stability both in theory and in practice, how-
ever, its main disadvantage is that the operating region of the resulting controller
is restricted to the feasible set, i.e., to the set of initial conditions for which the
terminal constraints are feasible. This set, in turn, depends on the optimization
horizon N and, thus, in order to obtain large operating regions, typically large
optimization horizons N are needed leading to complex optimization problems
and high computational effort.

Stability results for receding horizon problems without terminal costs have
been presented in [14,5] using convergence VN → V∞. Another way to obtain
such results has been pursued in [13] based on the convergence |VN −VN+1| → 0
as N →∞. The next proposition is one of the main results from [13], which will
allow us to apply Theorem 1 to Ṽ = VN and F̃ = FN .

Proposition 1. Consider γ > 0 and N ≥ 2 and assume that the inequalities

V2(x) ≤ (γ + 1)l(x, F1(x)) and Vk(x) ≤ (γ + 1)l(x, Fk(x)), k = 3, . . . , N

hold for all x ∈ X. Then the inequality

(γ + 1)N−2

(γ + 1)N−2 + γN−1
VN (x) ≤ VN−1(x)

holds for x ∈ X.

The proof can be found in [13] and relies on a inductive application of the
optimality principle for Vk, k = 1, . . . , N .

Combining Proposition 1 and Theorem 1 we immediately arrive at the fol-
lowing theorem, which was first proved in [13] and whose proof we repeat for
convenience of the reader.

Theorem 2. Consider γ > 0, let N ∈ N be so large that (γ+1)N−2 > γN holds
and let the assumption of Proposition 1 holds. Then the inequality

(γ + 1)N−2 − γN

(γ + 1)N−2
V∞(x) ≤ (γ + 1)N−2 − γN

(γ + 1)N−2
V FN
∞ (x) ≤ VN (x) ≤ V∞(x)

holds. If, in addition, the inequalities (8) and (9) hold, then the feedback law FN

asymptotically stabilizes the system.

Proof. First note that the first and the last inequality in the assertion are obvi-
ous. In order to derive the middle inequality, from Proposition 1 we obtain

VN (f(x, FN (x))) − VN−1(f(x, FN (x))) ≤ γN−1

(γ + 1)N−2
VN−1(f(x, FN (x)).
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Using the optimality principle for VN

VN (x) = l(x, FN (x)) + VN−1(f(x, FN (x)))

and the assumption of Proposition 1 for k = N , we obtain the inequality
VN−1(f(x, FN (x))) ≤ γl(x, FN (x)) and can conclude

VN (f(x, FN (x))) − VN−1(f(x, FN (x))) ≤ γN

(γ + 1)N−2
l(x, FN (x)).

Thus, using the optimality principle for VN once again yields

VN (x) ≥ l(x, FN (x)) + VN (f(x, FN (x))) − γN

(γ + 1)N−2
l(x, FN (x))

implying the assumption of Theorem 1(i) for Ṽ = VN and F̃ = FN with

α = 1− γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN

(γ + 1)N−2

and thus the asserted inequalities.
Asymptotic stability now follows immediately from Theorem 1(ii) since the

proved inequality together with (8) and (9) implies (9) for Ṽ = VN .

We emphasize that the decisive condition for stability is (γ + 1)N−2 > γN . In
particular, the larger γ is, the larger the optimization horizon N must be in
order to meet this condition. Hence, in order to ensure stability for small N , we
need to ensure that γ is small.

An estimate for γ can, e.g., be obtained if a null–controlling control sequence
is known, i.e., if for each x0 we can find a sequence u ∈ U such that l(xu(n), u(n))
converges to 0 sufficiently fast. In this case, for each k ∈ N we can estimate

Vk(x0) ≤ V∞(x0) ≤ J∞(x0, u) and l∗(x0) ≤ l(x0, Fk(x0))

and an estimate for γ can then be computed comparing J∞(x0, u) and l∗(x0). In
particular, such an analysis can be used for the design of running costs l which
lead to small values of γ and thus to stability for small optimization horizons N .

We illustrate this procedure for a control system governed by a reaction-
advection-diffusion PDE with distributed control given by

yt = yx + νyxx + µy(y + 1)(1− y) + u (16)

with solutions y = y(t, x)1 for x ∈ Ω = (0, 1), boundary conditions y(t, 0) =
y(t, 1) = 0, initial condition y(0, x) = y0(x) and distributed control u(t, ·) ∈
L2(Ω). The corresponding discrete time system (1), whose solutions and control
functions we denote by y(n, x) and u(n, x), respectively, is the sampled-data
system obtained according to (2) with sampling period T = 0.025.
1 Note the change in the notation: x is the independent state variable while y(t, ·) is

the new state, i.e., X is now an infinite dimensional space.
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Fig. 2. Equilibria for u ≡ 0; solid=asymptotically stable, dashed=unstable

For our numerical computations we discretized the equation in space by finite
differences on a grid with nodes xi = i/M , i = 0, . . . ,M , using backward (i.e.,
upwind) differences for the advection part yx. Figure 2 shows the equilibria of
the discretized system for u ≡ 0, ν = 0.1, µ = 10 and M = 25.

Our goal is to stabilize the unstable equilibrium y∗ ≡ 0, which is possible
because with the additive distributed control we can compensate the whole dy-
namics of the system. In order to achieve this task, a natural choice for a running
cost l is the tracking type functional

l(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω) (17)

which we implemented with λ = 0.1 for the discretized model in matlab using
the lsqnonlin solver for the resulting optimization problem.

The simulations shown in Figure 3 reveal that the performance of this con-
troller is not completely satisfactory: for N = 11 the solution remains close to
y∗ = 0 but does not converge while for N = 3 the solution even grows.

The reason for this behavior lies in the fact that in order to control the system
to y∗ = 0, in (16) the control needs to compensate for yx, i.e., any stabilizing
control must satisfy ‖u(n, ·)‖2L2(Ω) � ‖yx(n, ·)‖2L2(Ω). Thus, for any stabilizing
control sequence u we obtain J∞(y0, u) � λ‖yx(n, ·)‖2L2(Ω) which — even for
small values of λ — may be considerably larger than l∗(y) = ‖y‖2L2(Ω), resulting
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Fig. 3. Receding horizon with l from (17), N = 3 (left) and N = 11 (right)
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Fig. 4. Receding horizon with l from (18), N = 2 (left) and N = 3 (right)

in a large γ and thus the need for a large optimization horizon N in order to
achieve stability.

This effect can be avoided by changing l in such a way that l∗(y) includes
‖yx‖2L2(Ω), e.g., by setting

l(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + ‖yx(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω). (18)

For this l the control effort needed in order to control (16) to y∗ = 0 is propor-
tional to l∗(y). Thus, γ is essentially proportional to λ and thus, in particular,
small for our choice of λ = 0.1 which implies stability even for small optimization
horizon N . The simulations using the corresponding discretized running cost il-
lustrated in Figure 4 show that this is indeed the case: we obtain asymptotic
stability even for the very small optimization horizons N = 2 and N = 3.
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3. Camilli, F., Grüne, L., Wirth, F.: Control Lyapunov functions and Zubov’s method.
In: SIAM J. Control Optim. (to appear, 2008)
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9. Grüne, L., Junge, O.: Approximately optimal nonlinear stabilization with preser-
vation of the Lyapunov function property. In: Proceedings of the 46th IEEE Con-
ference on Decision and Control, New Orleans, Louisiana (2007)
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On Smoothing Surfaces in Voxel Based Finite

Element Analysis of Trabecular Bone
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Abstract. The (micro-)finite element analysis based on three-dimen-
sional computed tomography (CT) data of human bone takes place on
complicated domains composed of often hundreds of millions of voxel
elements. The finite element analysis is used to determine stresses and
strains at the trabecular level of bone. It is even used to predict fracture
of osteoporotic bone. However, the computed stresses can deteriorate at
the jagged surface of the voxel model.

There are algorithms known to smooth surfaces of voxel models.
Smoothing however can distort the element geometries. In this study
we investigate the effects of smoothing on the accuracy of the finite el-
ement solution, on the condition of the resulting system matrix, and on
the effectiveness of the smoothed aggregation multigrid preconditioned
conjugate gradient method.

1 Introduction

In view of the growing importance of osteoporosis due to the obsolescence of the
population in industrialized countries an accurate analysis of individual bone
strength is in dire need. In fact according to the WHO, lifetime risk for osteo-
porotic fractures in women is estimated close to 40%; in men risk is 13% [7]. With
the advent of fast and powerful computers, simulation techniques are becoming
popular for investigating the mechanical properties of bones and predicting the
strength of a given patient’s bones. In order to gain an improved comprehension
of structure and strength of bone, large scale computer simulations are executed
based on the theory of (non)linear elasticity and the finite element method.

Today’s approach is based on three-dimensional computed tomography (CT)
whereby bones are scanned with a resolution of 50-100µm. Using a direct voxel-
conversion technique the three-dimensional computer reconstructions of bone
can be converted to a finite element mesh, that can be used to perform a ‘virtual
experiment’, i.e., to simulate a mechanical test in great detail and with high
precision. The resulting procedure is called microstructural finite element (µFE)
analysis.

The approach based on the FE analysis leads to linear systems of equations

Ku = f , (1)

where the stiffness matrix K is symmetric positive-definite, the components of
the vector u are the displacements at the nodes of the voxel mesh. f contains
external loads or prescribed displacements.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 69–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The system of equations (1) can be solved very efficiently by the conjugate
gradient algorithm preconditioned by smoothed aggregation multigrid. Systems
of up to hundreds of millions of degrees of freedom have been solved on large
scale computers within a couple of minutes [1,2, 3].

The voxel approach has deficiencies though. In particular, the jagged domains
leading to exceeding stresses at the nodes of the mesh corresponding to corners
of the domain. A straightforward procedure is to smooth the surface of the com-
putational domain. Taubin [9,10] suggested a surface fairing algorithm that does
not shrink the body it embraces. Boyd and Müller [4] have applied this algo-
rithm to voxel based models. In this note we investigate this latter algorithm in
a parallel environment. In section 2 we discuss how smoothing can be done with
piecewise trilinear isoparametric hexahedral elements. In section 3 we discuss
the effects of the flexible elements on visualization, stresses, and condition of the
stiffness matrix. We also mention how the computational work can be reduced
by splitting distorted hexahedra in piecewise linear tetrahedral elements.

2 Smoothing

In bone structure analysis the computational domain is composed of a multitude
of tiny cubes, so-called voxels, that are generated directly from the output of the
CT scanner. Surface patches and edges are always aligned with the coordinate
directions. In contrast to the originally smooth object, the voxel model has a
jagged surface. The stresses induced by the computed displacements can have
singularities at edges and corners of the surface but also of interfaces between
different materials. A straightforward approach to get rid of the singular stresses
is to smooth the surface and material interfaces of the computational domain.

In computer graphics there is a well-known procedure to smooth polygonal
surfaces called mesh fairing [9, 10]. The coordinates x of the mesh vertices are
moved according to the diffusion equation

∂x
∂t

= D ·∆x, D > 0, (2)

where the Laplacian at x is approximated by

∆xi =
∑

j∈N(i)

wij(xj − xi),
∑

j∈N(i)

wij = 1. (3)

Here, N(i) denotes the neighbor nodes of node i. The choice of the weights
evidently affects the quality of the smoothing [10]. The most effective scheme is
due to Fujiwara, where wij is proportional to 1/‖xj−xi‖.

Applying Euler’s method with time step ∆t to (2) we get

xnew
i = xold

i + λ∆xold
i , λ = D∆t. (4)

Boyd and Müller [4] applied this technique to the voxel model by classifying
nodes as fixed nodes, surface nodes, interface nodes, inner nodes and near-surface
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nodes. Fixed and inner nodes must not move; this is accomplished by leaving
empty their set of neighbors. Surface and interface nodes produce a surface mesh
which is smoothed by the algorithm. Since only surface and interface nodes can
qualify as neighbors of surface and interface nodes, these nodes are subjected
to Taubin’s original 2D algorithm. Near-surface nodes should compensate for
the movements of the surface and interface nodes, such that hexahedra near the
surface are not seriously distorted.

The smoothing procedure (4) shrinks the volume of the 3D object it is applied
to. To compensate this effect, Taubin suggests to replace λ in every second step
by −µ where µ = λ or slightly bigger [9]. The ‘negative diffusion’ has the effect
of (approximately) restoring the volume of the 3D object.

This smoothing procedure was incorporated into our fully-parallel µ-finite el-
ement code PARFE [8] that is based on the Trilinos framework [11], see [6] for
details. A piecewise trilinear finite element space was implemented on the dis-
torted mesh based on isoparametric hexahedral elements. The matrix elements
have been computed approximately by the 64-point tensor product Gaussian
quadrature rule.

3 Results

In this section we discuss four effects of smoothing, (1) the visual quality, (2)
the condition number of the stiffness matrix, (3) the scalability of the smoothing
procedure, and (4) the cost of the assembling of the matrix. The computations
have been done on the Cray XT3 at the Swiss National Supercomputer Center.

To show the visual quality of the smoothing algorithm a sphere was smoothed
with λ and µ as proposed in [10,4]. A sphere has an absolutely smooth surface
to which the surface coordinates should converge. The smoothing procedure in
fact generates quite a smooth surface, see Fig. 1. The implemented procedure

Fig. 1. A sample sphere. On the left is the original; on the right is a smoothed sphere
subject to 32 smoothing steps with λ = 0.4 and 1/µ + 1/λ = 0.1.



72 P. Arbenz and C. Flaig

Fig. 2. A clip through a sphere consisting of two materials. The color indicates the
stress. The original jagged sphere is on the left; the smoothed sphere is on the right
after 32 smoothing steps with the parameters as in Fig. 1. The stresses do not oscillate
so much in the smoothed version as in the unsmoothed version.

Table 1. Impact of the number of smoothing steps on maximal and mean stress

Sphere cube1
Smoothing steps 0 8 16 0 8 16

Max stress (MPa) 367.7 365.3 365.6 231.6 235.2 237.0

Mean stress (MPa) 20.8 20.73 20.4 19.6 20.1 20.3

not only smoothes surfaces, but also interfaces between differing materials, as
can be seen from Fig. 2. To investigate how the visual impression changes as the
number of smoothing steps increases we consider a bone specimen consisting of
98’381 voxels. From Fig. 3 we see that already very few smoothing steps lead to
dramatically improved surfaces. After 28 steps, however, some voxels get so much
distorted that the stiffness matrix loses definiteness. Also the visual impression
does not improve much beyond this point. It is possible but to time consuming
to check individual elements for strong distortion and detach them from the
smoothing process.

The deformed hexahedra not only have an effect on the visual impression, but
also change the distribution of the stresses. Boyd and Müller [4] report that the
peak stresses are lowered by a factor 4 for a sphere model. Camacho et al. [5]
describe a similar effect for the von Mises stresses.

We used two models to measure the stress: a sphere consisting of two materials
and a bone sample (cube1 in [2]) consisting of one material. We applied a varying
number of smoothing steps with λ = 0.4. As suggested in [10,4] we determined
µ from 1/λ + 1/µ = 0.1. Both models are fixed at z = 0 and a load is exerted
on the top plane (z = zmax).

Table 1 shows the maximal and the mean von Mises stresses. The smoothing
procedure has a minimal effect on these. The maximal stress is observed at
the verge of the loading. Fig. 2 shows that the stresses propagate through the
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. A sample mesh representing trabecular bone. The unsmoothed mesh (a) was
smoothed with 4 (b), 8 (c), 16 (d), 28 (e), and 64 (f) steps, respectively. The step size
was 0.4. With more than 28 smoothing steps of the deformations became too severe.
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Fig. 4. Section of Figure 2 at the material interface

sphere and not along the surface where the smoothing takes place. Hence, in this
situation, smoothing does not significantly affect the stresses.

In the artificial bone sample the results are similar. Smoothing only minimally
affects the stresses. The elements on the surface often have unconstrained nodes
or edges that are often displaced much more by smoothing than fixed nodes.
However, they are not relevant for the stiffness of the model.

The changes of the von Mises stresses at the transition of the materials are
analyzed by means of the sphere model, see Fig. 4. The upper material has a
Young’s modulus E = 5000 and a Poisson ratio ν = 0.3. The lower material is
more elastic with E = 12000 and ν = 0.1. The transition causes a jump in the
stresses. The stresses in the voxel elements at the jagged interface differ visibly
in the same material as well as across the material interface. The unsmoothed
model generates high peak stresses, too, that are not observed in the physical
experiment. After 32 smoothing steps the interface becomes nearly a plane. The
peak stress decreases from 46.8 MPa to 42.3 MPa. The resulting stresses vary
much less at the material interface, cf. Table 2.

The smoothing procedure distorts elements which in turn affects the condition
number of the stiffness matrix K. We have investigated the condition by means
of two models. The first model, cube2, is obtained from cube1 by mirroring it
at three faces. Thus it is 8 times bigger than cube1. The (estimated) condi-
tion numbers of the stiffness matrix K after 16 smoothing steps with varying

Table 2. Stresses (in MPa) at the interface of Fig. 4. Smoothing lowers the peak
stresses in the selected 8 elements by 9.6%. The minium peak is increased by 24.5%.

Hexahedra 1 2 3 4 5 6 7 8

Unsmoothed 38.8 39.6 46.8 25.3 47.0 25.7 31.0 32.0

Smoothed 40.1 41.2 42.3 31.5 42.5 31.8 32.9 33.6
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Table 3. Condition numbers of the stiffness matrix depending on the Euler step size λ.
16 smoothing steps were applied to the model cube2.

smoothing step size λ 0.0 0.3 0.4 0.475 0.5 0.51

without preconditioning 3.4·105 3.4·105 3.4·105 3.4·105 4.5·105 —

with ml preconditioner 245.2 237.4 239.0 246.1 248.1 —

Table 4. Condition numbers of the stiffness matrix depending on the Euler step size λ.
16 smoothing steps were applied to the 2-materials sphere.

smoothing step size λ 0.0 0.5 0.6 0.67 0.685

without preconditioning 1.75·106 1.65·106 2.31·106 1.51·107 —

with ml preconditioner 507.1 447.0 486.2 664.5 —

Euler step size λ are given in Table 3. For either the preconditioned or the un-
preconditioned system, the condition numbers are not affected much as long as
λ ≤ 0.5.

For the two-materials sphere corresponding numbers are found in Table 4.
Here the condition numbers vary more. Little smoothing improves the condition;
too large step sizes lead to indefinite systems.

In a third test we fixed the step size λ = 0.4 and varied the number of
smoothing steps, cf. Table 5. Here we observe a slow but gradual increase of the
condition number up to 28 smoothing steps. Beyond this point some of the voxel
elements seem to flip over causing indefinite matrices.

To investigate weak scalability we chose the artificial bone displayed in Fig. 3
that is inclosed in a cube and can be mirrored at all faces to generate arbi-
trarily large bones, see [2]. Not surprisingly, the computations, in particular the
new smoothing and assembling procedures, show perfect weak scalability up to
216 = 63 processors. Notice that all voxels are considered flexible if smoothing
is applied at all. This is justified by our application, trabecular bone, where
usually 3/4 of the nodes are near the surface. Surprisingly, the assembling time
only increased by a factor 8; apparently most of the time in this phase is due to
memory accesses. Nevertheless, the assembling has become as time consuming
as the solution phase. To decrease the cost of assembly we split the (distorted)
hexahedra in six tetrahedra with linear basis functions. By this we regained a
factor of 5 in the assembling time, however at the cost of stiffer structures, see [6].

We have tested strong scalability by means of a bone model of a fixed fracture
of the distal radius with 38′335′350 degrees of freedom. Because the patient’s arm

Table 5. cube2 model: condition numbers of the stiffness matrix depending on the
number of smoothing steps with fixed λ = 0.4

# of smoothing steps 8 16 24 26 28 30

without preconditioner 3.41·105 3.40·105 3.40·105 3.40·105 7.12·105 —

with ml preconditioner 234.9 239.0 246.9 248.4 253.1 —
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Table 6. Fixed fracture model with 38’335’350 degrees of freedom

Time Speedup

#CPU Smoothing Assembling Solving Smoothing Assembling Solving

160 3.922 76.79 59.29 1 1 1

240 2.712 52.44 38.76 1.45 1.46 1.53

320 2.002 39.63 32.01 1.96 1.94 1.85

480 1.382 26.69 21.22 2.84 2.87 2.79

could not be fixed perfectly the mesh has no trabecular structure. The model
consists of a full mesh. So, each node has the maximal number of neighbors and
communication volume between compute nodes is relatively high. Table 6 shows
the execution times and speedups for smoothing, assembling, and solving the
preconditioned system. The speedups are almost linear.

4 Conclusions

We have parallelized a smoothing procedure originally proposed by Taubin [10]
that has been adapted by Boyd and Müller [4] for application to trabecular bones.
We have observed that (1) the smoothing procedure results in a large subjective
improvement of the visualization, that (2) the condition of the stiffness matrix is
not increased too much as long as the elements are not distorted too severely, and
that (3) the smoothing procedure applied to the model shows a reduced variation
of the stresses at material transitions. However, drastically lower stresses on the
surface were not obtained. Smoothing entails that the local stiffness matrices
must be computed for each element which results in increased simulation times.
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Abstract. A successive refinement of a finite element grid provides a
sequence of nested grids and hierarchy of nested finite element spaces
as well as a natural hierarchical decomposition of these spaces. In the
case of numerical solution of elliptic boundary value problems by the
conforming FEM, this sequence can be used for building both multilevel
preconditioners and error estimates. For a nonconforming FEM, multi-
level preconditioners and error estimates can be introduced by means of
a hierarchy, which is constructed algebraically starting from the finest
discretization.

1 Introduction

Let us consider a model elliptic boundary value problem in Ω ⊂ R2,

find u ∈ V : a(u, v) = b(v) ∀v ∈ V, (1)

where V = H1
0 (Ω), b(v) =

∫
Ω

fvdx for f ∈ L2(Ω) and

a(u, v) =
∫
Ω

2∑
ij

kij
∂u

∂xi

∂v

∂xj
dx . (2)

Above K = (kij) is a symmetric and uniformly bounded positive definite matrix.
This type of boundary value problems are most frequently solved by the finite

element method (FEM). A successive refinement of a finite element grid provides
a sequence of nested grids and hierarchy of nested finite element spaces as well
as a natural hierarchical decomposition of these spaces. This sequence can be
used for building both multilevel preconditioners and error estimates. In Section
2, we describe such hierarchy for conforming Courant type finite elements. We
also mention the strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality,
which is important for characterization of the hierarchical decomposition. In
Section 3, we show that the hierarchical decomposition allows to construct pre-
conditioners and error estimates. Section 4 is devoted to hierarchical decompo-
sitions constructed algebraically for nonconforming Crouzeix-Raviart FEM. We
show that this decomposition allows again to introduce both preconditioners and
error estimates.
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Fig. 1. A regular decomposition of a triangle

2 Hierarchical Decomposition for Conforming FEM

Let us consider a coarse triangular finite element grid TH in Ω and a fine grid
Th, which arises by a refinement of the coarse elements, see Fig. 1 for the most
typical example. We assume that Ω =

⋃
{E : E ∈ TH}.

By NH and N h, we denote the sets of nodes corresponding to TH and Th,
respectively. Further, NH = {x ∈ NH , x /∈ ∂Ω}, Nh = {x ∈ N h, x /∈ ∂Ω}.
Naturally, Nh = NH ∪ N+

H , where N+
H is the complement of NH in Nh.

Now, we can introduce the finite element spaces VH and Vh (VH ⊂ Vh) of
functions which are continuous and linear on the elements of the triangulation
TH and Th, respectively.

The space Vh allows a natural hierarchical decomposition. Let {φH
i } and {φh

i }
be the standard nodal finite element bases of VH and Vh, i.e. φH

i (xj) = δij for
all xj ∈ NH , φh

i (xj) = δij for all xj ∈ Nh . Then Vh can be also equipped with
a hierarchical basis {φ̄h

i }, where

φ̄h
i =

{
φh

i if xi ∈ N+
H ,

φH
i if xi ∈ NH .

It gives a natural hierarchical decomposition of the space Vh,

Vh = VH ⊕ V +
H , V +

H = span {φh
i , xi ∈ N+

H }. (3)

The decomposition (3) is characterized by the strengthened CBS inequality
with the constant γ = cos(VH , V +

H ), which is defined as follows:

γ = cos(VH , V +
H )

= sup
{
| a(u, v) |
‖u‖a ‖v‖a

: u ∈ VH , u �= 0, v ∈ V +
H , v �= 0

}
. (4)

Above ‖u‖a =
√

a(u, u) is the energy norm. If Th arises from TH by a regular
division of the coarse grid triangles into 4 congruent triangles (see Fig. 1) and
if the coefficients K = (kij) are constant on the coarse grid elements then
γ <

√
3/4 for general anisotropic coefficients and arbitrary shape of the coarse

grid elements. For more details, see [1] and the references therein.
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3 Hierarchical Preconditioners and Error Estimates

The decomposition (3) can be used for construction of preconditioners for the
FE matrices Ah and Āh,

〈Ahu, v〉 = 〈Āhū, v̄〉 = a(u, v) (5)

for u =
∑

uiφ
h
i =

∑
ūiφ̄

h
i and v =

∑
viφ

h
i =

∑
v̄iφ̄

h
i . Both nodal and hi-

erarchical basis FE matrices Ah and Āh then have a hierarchic decomposition

Ah =
[
A11 A12

A21 A22

]
N+

H

NH
and Āh =

[
Ā11 Ā12

Ā21 Ā22

]
N+

H

NH
. (6)

Note that the diagonal blocks A11, A22 of Ah carry only the local information.
On the opposite, the diagonal blocks Ā11 = A11 and Ā22 = AH of Āh carry both
local and global information on the discretized problem.

Note also that the relation between Ah and Āh implies the identity between
the Schur complements,

Sh = S̄h, Sh = A22 −A21A
−1
11 A12, S̄h = Ā22 − Ā21Ā

−1
11 Ā12 .

The standard hierarchic multiplicative preconditioner then follows from an
approximate factorization of Ah with Schur complement Sh replaced by Ā22,

Bh =
[

I 0
A21A

−1
11 I

] [
A11

Ā22

] [
I A−1

11 A12

0 I

]
. (7)

Note that getting efficient preconditioners assumes that

– A11 is approximated for a cheaper computation. The simplest approximation
is the diagonal of A11, see [2], more accurate approximation can use incom-
plete factorization or a locally tridiagonal element-by-element approximation
of A11, see [3],

– Ā22 = AH is also approximated. A natural way how to do it is to use
hierarchical decomposition recursively and to solve the system with Ā22 by a
few inner iterations with a proper hierarchical preconditioner. In a multilevel
setting, we can get an optimal preconditioner, see [4,5,6].

Another application of the hierarchical decomposition is in error estimation,
see [7,10] and the references therein. If u ∈ V is the exact solution, uH ∈ VH

and uh ∈ Vh are the finite element solutions of the problem (1) in VH and Vh,
respectively, and if there is a constant β < 1 such that

‖ u− uh ‖a≤ β ‖ u− uH ‖a , (8)

(saturation condition) then the Galerkin orthogonality allows to show that

‖ wh ‖a≤‖ u− uH ‖a≤
1

1− β2
‖ wh ‖a , (9)
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where wh = uh − uH , see [7]. Thus η =‖ wh ‖a can serve as an efficient and
reliable error estimator.

A cheaper error estimator η̄ can be computed via the hierarchical decompo-
sition (3). Let η̄ =‖ w̄h ‖a, where

w̄h ∈ V +
H : a(w̄h, vh) = b(vh)− a(uh, vh) ∀vh ∈ V +

H (10)

then

‖ w̄h ‖a≤‖ u− uH ‖a≤
1

(1 − β2)(1 − γ2)
‖ w̄h ‖a (11)

where γ is the CBS constant from (4).
Algebraically,

η̄ = 〈A11w1, w1〉1/2, (12)

where

w1 : A11w1 = b1 − Ā12w2, (13)
w2 : Ā22w2 = b2. (14)

A still cheaper estimators can be computed by using the approximations of A11.
In this respect, the locally tridiagonal approximation introduced by Axelsson
and Padiy [3], which is robust with respect to anisotropy and element shape,
is a good candidate for obtaining a cheap reliable and efficient hierarchic error
estimator. The multiplicative preconditioner of A11 has more than two times
better κ.

4 Nonconforming Finite Elements

Let Th be a triangulation of Ω, Mh be the set of midpoints of the sides of
triangles from Th, M0

h and M1
h consist of those midpoints from Mh, which lie

inside Ω and on the boundary ∂Ω. Then the Crouzeix-Raviart finite element
space Vh is defined as follows

Vh = {v ∈ Uh : v(x) = 0 ∀x ∈M1
h}, (15)

Uh = {v ∈ L2(Ω) : v |e∈ P1 ∀e ∈ Th, [v](x) = 0 ∀x ∈ M0
h}, (16)

where [v](x) denotes the jump in x ∈M0
h.

The finite element solution uh ∈ Vh of (1) is now defined as

uh ∈ Vh : ah(uh, vh) = b(vh) ∀vh ∈ Vh (17)

where ah is the broken bilinear form,

ah(uh, vh) =
∑

T∈Th

∫
T

∑
ij

kij
∂uh

∂xi

∂vh

∂xj
dx . (18)
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Fig. 2. A macroelement E with 9 midpoint nodes mi

If TH and Th are two nested triangulations and VH and Vh are the corresponding
Crouzeix-Raviart spaces then VH � Vh and it is impossible to repeat the con-
structions of Section 2. But still there is a possibility to introduce a hierarchical
basis in Vh algebraically, one such possibility, the DA splitting, is described in
[8]. The construction is associated with the coarse triangles E ∈ TH considered
as macroelements composed from four congruent triangles T ∈ Th, see Fig. 2.

Let φh
1 , . . . , φ

h
9 be the nodal basis functions of the macroelement E, i.e.

φh
i (mj) = δij . Then a hierarchical basis on E can be created from the following

basis functions,

φ̄h
l = φh

i for li = 11, 22, 33
φ̄h

l = φh
i − φh

j for lij = 445, 567, 689 (19)

φ̄h
l = φh

i + φh
j + φh

k for lijk = 7145, 8267, 9389

The last triple will be called aggregated basis functions.
The hierarchical basis on a macroelement can be extended to a hierarchical

basis in the whole space Vh. Using this hierarchical basis, the space Vh can be
decomposed as follows

Vh = VA ⊕ V +
A ,

where VA is spanned on the aggregated basis functions and V +
A is spanned on the

remaining basis functions. For this decomposition, γ = cos(VA, V +
A ) =

√
3/4, see

[8].

In [8,9], it is shown that the decomposition can be used for defining optimal
order hierarchical preconditioners.

Now, we shall investigate the use of the DA hierarchical decomposition for
the hierarchical error estimation in the case of nonconforming Crouzeix-Raviart
FEM.

Let uH , uh be the nonconforming finite element solutions of (1) in VH and
Vh, respectively, and let us define

uA ∈ VA : ah(uA, vh) = b(vh) ∀vh ∈ VA, (20)
wA ∈ V +

A : ah(wA, vh) = b(vh)− a(uA, vh) ∀vh ∈ V +
A . (21)
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Algebraically, let Āhuh = b̄h be the algebraic version of (17) in the introduced
hierarchical basis and the hierarchical decomposition of this system gives the
following block form, [

Ā11 Ā12

Ā21 Ā22

] [
u1

u2

]
=
[
b1

b2

]
(22)

with the first and second block corresponding to V +
A and VA, respectively. Then

uA ∼ w2 = Ā−1
22 b2, (23)

wA ∼ w1 = Ā−1
11 (b1 − Ā12w2). (24)

We shall also consider the algebraic system

AHuH = bH (25)

corresponding to VH and the broken energy norms

‖ vH ‖H=
√

aH(vH , vH), ‖ vh ‖h=
√

ah(vh, vh)

for vH ∈ VH and vh ∈ Vh, respectively.

Now, our aim is to investigate if

η =‖ wA ‖h=
√
〈Ā11w1,w1〉 (26)

is again a possible error estimator. We shal do it in three steps.

1. First, under the assumption that the saturation condition is valid, i.e. there
is a β < 1,

‖ u− uh ‖h≤ β ‖ u− uH ‖H ,

it is possible to use ‖ uh− uH ‖h as an error estimator for ‖ u− uH ‖H , because

1
1 + β

‖ uh − uH ‖h≤‖ u− uH ‖H ≤
1

1− β
‖ uh − uH ‖h . (27)

Note that (27) follows from the triangle inequality. It is not possible to use the
Galerkin orthogonality as it was done for (9).

2. Second, we shall investigate a relation between ‖ uh−uH ‖h and ‖ uh−uA ‖h .
For example, if f is constant on the elements E ∈ TH , then the vector b2 from
(23) and bH from (25) are equal. From [8], we have Ā22 = 4AH , thus w2 = 1

4uH .
Then

‖ uh − uA ‖2h = ‖ uh ‖2h − ‖ uA ‖2h=‖ uh ‖2h −
1
4
‖ uH ‖2h

‖ uh − uH ‖2h = ‖ uh ‖2h − ‖ uH ‖2h +ch

where ch is the consistency term, ch = b(uH)−ah(uh, uH). It can be proved [11]
that ch → 0 for h→ 0. Thus, for h sufficiently small

‖ uh − uH ‖h≤‖ uh − uA ‖h (but not ‖ uh − uH ‖h∼‖ uh − uA ‖h ).
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3. Third, the norm ‖ uh − uA ‖h can be estimated by ‖ wA ‖h . It holds, that

‖ wA ‖2h≤‖ uh − uA ‖2h≤ (1− γ2)−1 ‖ wA ‖2h ,

where γ =
√

3/4 is the strengthened CBS constant for the DA splitting.
The proof is simple. First,

‖ wA ‖2h = ah(uh − uA, wA) ≤‖ uh − uA ‖h‖ wA ‖h .

Next, let uh = ûA + ŵA, ûA ∈ VA, ŵA ∈ V +
A . Then

‖ uh − uA ‖2h = ah(uh − uA, uh − uA) = ah(uh − uA, ûA − uA + ŵA)
= ah(uh − uA, ŵA) = ah(wA, ŵA) ≤‖ wA ‖h‖ ŵA ‖h

‖ uh − uA ‖2h = ‖ ûA − uA + ŵA ‖2h
≥ ‖ ûA − uA ‖2h + ‖ ŵA ‖2h −2 | ah(ûA − uA, ŵA) |
≥ (1 − γ2) ‖ ŵA ‖2h

Consequently,

(1− γ2) ‖ ŵA ‖2h ≤ ‖ uh − uA ‖2h= ah (wA, ŵA) ≤‖ wA ‖h‖ ŵA ‖h
i.e.

(
1− γ2

)
‖ ŵA ‖h ≤ ‖ wA ‖h

and
‖ uh − uA ‖2h≤ (1− γ2)−1 ‖ wA ‖2h .

5 Conclusions

The first aim of the paper is to show that the progress in construction and
analysis of the hierarchical multilevel preconditioners, as e.g. the mentioned lo-
cally tridiagonal approximation [3] to the pivot block can be exploited also for
development of hierarchical error estimates.

The second aim is to extend the hierarchical error estimate concept to non-
conforming finite elements with the aid of an auxiliary algebraic subspace VA,
VH ∼ VA, VA ⊂ Vh. This extension could provide an evaluation of the error and
its distribution on an early stage of multilevel iterations and gives a chance to
improve the discretization in the case of insufficient accuracy.

We have shown that a crucial point for this extension will be the approxima-
tion property of the algebraic space VA. For the DA construction, the approxi-
mation property is not sufficient and we can get error estimator which is reliable
but not efficient. A possible remedy could be in the use of the generalized DA
decompositions, see [12,13]. In this respect, a further investigation is required.
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Abstract. In this paper algebraic two-level and multilevel precondi-
tioning algorithms for second order elliptic boundary value problems
are constructed, where the discretization is done using Rannacher-Turek
non-conforming rotated trilinear finite elements. An important point to
make is that in this case the finite element spaces corresponding to two
successive levels of mesh refinement are not nested in general. To handle
this, a proper two-level basis is required to enable us to fit the general
framework for the construction of two-level preconditioners for conform-
ing finite elements and to generalize the method to the multilevel case.

The proposed variants of hierarchical two-level basis are first intro-
duced in a rather general setting. Then, the involved parameters are
studied and optimized. The major contribution of the paper is the de-
rived estimates of the constant γ in the strengthened CBS inequality
which is shown to allow the efficient multilevel extension of the related
two-level preconditioners. Representative numerical tests well illustrate
the optimal complexity of the resulting iterative solver.

1 Introduction

In this paper we consider the elliptic boundary value problem

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,
u = 0 on ΓD,

(a(x)∇u(x)) · n = 0 on ΓN ,
(1)

where Ω is a polyhedral domain in R3, f(x) is a given function in L2(Ω), the
coefficient matrix a(x) is symmetric positive definite and uniformly bounded in
� The authors gratefully acknowledge the support by the Austrian Academy of Sci-
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Ω, n is the outward unit vector normal to the boundary Γ = ∂Ω, and Γ =
Γ̄D ∪ Γ̄N . We assume that the elements of the diffusion coefficient matrix a(x)
are piece-wise smooth functions on Ω̄.

The weak formulation of the above problem reads as follows:
given f ∈ L2(Ω) find u ∈ V ≡ H1

D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

A(u, v) = (f, v) ∀v ∈ H1
D(Ω), where A(u, v) =

∫
Ω

a(x)∇u(x) · ∇v(x)dx. (2)

We assume that the domain Ω is discretized by the partition Th which is obtained
by a proper refinement of a given coarser partition TH . We assume also that TH

is aligned with the discontinuities of the coefficient matrix a(x) so that over each
element E ∈ TH the coefficients of a(x) are smooth functions.

The variational problem (2) is discretized using the finite element method,
i.e., the continuous space V is replaced by a finite dimensional subspace Vh.
Then the finite element formulation is:
find uh ∈ Vh, satisfying Ah(uh, vh) = (f, vh) ∀vh ∈ Vh, where

Ah(uh, vh) =
∑
e∈Th

∫
e

a(e)∇uh · ∇vhdx. (3)

Here a(e) is a piece-wise constant symmetric positive definite matrix, defined
by the integral averaged values of a(x) over each element from the coarser tri-
angulation TH . We note that in this way strong coefficient jumps across the
boundaries between adjacent finite elements from TH are allowed. The next sec-
tions are devoted to the study of two-level and multilevel preconditioners for the
case of non-conforming Rannacher-Turek finite elements. A unified hierarchical
splitting of the FEM spaces is developed, followed by uniform estimates of the
related CBS constants. The numerical results that are presented towards the end
of the paper support the theoretical analysis.

2 Rannacher-Turek Finite Elements

Nonconforming finite elements based on rotated multilinear shape functions were
introduced by Rannacher and Turek [10] as a class of simple elements for the
Stokes problem.

The unit cube [−1, 1]3 is used as a reference element ê to define the isopara-
metric rotated trilinear element e ∈ Th. Let ψe : ê→ e be the trilinear bijective
mapping between the reference element ê and e. The polynomial space of scalar
shape functions φ̂i on the reference element ê is defined by

P̂ := {φ̂i : 1 ≤ i ≤ 6} = span{1, x, y, z, x2 − y2, y2 − z2},

and the shape functions φi on e are computed from φ̂i via the relations {φi}6i=1 =
{φ̂i ◦ ψ−1

e }6i=1. Two different discretization variants, i.e., two different sets of
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Fig. 1. Node numbering and connectivity pattern of the reference element ê

shape functions φ̂i are considered. For the variant MP (mid point), {φ̂i}6i=1 are
found by the point-wise interpolation condition

φ̂i(b
j
Γ ) = δij ,

where bj
Γ , j = 1, 6 are the centers of the faces of the cube ê. Alternatively, the

variant MV (mean value) corresponds to the integral mean-value interpolation
condition

|Γ j
ê |

−1

∫
Γ j

ê

φ̂idΓ
j
ê = δij ,

where Γ j
ê are the faces of the reference element ê. For the explicit form of the

reference-element shape functions we refer to [6].

3 Hierarchical Two-Level Splittings

Let us consider two consecutive discretizations TH and Th. Note that in this case
VH and Vh are not nested.
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3.1 “First Reduce” (FR) Two-Level Splitting

We follow the idea of [5,8] to define an algebraic two-level preconditioner. For
that reason, let ϕE = {φi(x, y)}36i=1 be the macro-element vector of the nodal
basis functions and AE be the macro-element stiffness matrix corresponding
to E ∈ Th. The global stiffness matrix Ah can be written as Ah =

∑
E∈Th

AE

where the summation is understood as the FEM assembly procedure. Next, we
introduce the following macro-element level transformation matrix JE in the

2 × 2 block diagonal form JE = 1
4

[
I
JE,22

]
, where I is the 12 × 12 identity

matrix and

JE,22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
P

P
P

P
P

E1 E2 E3 E4 E5 E6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Each block Ei is a 6 × 4 zero matrix except for its i-th row which is com-

posed of all ones, and P =

⎡⎣−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

⎤⎦ . The matrix JE defines locally

a two-level hierarchical basis ϕ̃E , namely, ϕ̃E = JEϕE . The hierarchical two-
level macro-element stiffness matrix is given by ÃE = JEAEJT

E , and the related
global stiffness matrix reads as Ãh =

∑
E∈Th

ÃE . We split the two-level stiffness

matrix Ãh into 2 × 2 block form Ãh =

[
Ã11 Ã12

Ã21 Ã22

]
, where Ã11 corresponds to

interior nodal unknowns with respect to the macro-elements E ∈ Th. We observe
that Ã11 is a block-diagonal matrix whose diagonal blocks are of size 12 × 12;
Each such block corresponds to the interior points {1, 2, . . . , 12} of one macro el-
ement. The first step of the ”First Reduce” (FR) algorithm is to eliminate these
unknowns exactly, which can be done locally, i.e., separately for each macro ele-
ment. Therefore the Schur complement B = Ã22− Ã21Ã

−1
11 Ã12 can be assembled

from the local macro-element contributions BE and the (sub)matrix B22 in

B =
∑

E∈Th

BE =

⎡⎣B11 B12

B21 B22

⎤⎦ =

⎡⎣∑E BE,11

∑
E BE,12∑

E BE,21

∑
E BE,22

⎤⎦ , (5)

which corresponds to the sums of basis functions over each macro-element face,
can be associated with the coarse grid. It is important to note that

ker(BE,22) = ker(Ae) = span{(1, 1, 1, 1, 1, 1)T} (6)
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which allows us to apply a local analysis to estimate the constant γ corresponding
to the splitting defined by the block partition (5). We proceed as follows:

Step 1: We compute the local Schur complements arising from static condensa-
tion of the “interior degrees of freedom” and obtain the (24×24) matrix
BE .

Step 2: Following the theory, it suffices to compute the minimal eigenvalue
of the generalized eigenproblem SEvE = λ

(1)
E BE,22vE where vE �=

(c, c, . . . , c)T∀c ∈ R and SE = BE,22 −BE,21B
−1
E,11BE,12. Then

γ2 ≤ max
E∈Th

γ2
E = max

E∈Th

(1− λ
(1)
E ). (7)

3.2 Two-Level Splitting by Differences and Aggregates (DA)

Similarly to the FR case, the DA splitting is easily described for one macro-
element. If φ1, . . . , φ36 are the standard nodal basis functions for the macro-
element, then we define

V (E) = span {φ1, . . . , φ36} = V1(E)⊕ V2(E) ,
V1 (E) = span {φ1, . . . , φ12, φ14 + φ16 − (φ13 + φ15), φ15 + φ16 − (φ13 + φ14),

φ13 + φ16 − (φ14 + φ15), . . . , φ34 + φ36 − (φ33 + φ35),
φ35 + φ36 − (φ33 + φ34), φ33 + φ36 − (φ34 + φ35)}

V2 (E) = span {φ13 + φ14 + φ15 + φ16 +
12∑

j=1

β1jφj , . . . , φ33 + φ34 + φ35 + φ36

+
12∑

j=1

β6jφj} .

The related transformation matrix is JE = 1
4

[
I

JE,21 JE,22

]
, where I is the 12×

12 identity matrix, JE,21 =
[
0
B

]
, where B = (βij)6×12 and JE,22 is given by (4).

The vector of the macro-element basis functions ϕE = {φi}36i=1 is transformed
to a new hierarchical basis ϕ̃E = {φ̃i}36i=1 = JEϕE . Moreover, we have

ÃE = JEAEJT
E =

[
ÃE,11 ÃE,12

ÃE,21 ÃE,22

]
} φ̃i ∈ V1(E)
} φ̃i ∈ V2(E)

. (8)

According to the local definitions, we can similarly construct the new hierarchical
basis ϕ̃ = {ϕ̃(i)

h }
Nh
i=1 for the whole finite element space Vh, which is split into the

coarse space V2 and its complement V1, i.e.,

Vh = V1 ⊕ V2 . (9)

Now, we are in a position to analyze the constant γ = cos(V1, V2) for the
splitting (9). Again, as in the previous section, we would like to perform this
analysis locally, by considering the corresponding problems on macro-elements.
For this purpose we need to have satisfied the condition
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(i) ker(ÃE,22) = ker(Ae),

which is equivalent to
6∑

i=1

βij = 1 , ∀j ∈ {1, 2, . . . , 12}.

There are obviously various DA splittings satisfying the condition (i). For more
details about aggregation based preconditioners see the review paper [4].

When the two-level algorithm is recursively generalized to the multilevel case,
it is useful if

(ii) ÃE,22 is proportional to Ae.

It seems to be rather complicated to find a parameter matrix B, which satisfies
the condition (ii) in the general case of Rannacher-Turek trilinear finite elements.

4 Uniform Estimates of the CBS Constant

We study in this section both splitting algorithms, FR and DA, for both dis-
cretization variants, MP and MV, of cubic rotated trilinear finite elements and
the isotropic model problem.

4.1 FR Algorithm

Following (7) we compute the local CBS constant and derive the following global
estimates for the isotropic model problem on a mesh composed of cubic elements.
The bounds are uniform with respect to the size of the discrete problem and any
possible jumps of the coefficients.

Variant MP: For the FR splitting the obtained result is λ
(1)
E = 13/21, which

implies γ2
E = 1− λ

(1)
E = 8/21, and therefore γ2

MP ≤ 8/21.

Variant MV: For the FR splitting we further have λ
(1)
E = 1/2, which implies

γ2
E = 1− λ

(1)
E = 1/2, and therefore γ2

MV ≤ 1/2.

Let us remind once again, that the obtained estimates hold theoretically for the
two-level algorithm only. This is because the matrix BE,22 is only associated with
the coarse discretization e ∈ TH and is not proportional to the related element
stiffness matrix Ae. The CBS constants, however, show a very stable behavior
in the FR multilevel setting, which has been verified numerically, cf. Table 1.

4.2 DA Algorithm

Due to the symmetry of the model problem, the non-zero part B of the lower-left
block JE,21 of the transformation matrix JE can be simplified to the form

B =

⎡⎢⎢⎢⎢⎢⎢⎣
a a a a b c b c b c b c
a a a a c b c b c b c b
b c b c a a a a b b c c
c b c b a a a a c c b b
b b c c b b c c a a a a
c c b b c c b b a a a a

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Table 1. Multilevel behavior of γ2 for ”First reduce” algorithm

variant � � − 1 � − 2 � − 3 � − 4 � − 5

MP 0.38095 0.39061 0.39211 0.39234 0.39237 0.39238
MV 0.5 0.4 0.39344 0.39253 0.39240 0.39238

Let us write the condition (ii) in the form ÃE,22 = pAe. Then, (ii) is reduced to
a system of three nonlinear equations for (a, b, c), with a parameter p. It appears,
that the system for (a, b, c) has a solution if p ∈ [p0,∞). In such a case, we can
optimize the parameter p, so that the CBS constant is minimal. The obtained
results are summarized below.

Variant MP

Lemma 1. There exists a DA two-level splitting satisfying the condition (ii) if
and only if p ≥ 3/14. Then, the obtained solutions for (a, b, c) are invariant with
respect to the local CBS constant γ2

E = 1 − 1/(8p), and for the related optimal
splitting γ2

MP ≤ 5/12.

Variant MV: The same approach is applied to get the estimates below.

Lemma 2. There exists a DA two-level splitting satisfying the condition (ii) if
and only if p ≥ 1/4. Then, the obtained solutions for (a, b, c) are invariant with
respect to the local CBS constant γ2

E = 1 − 1/(8p), and for the related optimal
splitting γ2

MV ≤ 1/2.

The computed (local) estimates for γ2 for the FR algorithm are always smaller
than the related ones for the DA algorithm. One can also observe a nice conver-
gence to the value of θ ≈ 0.39238 for both variants, MP and MV, see Table 1.

5 Computational Complexity

The CBS constant is not only used to analyze the related two-level precondition-
ers but it is also involved in the construction of the acceleration matrix polyno-
mial Pβ in algebraic multilevel iteration (AMLI) methods [1,2]. A main result in
[1,2] is that the AMLI method (based on the multiplicative preconditioner) is of
optimal order of computational complexity, if

1/(
√

1− γ2) < β < τ, (10)

where τ ≈ N (k)/N (k−1) is the reduction factor of the number of degrees of
freedom from a given fine to the next coarser mesh, which in our case is approxi-
mately 8. The left-hand side inequality in (10) assures that the condition number
will be bounded uniformly in the number of levels whereas the right-hand side
inequality allows to estimate the computational work w(�) that is required for
one application of the preconditioner at level � of the finest discretization, i.e.,
w(�) ≤ c (N (�) + β N (�−1) + . . . + β� N (0)) < cN/(1 − β

τ ), where N = N (�).
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The work for the construction of the proposed AMLI preconditioners is also
proportional to N . This can easily be seen by observing that

– the matrices A(k), 0 ≤ k ≤ �, have at most 11 nonzero entries per row,
– every two-level transformation J (k) is the identity for interior unknowns,
– in case of the FR splitting the remaining rows of J (k), which are given

according to JE,22, see (4), have 4 nonzero entries per row,
– in case of the DA splitting the remaining rows of J (k) are given according

to [JE,21, JE,22], which results in 4 or at most 28 nonzeros per row,
– the costs for the elimination of the interior nodal unknowns is O(N (k)),
– the (global) product Ã(k) = J (k)A(k)J (k)T requires O(N (k)) operations,
– alternatively, the hierarchical basis matrix Ã(k) can be assembled from the

local contributions Ã
(k)
E = JEA

(k)
E JT

E , at total costs of O(N (k)) operations.

Clearly, the storage requirement for the preconditioner is O(N) as well.

6 Numerical Results

We solved the model problem (1) using the preconditioned conjugate gradient
(PCG) method combined with the multiplicative variant of the multilevel pre-
conditioner based on either DA or FR splitting. The computational domain is
Ω = (0, 1)3 and both discretization variants, MP and MV, are considered. The
mesh size is varied in the range h = 1/8 to h = 1/128 resulting in 512 to 2 097 157
finite elements with 1 728 to 6 340 608 nodes, respectively. For any element e in
Th the matrix a(e) in (3) is defined by a(e) := α(e) · I, where the following
situation of a jump in the coefficient α = α(e) is considered:

α(e) =
{

1 in (I1 × I1 × I1)
⋃

(I2 × I2 × I1)
⋃

(I2 × I1 × I2)
⋃

(I1 × I2 × I2)
ε elsewhere

}
,

where I1 = (0, 0.5] and I2 = (0.5, 1), and ε = 10−3.
Table 2 summarizes the number of PCG iterations that reduce the residual

norm by a factor 108 when performing the V-cycle AMLI. In Table 3 we list
the corresponding results for the linear AMLI W-cycle employing the matrix
polynomial Q1(t) = (1−P2(t))/t = q0 +q1t for stabilizing the condition number.
We use the coefficients

q0 =
2√

1− γ2
, q1 = − 1

1− γ2
, (11)

Table 2. Linear AMLI V-cycle: number of PCG iterations

MP: 1/h 8 16 32 64 128

DA: ε = 1 9 12 16 20 24
ε = 10−3 9 12 16 20 25

FR: ε = 1 8 11 14 18 22
ε = 10−3 8 11 14 18 22

MV: 1/h 8 16 32 64 128

DA: ε = 1 12 17 22 29 38
ε = 10−3 12 17 22 30 39

FR ε = 1 10 14 17 21 26
ε = 10−3 10 14 17 21 26
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Table 3. Linear AMLI W-cycle: number of PCG iterations

MP: 1/h 8 16 32 64 128

DA: ε = 1 9 10 10 10 10
ε = 10−3 9 10 10 10 10

FR: ε = 1 8 9 9 9 9
ε = 10−3 8 9 9 9 9

MV: 1/h 8 16 32 64 128

DA: ε = 1 12 15 15 16 16
ε = 10−3 12 15 16 16 16

FR: ε = 1 10 12 12 12 12
ε = 10−3 10 12 12 12 12

Table 4. Non-linear AMLI W-cycle: number of (outer) GCG iterations

MP: 1/h 8 16 32 64 128

DA: ε = 1 9 9 9 9 9
ε = 10−3 9 10 10 10 10

FR: ε = 1 8 9 9 9 9
ε = 10−3 8 9 9 9 9

MV: 1/h 8 16 32 64 128

DA: ε = 1 12 12 12 12 12
ε = 10−3 12 12 12 12 12

FR: ε = 1 10 11 11 11 11
ε = 10−3 10 11 11 11 11

which is in accordance with the analysis in [1,2] for exact inversion of the pivot
block. The reported numerical experiments, however, indicate that this is a
proper choice even when using inexact solves based on an ILU factorization
(with no additional fill-in). Finally, Table 4 refers to the (variable-step) non-
linear AMLI method stabilized by two inner generalized conjugate gradient it-
erations at every intermediate level, cf., [3,7,9] (and using a direct solve on the
coarsest mesh with mesh size 1/h = 4, as in the other tests).

In accordance with the theory the preconditioners are perfectly robust with
respect to jump discontinuities in the coefficients a(e) if they do not occur inside
any element of the coarsest mesh partition. The results slightly favor the FR
approach, and, they illustrate well the optimal complexity of the iterative solvers,
using a W-cycle, for both of the splittings and for both discretization variants.
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Abstract. The paper deals with a fast computational method for dis-
cretized optimal shape design problems governed by 2–dimensional mag-
netostatics. We discretize the underlying state problem using linear
Lagrange triangular finite elements and in the optimization we elimi-
nate the state problem for each shape design. The shape to be optimized
is the interface between the ferromagnetic and air domain. The novelty
of our approach is that shape perturbations do not affect grid nodal dis-
placements, which is the case of the traditional moving–grid approach,
but they are rather mapped to the coefficient function of the underly-
ing magnetostatic operator. The advantage is that there is no additional
restriction for the shape perturbations on fine discretizations. However,
this approach often leads to a decay of the finite element convergence
rate, which we discuss. The computational efficiency of our method re-
lies on an algebraic multigrid solver for the state problem, which is also
described in the paper. At the end we present numerical results.

1 Introduction

Shape optimization covers a class of problems in which one looks for an optimal
shape of a part of the boundary or interface of a body subjected to a physical
field. The optimality means minimization of a given objective functional among
admissible shapes. We will restrict ourselves to the case of interface shape op-
timization with the physics modelled by a linear partial differential equation
(PDE). The abstract setting of the problem reads as follows:

min
(α,u)∈Uad×V

I(α, u) s.t. A(α)u = b on V ′, (1)
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where Uad is a nonempty compact subset of admissible piecewise smooth func-
tions α describing some parts of the interface between Ω0(α) and Ω1(α) which
provide a distinct decomposition of a given domain Ω ⊂ IR2. Further, I denotes
an objective continuous functional, V is a Hilbert space of functions over Ω with
the dual V ′, A(α) ∈ L(V, V ′) denotes the PDE operator which continuously
depends on α, where L(V, V ′) consists of linear continuous operators from V to
V ′, b ∈ V ′ denotes a physical field source term, and u ∈ V is the unique solution
to the underlying PDE problem.

There is a number of methods solving the problem (1). Let us classify them
regarding how they treat the PDE constraint. The following state elimination
(nested, black–box) method, cf. [7], is most traditional in shape optimization:

min
α∈Uad

I(α,A(α)−1b).

On the other hand, we can prescribe the state equation via a Lagrange multiplier
and solve the following nonlinear saddle–point problem

min
(α,u)∈Uad

max
λ∈V
{I(α, u) + 〈A(α)u − b, λ〉V ′×V } ,

where 〈., .〉V ′×V denotes the duality pairing. This so–called one–shot (simultane-
ous, primal–dual, all–at–once) method is superior in case of topology optimiza-
tion, smooth dependence of I(α, u) and A(α) thanks to a sparsity of the Hessian
of the Lagrange functional, which allows to use Newton methods, cf. [4,6].

Another classification of solution methods follows when we take into account
the structure of A(α). Without loss of generality, let us think about the 2–
dimensional linear magnetostatic state problem, the classical formulation of
which is as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ν0�u0(x) = J(x) for x ∈ Ω0(α),
−ν1�u1(x) = 0 for x ∈ Ω1(α),

u0(x) −u1(x) = 0 for x ∈ Γ (α),
ν0∇u0(x) · n0(α)(x) −ν1∇u1(x) · n0(α)(x) = 0 for x ∈ Γ (α),

u(x) = 0 for x ∈ ΓD,
∂u
∂n = 0 for x ∈ ΓN,

(2)

where ν0 � ν1 > 0 denote the reluctivity of the air and ferromagnetics, re-
spectively, J denotes the electric current density, Γ (α) := ∂Ω0(α) ∩ ∂Ω1(α)
denotes the interface, ΓD ∪ΓN is a distinct decomposition of ∂Ω into the Dirich-
let and Neumann part, n0(α) denotes the outward unit normal vector to Ω0(α)
and where u consists of u|Ω0(α) := u0 and u|Ω1(α) := u1. Then, a straightfor-
ward approach is the following weak formulation of (2) in the Sobolev space
V := H1

0,ΓD
:= {v ∈ H1(Ω) : v = 0 on ΓD}:

Find u ∈ V :
∫
Ω

ν(α)(x)∇u(x)∇v(x) dx =
∫
Ω

J(x)v(x) dx ∀v ∈ V, (3)

where ν(α) consists of ν(α)|Ω0(α) := ν0 and ν(α)|Ω1(α) := ν1 and where J is
extended to Ω by zero. Another formulation of (2) prescribes the third and
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fourth equations of (2), which are called interface conditions, in a weaker sense
using the Lagrange formalism again. This might be viewed as a sort of fictitious
domain method, cf. [8], or a domain decomposition method. The formulation
is as follows: Find (u0, u1, λt, λn) ∈ V0 × V1 × H1/2(Γ (α)) × H1/2(Γ (α)) as a
solution of ⎛⎜⎜⎝

A0 , 0 , sym.
0 , A1 , sym.

I(α) , −I(α) , 0
B0(α) , −B1(α) , 0

⎞⎟⎟⎠
⎛⎜⎜⎝

u0

u1

λt

λn

⎞⎟⎟⎠ =

⎛⎜⎜⎝
J
0
0
0

⎞⎟⎟⎠ , (4)

where the saddle–point structure corresponds to the equations 1–4 in (2) such
that for d = 0, 1 we define Vd := {v ∈ H1(Ω) : v = 0 on ΓD ∩ ∂Ωd(α)},
Adud := −νd�ud, I(α)ud := ud|Γ (α) and Bd(α)ud := νd∇ud(x) · n0(α). The ad-
vantage of this approach is that the PDE–operators A0 and A1 are independent
of the evolving shape. Thus one can approximate (4) via a discretization of a
fixed domain and efficient saddle–point solvers [5,9,14] can be used. However, the
formulation (4) poses a lower–order convergence rate of finite element approx-
imations and the optimization functional is nondifferentiable. Recently, there
has been a growing number of applications of discontinuous Galerkin methods,
cf. [3,12], which turned out to be another proper framework for the interface
shape optimization.

The optimization method proposed in this paper is based on state elimina-
tion. Our treatment of the interface conditions is half the way from the weak
formulation (3) to the domain decomposition approach (4). We approximate the
weak formulation (3) on a finite element grid that does not follow the shape α
and we map the shape perturbations to the coefficient function of the underlying
magnetostatic operator.

For solution of discretized state problems (3) we use an algebraic multigrid
(AMG) method. AMG methods [1,13] are known as efficient and robust lin-
ear solvers for elliptic boundary-value problems. Our approach is based on the
computation of so-called edge matrices, which provide a good starting point for
building efficient AMG components, while keeping the set-up costs low [10]. The
resulting AMGm solver we are using, see [11], lies in-between classical AMG [13],
i.e., strong and weak edges affect the coarsening and the formation of interpo-
lation molecules, and AMG based on element interpolation–so-called AMGe [2],
i.e., small-sized neighborhood matrices serve for the computation of the actual
interpolation coefficients.

The rest of the paper is organized as follows: in Section 2 we propose the fixed–
grid finite element discretization scheme and we discuss its convergence rate, in
Section 3 we describe an algebraic multigrid method under consideration and in
Section 4 we provide numerical results.

2 Fixed–Grid Finite Element Method

Let Ω ⊂ IR2 be a polygonal domain and let Ω = Ω0(α) ∪ Ω1(α) be its distinct
decomposition that is controlled by a piecewise smooth function α such that
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graph(α) ⊂ ∂Ω0(α) ∩ ∂Ω1(α). The smoothness improves regularity of the state
solution and consequently convergence rate of the method as we will see later
in this section. We consider the problem (3). Denote by h > 0 a discretization
parameter and let Th := {Ti : i = 1, 2, . . . ,mh} be a shape regular triangulation
of Ω that does not take care of α. We approximate V by the following linear
Lagrange finite element subspace of V :

Vh :=
{
vh(x) ∈ C(Ω) | ∀Ti ∈ Th : vh|Ti ∈ P 1(Ti) and ∀x ∈ ΓD : vh(x) = 0

}
,

where C(Ω) denotes the space of functions continuous on Ω and P 1(T ) denotes
the space of linear polynomials over a triangle T . Let us further assume that
the source term J(x) is element-wise constant and that the discretization Th

follows the jumps of J , i.e. J(x) = Ji on each Ti. The linear form of (3) is thus
approximated in a conforming way as follows:

bh(vh) ≡ b(vh) :=
∫
Ω

J(x)vh(x) dx =
∑

Ti∈Th

Ji

∫
Ti

vh(x) dx, vh ∈ Vh.

However, our discretization does not respect the jumps of the coefficient function
ν(α)(x), which leads to a non–conforming discretization of the bilinear form. Let
the triangulation be decomposed as follows, see also Fig. 1 (a):

Th = Th,0(α) ∪ Bh(α) ∪ Th,1(α),

where for d = 0, 1 we define Th,d(α) := {Ti ∈ Th ∩ Ωd(α) | Ti ∩ graph(α) = ∅}
and where Bh(α) := {Ti ∈ Th | Ti∩ graph(α) �= ∅}. Then the discretized bilinear
form is evaluated as follows:

ah(α)(uh, vh) ≡ a(α)(uh, vh) :=
∫
Ω

ν(α)(x)∇uh(x)∇vh(x) dx

=
∑

Ti∈Th,0(α)

ν0

∫
Ti

∇uh(x)∇vh(x) dx +
∑

Ti∈Th,1(α)

ν1

∫
Ti

∇uh(x)∇vh(x) dx

+
∑

Ti∈Bh(α)

ν0|Ti ∩Ω0(α)| + ν1|Ti ∩Ω1(α)|
|Ti|

∫
Ti

∇uh(x)∇vh(x) dx, uh, vh ∈ Vh,

where |D| denotes the area of D.

2.1 Convergence Rate

The approximation estimate is given by Céa’s lemma:

‖u− uh‖V ≤ C min
vh∈Vh

‖u− vh‖V ,

where C > 0 is a generic constant (continuity over ellipticity of the bilinear form)
which is independent of h in case of shape regular discretizations. Let Πh : V →
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Th,0(α)

Th,0(α)

Th,1(α)

Bh(α)

Bh(α)

α

hk

‖u
h

k
−

u
h
5
‖ V

x 10−3

x 10−3

1

1

2

2

3

3

4

Fig. 1. (a) Decomposition of the discretization controlled by the shape α – only the
three inner non-straight curves are controlled, their end points are connected by straight
lines; (b) Convergence curve for the fixed–grid approach (solid line) and for the con-
forming approach (dashed line) computed on 5 levels, where ‖uhk

−u‖V ≈ ‖uhk
−uh5‖V

for k = 0, 1, . . . , 4

Vh denote the finite element interpolation operator, e.g. of the Clément–type,
and let us choose vh := Πhu. Then, we arrive at the following:

‖u−Πhu‖2V ≤
∑

Ti∈Th,0(α)
Ti∩supp(J)=∅

‖u−Πhu‖2H1(Ti)
+

∑
Ti∈Th,0(α)
Ti⊂supp(J)

‖u−Πhu‖2H1(Ti)

+
∑

Ti∈Th,1(α)

‖u−Πhu‖2H1(Ti)
+

∑
Ti∈Bh(α)

‖u−Πhu‖2H1(Ti)
.

Since our discretization respects the jumps of J(x) and does not respect the
jumps of ν(α)(x), the solution u is regular everywhere except for Ti ∈ Bh(α).
Combining the previous estimates and the standard regularity argument implies
that

‖u− uh‖V ≤ C′h + C′′h−1 max
Ti∈Bh(α)

‖u−Πhu‖H1(Ti),

where the factor h−1 is related to the number of elements in Bh(α). Therefore, the
rate of convergence depends on the order of regularity of u across the coefficient
jump interface Γ (α). Recall that for our shape optimization purposes Γ (α) is a
smooth curve.

The convergence rate remains an open question. In order to indicate it, we
refer to Fig. 1 (b), where we compare the convergence curve for the case of con-
forming discretization (respecting the coefficient jump) to the fixed–grid case.
We can see that both the curves slightly deteriorate from the linear convergence,
but the conforming discretization does not improve much. We used uniform re-
finement of the grid in Fig. 1 (a), where for levels k = 0, 1, . . . , 5 the number
of elements/number of nodes are respectively 317/186, 1268/688, 5072/2643,
20288/10357, 81152/41001 and 324608/163153 and where the corresponding dis-
cretizatization parameter is hk ≈ 0.0033/2k.
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3 Algebraic Multigrid

We are solving the discretized state problem using an algebraic multigrid method
that agrees with classical AMG [13], except for the coarse-grid selection and the
interpolation component, which are controlled by edge matrices in case of our
approach, see [11]. Note that a novelty here is an application to the fixed–grid
shape optimization.

One can also view this as involving an auxiliary problem–the one deter-
mined by the edge matrices–in the coarsening process. The coarse-grid matrices,
however, are still computed via the usual Galerkin triple matrix product, i.e.,
Ak+1 = PT

k AkPk at all levels k = 0, 1, . . . , �− 1.
The basic idea is to construct suitable small-sized computational molecules

from edge matrices and to choose the interpolation coefficients in such a way
that they provide a local minimum energy extension with respect to the con-
sidered interpolation molecule. Assuming that “weak” and “strong” edges have
been identified, the coarse grid has been selected, and a set of edge matrices is
available, one defines a so-called interpolation molecule for every f-node i (to
which interpolation is desired), cf. [11]:

M(i) :=
∑
k∈Sc

i

Eik +
∑

j∈N f
i :∃k∈Sc

i ∩Nj

Eij +
∑

k∈Sc
i ∩Nj : j∈N f

i

Ejk, (5)

where the following symbols respectively denote Df fine nodes (f-nodes), Dc

coarse nodes (c-nodes), D := Df ∪ Dc all nodes, Ni direct neighbors of node
i, N f

i := Ni ∩ Df fine direct neighbors, Si strongly connected direct neighbors
of node i and Sc

i := Si ∩ Dc strongly connected coarse direct neighbors. This
molecule arises from assembling all edge matrices Epq associated with three types
of edges: The first sum corresponds to the strong edges connecting node i to some
coarse direct neighbor k (interpolatory edges). The second sum represents edges
connecting the considered f-node i to any of its fine direct neighbors j being
directly connected to at least one c-node k that is strongly connected to node
i. Finally, the last sum in (5) corresponds to these latter mentioned connections
(edges) between fine direct neighbors j and strongly connected coarse direct
neighbors k of node i.

The interpolation molecule (5) then serves for the computation of the actual
interpolation weights: For a given f-node i let

M(i) = M =
(

Mff Mfc

Mcf Mcc

)
(6)

be the interpolation molecule where the 2×2 block structure in (6) corresponds
to the nf

M f-nodes and the nc
M c-nodes the molecule is based on. Consider now

the small-sized (local) interpolation matrix

PM = P =
(
Pfc

Icc

)
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associated with (6). Since M (for the problems under consideration) is symmetric
and positive semidefinite (SPSD) we may apply the following concept [2]: For
any vector eT = (eT

f , eT
c ) ⊥ ker(M) we denote by

df := ef − Pfcec (7)

the defect of (local) interpolation. With the objective of an energy minimizing
coarse basis we choose Pfc to be the argument that minimizes

max
e⊥ker(M)

(ef − Pfcec)T (ef − Pfcec)
eTMe

.

Using (7) and G := PT
fcMffPfc + PT

fcMfc + McfPfc + Mcc one finds

min
Pfc

max
df ,ec

dT
f df(

df + Pfcec

ec

)T (
Mff Mfc

Mcf Mcc

)(
df + Pfcec

ec

)
= min

Pfc

max
df

dT
f df

dT
f

[
Mff − (MffPfc + Mfc)G−1(PT

fcMff + Mcf)
]
df

. (8)

Assuming that Mff and G both are SPD the denominator of (8) for an arbitrary
vector df is maximized and thus the minimum is attained for

Pfc := −M−1
ff Mfc, (9)

which results in 1/(λmin(Mff )). This motivates to choose the interpolation co-
efficients for node i to equal the entries in the corresponding row of (9).

4 Numerical Results

We consider a problem of optimal shape design of pole heads of a direct current
(DC) electromagnet, which is depicted in Fig. 2 (a), while we simplify the geom-
etry so that only two opposite pole heads and coils are present. The goal is to
achieve homogeneous magnetic field in a small square Ωm in the middle among
the pole heads, which is evaluated by the following objective functional:

I(u) :=
1

2|Ωm|

∫
Ωm

‖curl(u(x))−Bavg(u(x))nm‖2 dx +
εu

2|Ω|

∫
Ω

‖∇u‖2 dx,

where curl(u) := (∂u/∂x2,−∂u/∂x1) is the magnetic flux density, Ω := (−0.2,
0)2 (in meters), Ωm := (−0.01, 0)2, εu := 10−3 introduces a regularization in
H1(Ω) and where

Bavg(u(x)) :=
1
|Ωm|

∫
Ωm

curl(u(x))nm dx.
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Fig. 2. (a) Original electromagnet; (b) Optimized design

An admissible shape α consists of 3 Bézier curves that are the non–straight
curves depicted in Fig. 1 (a). For them we consider 7, 4, and 7 design control
parameters (18 in total), respectively, and we further introduce two other shapes
αl and αu, which are again triples of such Bézier curves, that form box constraints
for the set of admissible shapes Uad. This optimization is subjected to the state
equation (3), which we denote by u(α).

The optimization algorithm includes a steepest descent method, a projec-
tion to the box constraints and a numerical differentiation for calculation of
∇αI(u(α)(x)). The optimized design is depicted in Fig. 2 (b). For the dis-
cretization of the state equation we used the finite element fixed–grid approach
of Section 2 and the AMG method of Section 3, which was accelerated by the
preconditioned conjugate gradients method(PCG). We set up the AMG precon-
ditioner only for the first system at each discretization level and used this setup
at the level as a preconditioner for all the other forthcoming systems, which are
perturbed by different shapes via the fixed–grid approach. Both the PCG and
optimization relative precision were 10−8. The preliminary numerical results are
presented in Table 1. The AMG preconditioner certainly deteriorates for per-
turbed systems, because it is not re–setup, which is a cheap operation that we
will use in the next version. However, we could by far not achieve such moderate
decay of AMG for example as in the case of geometric multigrid solver, where
the iterations grows easily up to hundreds.

Table 1. Numerical results

discretization number number number of AMG PCG optimization
level of elements of nodes levels iterations iterations

0 317 186 2 6 4
1 9649 4985 4 10–15 5
2 34658 17629 6 15–43 2
3 134292 67721 8 29–61 4
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Abstract. The construction of efficient two- and multilevel precondi-
tioners for linear systems arising from the finite element discretization
of self-adjoint second order elliptic problems is known to be governed by
robust hierarchical splittings of finite element spaces. In this study we
consider such splittings of spaces related to nonconforming discretiza-
tions using Crouzeix-Raviart linear elements: We discuss the standard
method based on differences and aggregates, a more general splitting and
the first reduce method which is equivalent to a locally optimal splitting.
All three splittings are shown to fit a general framework of differences
and aggregates. Further, we show that the bounds for the spectral condi-
tion numbers related to the additive and multiplicative preconditioners of
the coarse grid complement block of the hierarchical stiffness matrix for
the three splittings can be significantly improved subject to a minimum
angle condition.

Keywords: Multilevel preconditioning, hierarchical splittings, CBS con-
stant, differences and aggregates, first reduce, anisotropy, nonconforming
elements.

1 Introduction

The discrete weak formulation of the self-adjoint elliptic boundary value prob-
lems, as considered in this study, reads as follows: Given f ∈ L2(Ω), find uh ∈ Vh

such that Ah(uh, vh) = (f, vh) ∀ vh ∈ Vh is satisfied, where

Ah(uh, vh) :=
∑
e∈Th

∫
e

a(e)∇uh(x) · ∇vh(x) dx, (f, vh) :=
∫

e

f vh dx, (1)

and Vh := {v ∈ L2(Ω) : v
∣∣
e

is linear on each e ∈ Th, v is continuous at
the midpoints of the edges of triangles from Th and v = 0 at the
midpoints on ΓD}.

Thereby, Ω ⊂ �2 denotes a polygonal domain and f(x) is a given function in
L2(Ω). The matrix a(x) := (aij(x))i,j∈{1,2} is assumed to be bounded, symme-
tric and uniformly positive definite (SPD) on Ω with piecewise smooth functions

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 105–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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aij(x) in Ω := Ω ∪ ∂Ω, and n represents the outward unit normal vector onto
the boundary Γ := ∂Ω with Γ = Γ D ∪ ΓN . The domain Ω is assumed to be
discretized using triangular elements and that the fine-grid partitioning, denoted
by Th, is obtained by a uniform refinement of a given coarser triangulation TH . If
the coefficient functions aij(x) are discontinuous along some polygonal interfaces,
we assume that the partitioning TH is aligned with these lines to ensure that
a(x) is sufficiently smooth over each element E ∈ TH .

The construction of multilevel hierarchical preconditioner is based on a two-
level framework for piecewise linear Crouzeix-Raviart finite elements (cf., e.g., [3,
4, 5]). The needed background for the estimates on the constant γ in the CBS
inequality can be found in [1]. It is well-known that for hierarchical basis split-
ting of the conforming finite elements that under certain assumptions γ can be
estimated locally by considering a single finite macro-element E ∈ TH , which
means that γ := max

E∈TH

γE .

In Section 2 we construct a general framework for hierarchical two-level decom-
positions based on differences and aggregates. In Section 3 we show that the con-
struction of efficient hierarchical basis functions (HB) multilevel preconditioners
is independent of the splitting used. The bound of the spectral condition number
for the additive and multiplicative preconditioner for the coarse grid complements
is generalized in Section 4 under the assumption of a minimum angle condition.
The study is concluded in Section 5 with a brief summary of the main results.

2 Hierarchical Two-Level Decompositions

For the derivation of estimates for the CBS-constant, it is known, that it suffices
to consider an isotropic (Laplacian) problem in an arbitrarily shaped triangle T .
Let us denote the angles in such a triangle, as illustrated in Fig. 1, by θ1,

θ2 and θ3 := π − (θ1 + θ2). Without loss of generality we assume that these
angles satisfy the ordering θ1 ≥ θ2 ≥ θ3., Then, with a := cot θ1, b := cot θ2 and
c := cot θ3, the following relations hold in a triangle (cf. [2]):

|a| ≤ b ≤ c and ab + ac + bc = 1. (2)

A simple computation shows that the standard nodal basis element stiffness
matrix for a non-conforming Crouzeix-Raviart (CR) linear finite element ACR

e

coincides with that for the conforming (c) linear element Ac
e, up to a factor 4

and can be written as

(a) III

II

1 2

3
7 4

5

98

4
1 2

I3

θ1

3θ

θ2

(b)

6

Fig. 1. Crouzeix-Raviart finite element (a) Discretization (b) Macro-element in detail
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ACR
e = 2

⎛⎝ b + c −c −b

−c a + c −a

−b −a a + b

⎞⎠ . (3)

The hierarchical stiffness matrix at macro-element level is then obtained by
assembling four such matrices according to the numbering of the nodal points,
as shown in Fig. 1(b). Note that for the non-conforming Crouzeix-Raviart finite
element, where the nodal basis functions correspond to the midpoints along the
edges of the triangle rather that at its vertices (cf. Fig. 1), the natural vector
spaces VH := span{φI , φII , φIII} and Vh := span{φi}9i=1, associated with the
basis functions at the coarse and fine mesh, respectively (cf. Fig.1(b)), are no
longer nested. Instead of a direct construction with V2 := VH , as feasible for
conforming elements, one now has to choose the hierarchical basis functions
such that the vector space can be written as a direct sum of the resulting vector
subspaces V1 and V2. At macro-element level this requires, V(E) :=span {ΦE} =
V1(E) ⊕ V2(E), where ΦE :={φ(i)

E }9i=1 is the set of “midpoint” basis functions
of the four congruent elements in the macro-element E (cf. Fig. 1(b)).

In this study we consider three different splittings based on half-difference and
half-sum (aggregates) basis functions to ensure the direct sum condition. The
splitting of V(E) can be defined in the general form as

V1(E) := span {φ1, φ2, φ3, φD
1 + φ4 − φ5, φD

2 + φ6 − φ7, φD
3 + φ8 − φ9} ,

V2(E) := span {φC
1 + φ4 + φ5, φC

2 + φ6 + φ7, φC
3 + φ8 + φ9} , (4)

where φD
i :=

∑
k dikφk and φC

i :=
∑

k cikφk with i, k ∈ {1, 2, 3}. The transfor-
mation matrix corresponding to this general splitting is given by

JE = JE(C, D) =
[

I3 D C

0 J− J+

]
(∈ �9×9), (5)

where I3 denotes the 3 × 3 identity matrix and the matrices involving the half-
difference and the half-sum basis functions in the transformation read as

J− :=
1
2

⎡⎣1 −1
1 −1

1 −1

⎤⎦T

and J+ :=
1
2

⎡⎣1 1
1 1

1 1

⎤⎦T

. (6)

D and C are 3 × 3 matrices whose entries dij respectively cij will be specified
later. The matrix JE transforms the vector of the macro-element basis functions
φE := (φ(i))9i=1 to the hierarchical basis vector φ̃E := (φ̃(i))9i=1 = JT

E φE and the
hierarchical stiffness matrix at macro-element level is obtained as

ÃE = JT
E AEJE =

[
ÃE,11 ÃE,12

ÃT
E,12 ÃE,22

]
} ∈ V1(E)

} ∈ V2(E)
. (7)

The related global stiffness matrix is obtained as Ãh :=
∑

E∈TH
ÃE .
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Following the local definitions, we similarly construct the hierarchical basis
φ̃ := {φ̃(i)}Nh

i=1 for the whole finite element space Vh with its standard nodal
finite element basis given by φ := {φ(i)}Nh

i=1. The corresponding splitting for the
whole space then reads Vh = V1 ⊕ V2.

The transformation matrix J = J(C, D) such that φ̃ = JT φ is then used for
the transformation of the global matrix Ah to its hierarchical form Ãh = JT AhJ ,
and (by a proper permutation of rows and columns) the latter admits the 3× 3-
block representation

Ãh =

⎡⎢⎣ Ã11 Ã12 Ã13

ÃT
12 Ã22 Ã23

ÃT
13 ÃT

23 Ã33

⎤⎥⎦
}
∈ V1

} ∈ V2

(8)

according to the interior, half-difference and half-sum basis functions, which are
associated with the locally introduced splitting in (4). The upper-left 2×2 block
is thus related to the vector space V1, while the lower-right block Ã33 relates to
V2. Note that due to the structure of JE , the relation Ã11 = A11 holds.

We consider three different splittings, which can be derived from (5) for differ-
ent settings of the matrices C and D: Using D = 0 and C = 1

2 diag(1, 1, 1) = 1
2 I

yields the standard splitting by differences and aggregates (DA) (cf. Blaheta et
al. [5]), while keeping D = 0 and setting C = 1

2 I + µ(� − 3I) with µ ∈ [0, 1
4 ]

properly chosen results in the generalized DA-splitting (GDA), as considered in
Margenov and Synka, [8]1. Note that the GDA splitting depends on a minimum
angle condition commonly used in the triangular mesh (i.e. all angles must be
larger than θmin) and that for µ = 0 the DA-approach is retrieved.

The “First Reduce” (FR) or optimized DA (ODA) splitting is obtained by
setting D = −A−1

11 Ā12 and C = −A−1
11 Ā13, which is known as the harmonic

extension (cf. Kraus, Margenov and Synka [7]). Note that each of the above
basis transformations is induced by a local transformation matrix JE at macro-
element level, i.e., J

∣∣
E

= JE ∀E ∈ TH with J ∈ {JDA, JGDA, JFR}.

3 Construction of Preconditioners for the Coarse Grid
Complements for the Three Splittings Considered

For the construction of multilevel hierarchical preconditioners for the non-con-
forming finite element spaces arising from a discretization based on Crouzeix-
Raviart linear elements, we follow the ideas of Blaheta et al. [6]. The multilevel
preconditioner is obtained by recursive application of a two-level preconditioner
M for Ah. Thereby, it is crucial that the spectral condition number κ(M−1Ah)
of the preconditioned matrix M−1Ah is uniformly bounded with respect to the
discretization parameter h, the shape of triangular finite elements and arbitrary
coefficient anisotropy. To build a hierarchical preconditioner, we need a suitable
decomposition of the form Vh = V1⊕V2, which is satisfied by all three splittings
based on differences and aggregates, as discussed at the end of Section 2.
1 Here � denotes the 3×3 matrix of all ones.
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We introduce the transformation matrices J± and JS , defined as

J± :=
[

I3 0 0
0 J− J+

]
and JS =

⎡⎣ I3 DS CS

0 I 0
0 0 I

⎤⎦ , (9)

respectively, where I3 designates the 3×3 identity matrix, J− and J+ are defined
by (6), and the matrices DS and CS are to be set to D and C of the corresponding
splitting, as indicated by the index S ∈ {DA, GDA, FR} (see Section 2). With
these definitions, we can now write all three splittings in the form

JE;S = J± JS . (10)

Note that with Āh := JT
±AhJ± it can be seen easily that JE;FR also contains

the reduction step to eliminate the interior nodes in the first reduce splitting
since DFR and CFR simply provide the harmonic extensions. For the DA- and
GDA-splitting the elimination of the interior nodes, i.e., of the block Ā11 = A11,
which is block-diagonal, has to be performed separately. This elimination can be
done exactly and locally. If the preconditioner is constructed in this way (cf. [6]),
then for all three splittings we finally obtain the block-structure[

A11 0

0 B

]
with B =

[
B11 B12

B21 B22

]
. (11)

Remark 1. For such a construction of the preconditioner, we then have CS =
−A−1

11 Ā12 in JE;S for any S ∈ {DA, GDA, FR}, yielding the same 2 × 2 left
upper block in the hierarchical representation, as obtained for the FR-splitting.

Lemma 1. Under the above assumptions the Schur complement, denoted by
B, is invariant with respect to the matrices CS and DS, which appear in the
transformation matrix JE;S.

Proof. Follows from direct calculation.

Remark 2. From these observations it becomes evident that it is sufficient to re-
strict to only one splitting for the construction of preconditioners for the coarse
grid complement block based on an exact inversion of the A11-block. The uniform
upper bound of the condition number, as reported in [6] for the DA-decomposition
for arbitrary meshes, thus equally apply to the GDA- and FR-splitting.

4 Improved Upper Bounds of the Spectral Condition
Number for Optimal Preconditioners for the Block B11

Based on a Minimum Angle Condition

The matrix B consists of 6 × 6 macroelement contributions BE , which can be
written in a 2 × 2-block structure as its global counterpart in (11) by splitting
it according to the two-level semi-difference and semi-sum basis functions. At
macroelement level the upper left block B11,E is found explicitly as
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B11,E =
1
r

⎡⎢⎣3 + 2(b2 + bc + c2) 1 + 2c2 −(1 + 2b2)
1 + 2c2 3 + 2(a2 + ac + c2) −(1 + 2a2)
−(1 + 2b2) −(1 + 2a2) 3 + 2(a2 + ab + b2)

⎤⎥⎦(12)

with r := 3(a+b+c)−2abc. It can be observed easily that B11,E is symmetric and
all off-diagonal entries are negative except for the (1,2)-entry. Using the relations
in (2) one immediately obtains |B11,E(2, 3)| ≤ |B11,E(1, 3)| ≤ B11,E(1, 2) and
that |B11,E(1, 3)| = B11,E(1, 2) holds only for b = c (isosceles triangle). Hence
the strongest off-diagonal coupling of the macro-element stiffness matrix is given
by the (1-2) coupling as it is for the element stiffness matrix (cf. (3) and (2)).

A preconditioner of B11,E of additive type, C11,E , is now derived by setting
the weakest couplings in B11,E (here negative off-diagonal entries) to zero. C11 is
then obtained by assembling the modified matrices C11,E . In Blaheta et al., [6], it
was shown that B11,E and C11,E are spectrally equivalent and that the spectral
condition number κ(C−1

11,EB11,E) is uniformly bounded by (1 +
√

µ̄)/(1 − √µ̄)
with µ̄ = 7/15. Since C11 inherits the properties of C11,E (cf. [6]), this result can
be extended to the assembled global preconditioner C11.

Under the assumption of a minimum angle condition, which is commonly used
in mesh generators, viz. that all angles in the triangle are greater than or equal
to a minimum angle, we will now show that these results can be generalized
and that the upper bound of 7/15 is too pessimistic in practical applications.
Without loss of generality we now use the relation

θ1 ≥ θ2 ≥ θ3 ≥ θmin, (13)

which renders the relations in (2) to |a| ≤ b ≤ c ≤ cot(θmin) and ab+ac+bc = 1.
The spectral condition number κ(C−1

11,EB11,E) is obtained by considering the
generalized eigenvalue problem BE,11v = λCE,11v and its corresponding char-
acteristic equation det (BE,11 − λCE,11) = 0, where BE,11 − λCE,11 reads as

⎡⎢⎣µ [3 + 2(b2 + bc + c2)] µ (1 + 2c2) −(1 + 2b2)
µ (1 + 2c2) µ [3 + 2(a2 + ac + c2)] −(1 + 2a2)
−(1 + 2b2) −(1 + 2a2) µ [3 + 2(a2 + ab + b2)]

⎤⎥⎦ (14)

with µ = 1−λ. The shifted eigenvalues µi := 1−λi, i = 1, 2, 3 are easily obtained
as µ1 = 0 and µ2,3 =

√
µ(a, b) with

µ(a, b) =
(a + b)2

[
1 + 2(a2 − ab + b2)

]
(2 + a2 + b2) [3 + 2(a2 + ab + b2)]

. (15)

Lemma 2. The function µ, as obtained in the analysis of the additive precon-
ditioner to B11, has the following properties:

1. For fixed a := cot θ1, µ(a, .) is strictly monotonically increasing. Its maxi-

mum is thus attained at µ(cot θ1, tan
θ1

2
) =

1− 4s2 + 10s4

1 + 8s2 + 14s4 − 8s6
=: µ̄θ1(s)

with s := sin θ1
2 .
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2. Let θ1 ∈ [π
3 , π

2 ], then µ(a, b) ≤ 1/5.

3. Let θ1 ∈ [π
2 , π], then µ̄θ1 is strictly increasing and bounded by 7/15, which

is thus a uniform bound for µ. Using the minimum angle condition yields
θ1 ∈ (π

2 , π − 2 θmin]. The upper bound for µ then depends on θmin and
generalizes to

µ̄(θmin) =
11 + 12 cos(2 θmin) + 5 cos(4 θmin)

31 + 29 cos(2 θmin) + cos(4 θmin)− cos(6 θmin)
, (16)

which is less than 7/15 for θmin > 0, but equal to 7/15 for θmin = 0.

Proof. 1) With x0 := a + b, x1 := 1 + a2 + b2 + (a − b)2, x2 := 3 + a2 +
b2 + (a + b)2, and x3 := 2 + a2 + b2, which are all strictly positive for non-
degenerated triangles, we can rewrite Eq. (15) as µ2(a, b) = x2

0 x1
x2 x3

. Since µ2(a, .)
is continuous and differentiable with regard to b, it is strictly monotonically
increasing iff ∂µ2(a,b)

∂b > 0: With the denominator being strictly positive this
is equivalent to x1 x3

(
3 + a2 − ab

)
x0 x2

[
(b− a)(2 + a2 + ab) + b

]
> 0, which

holds from (2). Fixing a := cot θ1 with θ1 ∈ [π/3, π − 2θmin], the angle θ2 can
only be in the range [π/2 − θ1/2, π − θ1 − θmin] according to Relation (13) by
taking θmin ∈ [0, π/4], where the latter is a sufficiently large range for θmin

in practice. Consequently, b ≤ tan θ1
2 . Using s := sin θ1

2 , c := cos θ1
2 and the

trigonometric relations between sine and cosine, the upper bound for µ2
2,3(a, b)

(with a fixed) is thus given by µ̄θ1(s).
2) Let θ1 ∈ [π

3 , π
2 ]. We show that µ̄θ1(.), as defined in the Lemma, is bounded

by µ̄θ1(1/
√

2) = 1/5: Since the denominator of µ̄θ1 is strictly positive for the
given θ1-range and s ∈ [1/2, 1/

√
2], we have µ̄θ1(s) ≤ 1/5⇔ 4(1 − 7s2 + 9s4 +

2s6) ≤ 0 ⇔ 8(s2 − 1/2)(s4 + 5s2 − 1) ≤ 0 ⇔ p(s) := s4 + 5s2 − 1 ≥ 0.
Since p(1/2) = 5/16 and the polynomial p is clearly strictly increasing for
the given s-range, this proves our assertion. (Note that for θ1 = π/3 we have
µ̄θ1(1/2) = 1/6, but the minimum of µ̄θ1 is attained at θ∗1 = 68.0726 degrees
with µ̄θ∗

1
(sin(θ1/2)) = 0.15716.)

3) Let θ1 ∈ [π
2 , π − 2 θmin]. Then s := sin θ1

2 ∈ [1/
√

2, cos θmin] ⊂ [1/
√

2, 1]
for all θmin ∈ [0, π/4]. To show that µ̄θ1 is strictly increasing we show that
g(t) := µ̄θ1(1/

√
2 + t) > 0 is strictly increasing for t ∈ [0, cos θmin − 1/

√
2]: A

simply computation shows that g′(t) > 0⇔ 21
√

2 + 330t + 800
√

2t2 + 2144t3 +
2200

√
2t4+4016t5+2912

√
2t6+2752t7+720

√
2t8+160t9 > 0. Since all coefficients

are positive this condition holds true for all values of t in the given range. Hence,
µ̄θ1 is strictly increasing and attains its maximum at θ1 = π − 2 θmin where
s = cos θmin. Inserting this expression for s in µ̄θ1 gives the stated formula (16)
for the upper bound of µ̄θ1 and also of µ2

2,3 depending on the minimum angle in
the mesh, as stated in the Lemma. This completes the proof. ��

Remark 3. The spectral condition number for the additive and multiplicative
preconditioner, where the latter is discussed in full detail in [6], are respectively
given by κa = 1+

√
µ̄

1−√
µ̄

and κm = 1
1−√

µ̄
, where the upper bound µ̄ = µ̄(θmin) is
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Table 1. Upper bounds for µ, κadd and κmult for different settings of θmin

θmin(deg.) 0 20 25 30 45

µ̄ 7/15 � 0.46̇ 0.391 0.355 0.310 0.2

κa(µ̄) 5.312 4.336 3.944 3.560 2.618

κm(µ̄) 15/8=1.875 1.642 1.549 1.460 1.25

as defined in Lemma 2. For θ1 ∈ [π
3 , π

2 ] we obtain κa ≤
1+
√

1/5

1−
√

1/5
� 2.618 and

κm ≤ 5/4. The effect of the minimum angle condition for θ1 ∈ [π/2, π−2θmin] is
summarized in Table 1, where µ̄ is the upper bound of µ2

2,3 depending on θmin.
It can be seen easily that the upper bound is significantly improved for values
of θmin ≥ 20 degrees, as commonly used in mesh generators in practice.

5 Concluding Remarks

In this paper we studied the effect of a minimum angle condition on the spectral
condition number for preconditioners of additive and multiplicative type. It was
shown that the construction of optimal preconditioners based on an exact elimi-
nation of the interior nodes is the same for all three splittings based on aggregates
and differences, as discussed in Section 2. The main result in this study is that the
upper bound for the (spectral) condition number, as stated in [6], can be improved
for practical applications under the assumption of a minimum angle condition.
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Abstract. A parallel 3D Monte Carlo simulator for the modelling of
electron transport in nano-MOSFETs using the Finite Element Method
to solve Poisson equation is presented. The solver is parallelised using
a domain decomposition strategy, whereas the MC is parallelised using
an approach based on the distribution of the particles among processors.
We have obtained a very good scalability thanks to the Finite Element
solver, the most computationally intensive stage in self-consistent simu-
lations. The parallel simulator has been tested by modelling the electron
transport at equilibrium in a 4 nm gate length double gate MOSFET.

1 Introduction

Monte Carlo (MC) methods are widely used to simulate the behaviour of semi-
conductor devices. They become decisive to obtain proper on-state characteris-
tics of the transistors since they can account for non-equilibrium effects which
are neglected in simpler approaches as drift-diffusion. However, they are compu-
tationally very intensive and their use in problems such as studies of fluctuation
effects is often prohibitive. Therefore, a speed-up of the simulation process in
order to save computational time through the use of parallel machines is highly
desirable [8,2].

In self-consistent simulations, Poisson equation has to be solved in a 3D mesh
at every time step. The size of the time step depends on the material and dop-
ing characteristics of the device, but it can be as small as 0.1 fs, resulting in
thousands of iterations for each bias point for simulations in the order of ps.
Furthermore, it is often necessary to use a very fine mesh, making the simulation
expensive not only in terms of processor time, but also in memory requirements.

In this paper, we present a 3D parallel simulator using a Monte Carlo (MC)
method to model the electron transport and the Finite Element Method (FEM)
on a tetrahedral mesh to solve the Poisson equation. To initialise by achieving
a start of the ensemble MC simulation close to equilibrium, the Poisson and
current continuity equations are solved using FEM at beginning.

The simulator has been developed for distributed–memory computers [4]. It
employs a Multiple Instruction–Multiple Data strategy (MIMD) under the Sin-
gle Program–Multiple Data paradigm (SPMD) which is achieved by using the

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 115–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Message Passing Interface (MPI) standard library [5]. We have chosen the MPI
library due to its availability on many computer systems which guarantees the
portability of the code [15].

The paper is organised as follows. Section 2 describes the FE solver and its
parallelisation. Section 3 is dedicated to the MC module and Section 4 to par-
allelisation of the global system. Section 5 presents results regarding parallel
efficiency and, finally, some concluding remarks are addressed in Section 6.

2 3D Parallel Finite Element Solver

In this section we present the main stages of the FE solver as well as the paral-
lelisation methodology used, based on the domain decomposition strategy.

2.1 Finite Element Solver

The FEM is applied to discretise Poisson and current continuity equations us-
ing tetrahedral elements, which allow the simulation of complex domains with
great flexibility. At the pre–processing the simulation domain representing the
device is triangulated into tetrahedrons using our in-house mesh generator [1].
Then, using the program METIS [7], the solution domain is partitioned into
sub–domains and each assigned to an individual processor. The same program
is subsequently used to achieve an improved ordering of the nodes of each sub–
domain. Finally, the FEM based on tetrahedral element is applied using the
Ritz-Galerkin approximation which means that the shape functions are build
from piecewise linear functions [14].

2.2 Parallelisation

For the initial solution, Poisson and current continuity equations are decoupled
using Gummel methods and linearised using Newton’s algorithm. All these al-
gorithms are implemented fully in parallel manner as follows.

The linearised systems obtained from Poisson and current continuity equa-
tions are solved using domain decomposition technique [3]. The solution domain
Ω is partitioned in p subdomains Ωi as

Ω =
p⋃

i=1

Ωi (1)

and the domain decomposition methods attempt to solve the problem on the
entire domain Ω by concurrent solutions on each subdomain Ωi.

Each node belonging to a subdomain is an unknown of the whole problem. It
is important to distinguish between three types of unknowns: (i) interior nodes,
those that are coupled only with local nodes, (ii) local interface nodes, those
coupled with external nodes as well as local nodes, and (iii) external interface
nodes, which are those nodes in other subdomains coupled with local nodes.
We label the nodes according to their subdomains, first the internal nodes and
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then both the local and external interface nodes. As a result, the linear system
associated with the problem has the following structure:⎛⎜⎜⎜⎜⎜⎜⎝

B1 E1

B2 E2

.
.
Bp Ep

F1 F2 Fp C

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

.

.
xs

y

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
f1

f2

.

.
fs

g

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

where, for the subdomain Ωi, y represents the vector of all interface unknowns,
Bi represents the equations of internal nodes, C the equations of interface nodes,
Ei the subdomain to the interface coupling seen from the subdomains and Fi

represents the interface to the subdomain coupling seen from the interface nodes.
We have used the program METIS to partition the mesh into subdomains.

The same program was subsequently used to relabel the nodes in the subdomains
in order to obtain a more suitable rearrangement to reduce the bandwidth of the
matrix. The PSPARSLIB [12] parallel sparse iterative solvers library modified
to take advantage of the reordering of the matrices has been used to solve the
linear system (2). A great advantage of this library is its optimisation for various
powerful multicomputers. Among many domain decomposition techniques sup-
ported within this library the best result was obtained when using the additive
Schwarz technique [13]. This technique is similar to a block–Jacobi iteration and
consists of updating all the new components from the same residual. The basic
additive Schwarz iteration can be described as follows:

1.– Obtain yi,ext

2.– Compute a local residual ri = (b −Ax)i

3.– Solve Aiδi = ri

4.– Update solution xi = xi + δi

The linear system Aiδi = ri is solved using standard ILUT preconditioner
combined with FGMRES [11].

3 Monte Carlo Simulation of Transport

The starting point of the Monte Carlo program is the definition of the physical
system of interest including the material parameters and the values of physical
quantities, such as lattice temperature T0 and electric field E [6]. At this level,
we also define the parameters that control the simulation: the duration of each
subhistory, the desired precision of the result, and so on. The next step is a pre-
liminary calculation of each scattering rate as a function of electron energy. The
choice of the dispersion relation ε(k) usually depends on the simulated transport
problem. We have decided to have an analytical bandstructure which is a good
compromise between accuracy and efficiency if our intention is to model the
carrier transport in nanoscaled MOSFETs. A typical supply voltage is expected
to be smaller than 1 V and we do not intend to investigate any breakdown
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device mechanisms which can occur at very large electric fields. Therefore, a
nonparabolic dispersion law h̄k2

α/(2mα) = ε(1 + αε), α = x, y, z, is used taking
into account an anisotropic shape of material valleys.

The subsequent step is the generation of the flight duration. The electron
wave vector k changes continuously during a free flight because of the applied
field. Thus, if λ[k(t)] is the scattering probability for an electron in the state k
during the small time interval dt then the probability that the electron, which
already suffered a scattering event at time t = 0 has not yet suffered further
scattering after time t is

exp
[
−
∫ t

0

dt′ λ[k(t′)]
]

which, generally, gives the probability that the interval (0, t) does not contain
a scattering. Consequently, the probability P (t) that the electron will suffer its
next collision during time interval dt at a time t is

P (t)dt = λ[k(t)] exp
[
−
∫ t

0

dt′ λ[k(t′)]
]
dt

The free-flight time t can be generated from the equation

r =
∫ t

0

dt′ P (t′),

where r is a random number between 0 and 1.
Once the electron free flight is terminated, the scattering mechanism has to

be selected. The weight of the i-th scattering mechanism (when n scattering
mechanisms are present) is given by a probability

Pi(k) =
λi(k)
λ(k)

, λ(k) =
n∑

i=1

λi(k)

Generating random number r between 0 and 1 and testing the inequalities

j−1∑
i=1

λi(k)
λ(k)

< r <

j∑
i=1

λi(k)
λ(k)

, j = 1, . . . , n

we will accept the j-th mechanism if the j-th inequality is fulfilled. It should
be noted that the discussed selection of the free flight time and the scattering
channel can be simplified by introducing the self-scattering λ0 [9,10].

The next step is the choice of the state after scattering. Once the scattering
mechanism that caused the end of the electron free flight has been determined,
the new state after scattering of the electron, kf must be chosen as the final
state of the scattering event. If the free flight ended with a self-scattering, kf

must be taken as equal to ki, the state before scattering. When, in contrast, a
true scattering occurred, then kf must be generated stochastically according to
the differential cross section of that particular scattering mechanism. The last
step of the simulation is the collection of statistical averages.
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Fig. 1. The electron density (log scale) in a 4 nm gate length DG MOSFET with a
body thickness of 3.3 nm at equilibrium obtained from the parallel 3D MC device
simulator

4 Parallelisation of the Global System

We have described in Section 2 how Poisson equation is parallelised using a
domain decomposition strategy. However, this is not, in general, the best way to
share the load of the MC engine. We have to perform a load balancing since the
regions with the highest electron density will have the highest number of particles
to simulate. Furthermore, they will have more scattering events (ionised impurity
scattering in regions of high doping and interface roughness scattering in the
inversion layer) and, as a consequence, more computational weight. Although a
partitioning algorithm weighted using the electron density profile could help to
overcome this difficulty, this is well beyond the scope of this paper. With this
in mind, we have chosen a different strategy to parallelise the MC engine in the
simulation. The main idea is to replicate the whole mesh and simulate an equal
number of particles in each processor. Although this requires the replication of
the mesh a number of times, this will not increase the use of the total memory
required by the program significantly since even for a relatively big mesh it
requires only a few MB of memory. The other drawback of the strategy is the
higher number of communications, but we think that this is compensated by
their regularity and the balancing of the computations. In this scheme, the free
flights are computed completely in parallel, requiring the first communications
for the boundary conditions in the contacts. The next communication is to share
the local values of the electron density. Taking advantage of the linearity of the
charge assignment process this can be done with a single reduction step. The
electrostatic potential must be sent to every processor after the resolution of the
Poisson equation to update the electric fields of the whole mesh. Finally, the
particle flights are carried out in the local tetrahedral mesh under an electric
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Fig. 2. Speedup (crosses) and parallel efficiency (circles) of one time step. We also
show the ideal values (dashed lines) for comparison.

field interpolated using the shape functions of the corresponding tetrahedron to
minimise the self-forces.

5 Double Gate MOSFET Test

The developed MC code have been tested by simulating a double gate (DG)
MOSFET with a channel length of 4 nm with a body thickness of 3.3 nm and a
gate dielectric stack of 0.54 nm and a source/drain doping of 1×1020 cm−3. Fig. 1
illustrates the electron density in the DG MOSFET at equilibrium obtained
during a time average after 5 ps.

The investigations of parallel performance of the 3D MC device code have
been carried out by simulating the DG MOSFET over a small period of 20 fs.
All the results presented here were obtained on an HP Superdome cluster with
128 Itanium 2 1.5 GHz processors. The scalability of the program can be charac-
terised by the speedup (S) or the parallel efficiency (PE), defined for p processors
as:

S(p) =
t1
tp

PE(p) =
t1
tpp

(3)

where t1 and tp are the times employed running the simulation on one and
p processors, respectively. Fig. 2 shows their dependence with the number of
processors. We can see that their values are over the linear scaling limit. This
effect is due to the efficiency of Poisson solver and it starts to vanish for a high
number of processors when operations corresponding to non scaling stages (e.g.,
the electric field update) begin to be of the same order of magnitude than the
scaling operations (the linear system solving stage or the particle flights). This
limit is intrinsic to our parallelisation strategy and cannot be avoided. Its impact
for a given number of processors will mainly depend on the size of the employed
mesh.

Table 1 shows the execution times of different parts of the main iteration in the
Monte Carlo loop. We obtain a very good scalability for the particle flight times
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Table 1. Mean simulation times (s) for one time step (titeration), linear Poisson solver
(tPoisson), particle flights (tflight), contacts stage (tcontacts), reduction of electron con-
centration (treduction), communication of the potentials (tcomun.poten.) and electric field
update (Eupdate) for different number of processors (p)

p titeration tPoisson tflight tcontacts treduction tcomun.poten. Eupdate

1 27.50 24.9 0.68 0.35 0.013 0.019 0.207
2 11.74 11.1 0.33 0.20 0.010 0.007 0.204
4 4.27 3.87 0.173 0.146 0.0085 0.0054 0.203
8 1.64 1.08 0.102 0.212 0.0188 0.0050 0.198
16 0.745 0.386 0.0420 0.101 0.005 0.0042 0.200
32 0.5152 0.186 0.0209 0.079 0.009 0.006 0.206

being limited by the contacts stage, where communications and replicated code
are required in order to maintain the equilibrium. The other limiting stage is the
update of the electric field, which requires a constant time independently of the
number of processors. These two stages remain unimportant for a low number of
processors, but they limit the scalability for a high number of processors, when
these times are of the same order of magnitude or even larger than those of the
MC free flights or the solution of Poisson equation.

6 Conclusion

We have presented a parallel 3D device simulator which relies on the ensemble
MC method to model the semiconductor transport in the framework of Boltz-
mann transport equation and on the FE method to solve the Poisson equation
on unstructured tetrahedral meshes. The developed parallel 3D MC device sim-
ulator has been tested by modelling, at equilibrium, the 4 nm gate length Si DG
MOSFET with a body thickness of 3.3 nm and a gate dielectric stack of 0.54 nm.

The parallelisation of the Poisson equation was based on domain decomposi-
tion methods whereas the parallelisation of the MC method was based on particle
redistribution. This mixture of parallelisation strategies limits the parallel per-
formance of the program, and the maximum optimal number of processors will
depend on the size of the mesh. However, before the saturation in the perfor-
mance occurs, the scalability is superlinear (overtaking the linear limit) making
the use of parallelism ideal for multi-core processors and production runs requir-
ing multiple simulations.
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Abstract. A widely used method to estimate the accuracy of the nu-
merical solution of real life problems is the CESTAC Monte Carlo type
method. In this method, a real number is considered as an N-tuple of
Gaussian random numbers constructed as Gaussian approximations of
the original real number. This N-tuple is called a “discrete stochastic
number” and all its components are computed synchronously at the level
of each operation so that, in the scope of granular computing, a discrete
stochastic number is considered as a granule. In this work, which is part
of a more general one, discrete stochastic numbers are modeled by Gaus-
sian functions defined by their mean value and standard deviation and
operations on them are those on independent Gaussian variables. These
Gaussian functions are called in this context stochastic numbers and op-
erations on them define continuous stochastic arithmetic (CSA). Thus
operations on stochastic numbers are used as a model for operations on
imprecise numbers. Here we study some new algebraic structures induced
by the operations on stochastic numbers in order to provide a good al-
gebraic understanding of the performance of the CESTAC method and
we give numerical examples based on the Least squares method which
clearly demonstrate the consistency between the CESTAC method and
the theory of stochastic numbers.

Keywords: stochastic numbers, stochastic arithmetic, standard devia-
tions, least squares approximation.

1 Introduction

A widely used method to estimate the accuracy of the numerical solution of
real life problems is the CESTAC method, see for example [4,6,8,13,14,15,16,17].
In this method, real numbers are considered as vectors of N Gaussian random
numbers constructed to be Gaussian approximations of the same value. This
vector is called a “discrete stochastic number”. The CESTAC method has been
implemented in a software called CADNA in which discrete stochastic numbers
are computed one operation after the other. In other words all their compo-
nents are computed synchronously at the level of each operation so that, in the
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scope of granular computing [19], a discrete stochastic number is considered as
a granule. Moreover in CADNA the components of a the discrete stochastic
numbers are randomly rounded up or down with same probability to take into
account the rounding of floating point operators in the same way that directed
rounding is used in softwares implementing interval arithmetic. In this work,
which is part of a more general one, discrete stochastic numbers are modeled
by Gaussian functions defined by their mean value and standard deviation and
operations on them are those on independent Gaussian variables. These Gaus-
sian functions are called in this context “stochastic numbers” and operations
on them define continuous stochastic arithmetic (CSA) also called more briefly
stochastic arithmetic. Operations on stochastic numbers are used as a model
for operations on imprecise numbers. Some fundamental properties of stochastic
numbers are considered in [5,18]. Here we study numerically the performance of
the CESTAC method [1,2,3,10,11] using numerical examples based on the Least
squares method. Our experiments clearly demonstrate the consistency between
the CESTAC method and the theory of stochastic numbers and present one
more justification for both the theory and the computational practice.

The operations addition and multiplication by scalars are well-defined for
stochastic numbers and their properties have been studied in some detail. More
specifically, it has been shown that the set of stochastic numbers is a commuta-
tive monoid with cancelation law in relation to addition. The operator multipli-
cation by −1 (negation) is an automorphism and involution. These properties
imply a number of interesting consequences, see, e. g. [10,11].

In what follows we first briefly present some algebraic properties of the sys-
tem of stochastic numbers with respect to the arithmetic operations addition,
negation, multiplication by scalars and the relation inclusion. These theoretical
results are the bases for the numerical experiments presented in the paper.

2 Stochastic Arithmetic Theory (SAT) Approach

A stochastic number a is written in the form a = (m, s). The first component
m is interpreted as mean value, and the second component s is the standard
deviation. A stochastic number of the form (m; 0) has zero standard deviation
and represents a (pure) mean value, whereas a stochastic number of the form
(0; s) has zero mean value and represents a (pure) standard deviation. In this
work we shall always assume s ≥ 0. Denote by S the set of all stochastic numbers,
S = {(m; s) | m ∈ R, s ∈ R+}. For two stochastic numbers (m1; s1), (m2; s2) ∈ S,
we define addition by

(m1; s1) + (m2; s2)
def
=
(
m1 + m2;

√
s2
1 + s2

2

)
, (1)

Multiplication by real scalar γ ∈ R is defined by:

γ ∗ (m1; s1)
def
= (γm1; |γ|s1). (2)
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In particular multiplication by −1 (negation) is

− 1 ∗ (m1; s1) = (−m1; s1), (3)

and subtraction of (m1; s1), (m2; s2) is:

(m1; s1)−(m2; s2)
def
= (m1; s1)+(−1)∗(m2; s2) =

(
m1 −m2;

√
s2
1 + s2

2

)
. (4)

Symmetric stochastic numbers. A symmetric (centered) stochastic number
has the form (0; s), s ∈ R. The arithmetic operations (1)–(4) show that mean
values subordinate to familiar real arithmetic whereas standard deviations induce
a special arithmetic structure that deviates from the rules of a linear space. If we
denote addition of standard deviations defined by (1) by “⊕” and multiplication
by scalars by “∗”, that is:

s1 ⊕ s2 =
√

s2
1 + s2

2, γ ∗ s1 = |γ|s1,

then we can say that the space of standard deviations is an abelian additive
monoid with cancellation, such that for any two standard deviations s, t ∈ R+,
and real α, β ∈ R:

α ∗ (s⊕ t) = α ∗ s⊕ α ∗ t,
α ∗ (β ∗ s) = (αβ) ∗ s,

1 ∗ s = s,

(−1) ∗ s = s,√
α2 + β2 ∗ s = α ∗ s⊕ β ∗ s.

Examples. Here are some examples for computing with standard deviations:

1⊕ 1 =
√

2, 1⊕ 2 =
√

5, 3⊕ 4 = 5, 1⊕ 2⊕ 3 =
√

14.

Note that s1 ⊕ s2 ⊕ ...⊕ sn = t is equivalent to s2
1 + ... + s2

n = t2.

Inclusion. Inclusion of stochastic numbers plays important roles in applications.
Inclusion relation “⊆s” between two stochastic numbers X1 = (m1; s1), X2 =
(m2; s2) ∈ S is defined by [3]

X1 ⊆s X2 ⇐⇒ (m2 −m1)2 ≤ s2
2 − s2

1. (5)

Relation (5) is called stochastic inclusion, briefly: s-inclusion.

It is easy to prove [3] that addition and multiplication by scalars are (inverse)
s-inclusion isotone (invariant with respect to s-inclusion), that is

X1 ⊆ X2 ⇐⇒ X1 + Y ⊆ X2 + Y, X1 ⊆ X2 ⇐⇒ γ ∗X1 ⊆ γ ∗X2

3 The CESTAC Method

Suppose that some mathematical value r has to be computed with a numerical
method implemented on a computer. The initial data are imprecise and the com-
puter uses floating point number representation. In the CESTAC method a real
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number r, intermediate or final result, is considered as a Gaussian random vari-
able with mean value m and standard deviation σ that have to be approximated.
So r is a stochastic number.

In practice a stochastic number is approximated by an N -tuple with com-
ponents rj , j = 1, ..., N , which are empirical samples representing the same
theoretical value. As seen before, this vector is called discrete stochastic number.
The operations on these samples are those of the computer in use followed by
a random rounding. The samples corresponding to imprecise initial values are
randomly generated with a Gaussian distribution in a known confidence interval.

Following the classical rules of statistics, the mean value m is the best ap-
proximation of the exact value r and the number of significant digits on m is
computed by:

Cm = log10

(√
N |r|
σ τη

)
, (6)

wherein m = N−1
∑N

j=1 rj , σ2 = (N − 1)−1∑N
j=1 (rj −m)2 and τη is the

value of Student’s distribution for k − 1 degrees of freedom and a probability
level p. Most of the time p is chosen to be p = 0.95 so that τη = 4.303. This
type of computation on samples approximating the same value is called Discrete
Stochastic Arithmetic (DSA).

It has been shown [5] that if one only wants the accuracy of r, i.e., its number
of significant decimal digits, then N = 3 suffices. This is what is chosen in
the software named CADNA [20] which implements the CESTAC method. But
if one wants a good estimation of the error on r then a greater value for N ,
experimentally at least N = 5 must be chosen. The experiments given below use
N = 5 and N = 20 showing that the two series of results are very close and that
a large value for N is unnecessary.

The goal of next section 4 is to compare the results obtained with Continu-
ous Stochastic Arithmetic (CSA) and the theory developed in this paper with
results obtained with the CESTAC method implementing Discrete Stochastic
Arithmetic (DSA).

It should be remarked that DSA which is used in the CESTAC method takes
into account round-off errors at the level of each floating point operation because
of the random rounding done at this level. On the contrary CSA is a theoretical
model in which data are imprecise but arithmetic operations are supposed exact.
This is why in our experiments relative errors on data are chosen to be of order
10−2–10−3 whereas the computations are done using double presision arithmetic.
Thus experiments on computer can be considered very close to the theoretical
CSA model.

4 Application: Linear Regression

As said before, in the CESTAC method, each stochastic variable is represented
by an N -tuple of gaussian random values with known mean value m and standard
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deviation σ. The method also uses a special arithmetic called Discrete Stochastic
Arithmetic (DSA), which acts on the above mentioned N -tuples.

To compare the two models, a specific library has been developed which im-
plements both continuous and discrete stochastic arithmetic. The computations
are done separately. The CSA implements the mathematical rules defined in Sec-
tion 2. The comparison has been done on the one-dimensional linear regression
method for numeric input data.

4.1 Derivation of a Formula for Regression

Let (xi, yi), i = 1, ..., n, be a set of n pairs of numbers where all xi are different,
x1 < x2 < ... < xn. As well-known the regression line that fits the (numeric)
input data (x, y), x = (x1, x2, ..., xn) ∈ Rn, y = (y1, y2, ..., yn) ∈ Rn, is

l : η = (Sxy/Sxx)(ξ − x) + y, (7)

wherein x = (
∑

xi)/n, y = (
∑

yi)/n (all sums run from 1 to n), and

Sxx =
∑

(xi − x)2 > 0, Sxy =
∑

(xi − x)(yi − y) =
∑

(xi − x)yi.

Note that that l passes through the point (x, y).
The expression in the right hand-side of (7) can be rewritten in the form:

L : η = (Sxy/Sxx)(ξ − x) + y

= (1/Sxx)
(∑

(xi − x)yi

)
(ξ − x) +

(∑
yi

)
/n

=
∑

((xi − x)(ξ − x)/Sxx + 1/n) yi.

Thus the line (7) can be represented in the form

l : η =
∑

γi(ξ) yi, (8)

wherein the functions

γi(ξ) = γi(x; ξ) = (xi − x)(ξ − x)/Sxx + 1/n, i = 1, 2, ..., n, (9)

depend only on x and not on y.
Since γi is linear, it may have at most one zero. Denoting by ξi the zero of

the linear function γi(ξ), we have

ξi = x + Sxx/(n(x− xi)), i = 1, ..., n. (10)

If xi = x, then γi = 1/n > 0.
In every interval [ξj , ξj+1] the signs of γi do not change and can be easily

calculated [9].
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Table 1. Results obtained with ε = 0, δ = 0.01

ui DSA 5 samples DSA 20 samples CSA CADNA

(0;ε) (2.98587;0.000930) (2.99719;0.009134) (3.00000;0.009591) 0.298E+001
(1.5;ε) (5.99914;0.003732) (6.00011;0.005948) (6.00000;0.006164) 0.599E+001
(2.5;ε) (8.00291;0.005348) (7.99994;0.006061) (8.00000;0.004690) 0.800E+001

4.2 Experiments

As said above, the results obtained with CSA and those obtained with the CES-
TAC method with N samples, i.e., with DSA have to be compared. Here the
successive values N = 5 and N = 20 have been chosen to experiment the effi-
ciency of the CESTAC method with different sizes of discrete stochastic numbers.
The CSA is based on operations defined on Gaussian random variable (m;σ).

The regression method (8) has been implemented with CSA and DSA. We
consider the situation when the values of the function yi are imprecise and
abscissas xi are considered exact.

For all examples presented below, we take the couples of values from the line
v = 2u + 3. The values chosen for abscissas are x1 = 1, x2 = 2, x3 = 2.5, x4 =
4, x5 = 5.5, and the values yi considered as imprecise are obtained as follows:

In the case of CSA they are chosen as y1 = (5; δ), y2 = (7; δ), y3 = (8; δ), y4 =
(11; δ), y5 = (14; δ) and δ is chosen as δ = 0.01.

In the case of the CESTAC method (DSA) the data for the yi are randomly
generated with Gaussian distributions whose mean values are the centers of the
above stochastic numbers and standard deviation δ.

From formula (8), three values of vi corresponding to three input values con-
sidered as imprecise ui = (0; ε); (1.5; ε); (2.5; ε) are computed with DSA and
with CSA and different values of ε. They are reported in tables 1–3.

The tables show that the mean values obtained with CSA are very close to
the mean values obtained with DSA.

Let us now call (mv;σv) the values provided by CSA for the above least
squares approximation at some point u.

CSA can be considered a good model of DSA if the mean value v of the
samples obtained at point u with the DSA is in the theoretical confidence interval
provided by CSA, in other words if:

mv − 2σv ≤ v ≤ mv + 2σv (11)

with a probability of 0.95. This formula can be rewritten as: −2σv ≤ v −mv ≤
+2σv, |v −mv| ≤ +2σv.

Table 2. Results obtained with ε = 0.01, δ = 0.01

ui DSA 5 samples DSA 20 samples CSA CADNA

(0;ε) (2.99372;0.021080) (3.00001;0.018596) (3.00000;0.032542) 0.29E+001
(1.5;ε) (5.99043;0.015064) (5.99956;0.024394) (6.00000;0.031702) 0.59E+001
(2.5;ε) (8.01482;0.017713) (7.99296;0.017689) (8.00000;0.031449) 0.80E+001
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Table 3. Results obtained with ε = 0.1, δ = 0.01

ui DSA 5 samples DSA 20 samples CSA CADNA

(0;ε) (2.76260;0.122948) (3.03062;0.213195) (3.00000;0.311120) Non significant
(1.5;ε) (5.86934;0.205126) (6.11816;0.179552) (6.00000;0.311033) 0.5E+001
(2.5;ε) (7.97106;0.219142) (8.07687;0.229607) (8.00000;0.311008) 0.7E+001
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Fig. 1. The dash line represents 2σv and the full line |v−mv|, the left figure is computed
with N = 5 and the right one with N = 20

The regression line has been computed with the previous data and ε = 0.01
and from u = 0.5 to u = 5.5 with a step of 0.1. Figure 1 shows the curves |v−mv|
and 2σvi for N=5 and N=20. On our samples formula (11) is always respected.

5 Conclusion

Starting from a minimal set of empirically known facts related to stochastic
numbers, we formally deduce a number of properties and relations. We inves-
tigate the set of all stochastic numbers and show that this set possesses nice
algebraic properties. We point out to the distinct algebraic nature of the spaces
of mean-values and standard deviations. Based on the algebraic properties of the
stochastic numbers we propose a natural relation for inclusion, called stochastic
inclusion. Numerical examples based on Lagrange interpolation demonstrate the
consistency between the CESTAC method and the presented theory of stochas-
tic numbers. This is one more justification for the practical use of the CADNA
software.
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Abstract. Gallium Nitride (GaN) is becoming increasingly more at-
tractive for a wide range of applications, such as optoelectronics, wire-
less communication, automotive and power electronics. Switching GaN
diodes are becoming indispensable for power electronics due to their low
on-resistance and capacity to withstand high voltages. A great deal of
research has been done on GaN diodes over the decades but a major issue
with previous studies is the lack of explicit inclusion of electron-electron
interaction, which can be quite important for high carrier densities en-
countered. Here we consider this electron-electron interaction, within a
non-parabolic band scheme, as the first attempt at including such effects
when modeling nitride devices. Electron-electron scattering is treated us-
ing a real space molecular dynamics approach, which exactly models this
interaction within a semi-classical framework. It results in strong carrier-
carrier scattering on the biased contact of the resistor, where rapid carrier
relaxation occurs.

1 Introduction

Even though gallium nitride (GaN) is of primary importance in optoelectron-
ics, for high-density optical storage and solid-state lighting, electronic devices
based on this wide-bandgap semiconductor are becoming increasingly attractive
for diverse applications, such as wireless communication, automotive or power
conversion [12,7]. Besides space and military end-users, GaN offers the utmost
perspectives for high-power amplifier manufacturers (3G/4G base station or
WiMAX) [14]. The key advantages offered by GaN technology for RF power
electronics reside in the combination of higher output power density (even at
high frequency), higher output impedance (easier matching), larger bandwidth
and better linearity than other existing technologies. These features directly stem
from the physical properties of the semiconductor: the large bandgap results in
a breakdown electrical field ten times larger than Si. This allows transistor oper-
ation at high bias voltage. The high saturation velocity, combined with the high
current density in the two-dimensional electron gas, ensures high power handling
up to mm-wave frequencies.
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The most successful GaN device nowadays is the AlGaN/GaN high electron
mobility transistor (HEMT). One of the key challenges for large adoption of
this technology by the market remains the control of the trap effects (essen-
tially surface traps resulting from piezoelectric character of the devices), on the
RF characteristics, often known as the DC/RF dispersion in nitrides [15]. Fi-
nally, besides HEMT devices required for RF power applications, switching GaN
diodes are very much needed for power electronics regarding their capabilities
to withstand high voltages and their low on-resistance [13]. Vertical pin diodes,
with low leakage current, have been successfully demonstrated, paving the way
to new type of GaN electronic devices, such as permeable base transistors [3].

In this paper we present simulation results for a GaN resistor for the purpose
of understanding the role of the electron-electron interactions on the carrier
thermalization at the contacts. We find that carrier-carrier interaction is very
effective in the carrier thermalization, which suggests that in the contact portion
of the device, non-parabolic model for the energy dispersion relation can be
used without any loss of accuracy in simulation of HEMT devices at moderately
high biases. The paper is organized as follows. In Section 2 we discuss state-
of the art in GaN devices modeling. In Section 3 we explain our theoretical
model. The resistor simulation and the thermalization of the carriers at the
contacts is discussed in Section 4. Conclusions regarding this work are presented
in Section 5.

2 Overview of Existing Simulations of Various GaN
Device Structures

There are several investigations performed on the theoretical properties of wurtz-
ite phase GaN over the past two decades. However, most of these calculations
typically used a modified mobility drift-diffusion model or the Ensemble Monte
Carlo (EMC) method using several valleys with analytical bandstructures. These
models fail to treat transport properties properly in the high electric field regime
where carrier energies are high and the bandstructure gets complicated. There
are several reports which calculate the electron transport properties using full-
band EMC but most of them used the same parameters as zinc blende materials
to calculate electron-phonon scattering rates using the deformation potential.

The first transport simulation using Monte Carlo (MC) methods was reported
by Littlejohn, Hauser, and Glisson in 1975 [9]. This simulation included a single
valley (Gamma Valley) with both parabolic and non-parabolic bands. Acoustic
scattering, polar optical phonon scattering, piezoelectric scattering and ionized
impurity scattering were taken into account in these calculations. Velocity sat-
uration and negative differential transconductance in GaN were predicted. In
1993, Gelmont, Kim and Shur [5] pointed out that intervalley electron trans-
fer played a dominant role in GaN in high electric field leading to a strongly
inverted electron distribution and to a large negative differential conductance.
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They used a non-parabolic, two valley model including Γ and U valleys. Polar
optical phonon, piezoelectric, deformation potential and ionized impurity scat-
tering mechanisms were taken into account. The intervalley coupling coefficient
of GaAs was utilized in these calculations. Mansour, Kim and Littlejohn also
used a two-valley model to simulate the high-temperature dependence of the
electron velocity [10]. They included acoustic phonon, polar optical phonon, in-
tervalley phonon and ionized impurity scatterings. Bhapkar and Shur in 1997
came up with an improved multi-valley model that included a second Γ valley
in addition to the Γ and U valleys [2]. The energy gap between the two valleys
was modified to 2 eV from the earlier 1.5 eV used in all the previous simulations.
Scattering mechanisms taken into account were acoustic phonon, polar optical
phonon, ionized impurity, piezoelectric and inter valley scattering. This model
has been adopted in this work.

All these simulations mentioned above used analytical, non-parabolic band
structures. A full-band MC simulation is another approach to get more accurate
results at higher electric fields. Full band MC simulations have been reported pre-
viously by the Georgia Tech Group. Kolnik et al. reported the first full band MC
simulation for both wurtzite and zinc-blende GaN [8]. They considered acoustic,
polar optical and intervalley scattering in their calculations. Brennan et al. per-
formed full band MC simulations and compared the results for different III–V
materials. He reported a higher electron velocity for wurtzite GaN than the pre-
vious simulation data [4]. Both these simulations could not verify their results
as no experimental velocity data was reported until then.

Barker et al. reported recently the measurements of the velocity-field char-
acteristics in bulk GaN and AlGaN/GaN test structures using a pulsed I–V
measurement technique [1]. These experimental results are comparable to the
theoretical models of Kolnik and Brennan and Yu and Brennan. Most other sim-
ulations along these lines have reported lower velocity characteristics than that
of Kolnik and Brennan. Some groups like Matulionis et al. [11] have suggested
that lattice heating could play a very big role in lowering the peak velocity at
high electric fields. Some other groups feel that this may be attributed due to the
hot phonon effect. Though there seems to be no consensus about this, more work
needs to be done in order to better understand the underlying physics. Recently,
Yamakawa and co-workers [17] using full-band cellular automata particle-based
simulator examined theoretically the RF performance of GAN MESFETs and
HEMTs.

Note that none of the above studies included the short-range electron-electron
interactions in their theoretical model. From modeling Si MOSFETs, it is well
known that the electron-electron (e-e) interactions lead to rapid thermalization
of the carriers coming from the channel into the drain end of a MOSFET device
[6]. This work has motivated us to examine the role of the carrier-carrier inter-
actions on carrier thermalization at the contacts for devices fabricated in GaN
technology. For that purpose we have simulated n+-n-n+ diode made of GaN.
Details of the theoretical model used are given in the following section.
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Fig. 1. Simulated n+-n-n+GaN diode

3 Theoretical Model

The GaN n+-n-n+ diode simulated in this work is shown in Fig. 1. The n+

region was doped to 1017 cm−3 while the n region was doped to 1015 cm−3.
The bulk transport simulations were performed first to obtain the correct mate-
rial parameters that fit the theoretical and experimental results. The ensemble
Monte Carlo transport kernel incorporated a multi-valley model mentioned in
the previous section and various scattering mechanisms such as acoustic, polar
optical phonon, ionized impurity, inter valley and piezoelectric scattering were
included.

The device simulator comprises of a 1D Poisson solver coupled with the 3D
Monte Carlo transport kernel. LU Decomposition scheme is used for the nu-
merical solution of the matrix problem. Carriers are initialized and distributed
randomly within the device and are subjected to a free flight and scatter process.
The charge distribution is updated after every time step and Poisson solver is
called to update the potential. This procedure is repeated until we reach the
final time at which point the carriers achieve steady state conditions. This gives
us the Hartree potential which does not include the short range carrier-carrier
interactions.

To include the short range electron-electron interactions we employed the P3M
approach utilized by C. Wordelman et al. [16] where the short range interaction
is calculated as a direct particle-particle force summation. This short range force
is calculated for each carrier by using a lookup force table and the total force on
an electron is then computed as the sum of the short range force and the long
range mesh force. The P3M — Ensemble Monte Carlo coupled model includes the
short range electron-electron interactions which lead to the rapid thermalization
of these carriers at the drain end of the device.

4 Resistor Simulations

The drift velocity characteristics for bulk GaN as a function of electric field
are shown in Fig. 2. The theoretical results obtained from our model are in
close agreement to the experimental results and validates the choice of material
parameters used in the simulations. Simulations were run for various applied
drain bias and the drain current was calculated. Figure 3 shows the potential
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Fig. 2. Velocity — field characteristics for Bulk GaN [12, 13, and 15]

Fig. 3. Potential Profile and Electron Density along the length of the GaN diode for
VD = 2V
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Fig. 4. Current Voltage Characteristics of the diode

Fig. 5. Average energy of electrons with and without e–e interactions. The n region
extends from 0.25µm to 0.5µm. This is called a channel region of the resistor.

profile and the electron density as a function of distance across the diode for a
drain bias VD= 2 V. The Current — Voltage characteristics is plotted in Fig. 4
and we are able to observe the linear trend typical of a resistor.

The inclusion of electron-electron interactions facilitates the rapid thermal-
ization of carriers near the drain contact. This can be clearly seen when we
compare the average energy of carriers with and without the inclusion of the
electron-electron interaction. Note we only consider the carriers that cross the
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drain depletion region. This is shown in Fig. 5 and we see that the carriers
rapidly lose energy near the drain end of the diode.

5 Conclusions

In summary, we have investigated the role of electron-electron interactions on
carrier thermalization at the cathode contact. We find significant carrier ther-
malization which suggests that modeling HEMT devices does not require use of
full-band dispersion at the contacts at moderately high biases.
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Abstract. We announce a two dimensional WIgner ENSemble (WIENS)
approach for simulation of carrier transport in nanometer semiconductor
devices. The approach is based on a stochastic model, where the quantum
character of the carrier transport is taken into account by generation and
recombination of positive and negative particles. The first applications of
the approach are discussed with an emphasis on the variety of raised com-
putational challenges. The latter are large scale problems, introduced by
the temporal and momentum variables involved in the task.

1 Introduction

The Wigner formulation of the quantum statistical mechanics provides a conve-
nient kinetic description of carrier transport processes on the nanometer scale,
characteristic of novel nanoelectronic devices. The approach, based on the con-
cept of phase space considers rigorously the spatially-quantum coherence and can
account for processes of de-coherence due to phonons and other scattering mech-
anisms using the models developed for the Boltzmann transport. Almost two
decades ago the coherent Wigner equation has been utilized in a deterministic
1D device simulators [3,4,1]. The latter have been refined towards self-consistent
schemes which take into account the Poisson equation, and dissipation processes
have been included by using the relaxation time approximation. At that time it
has been recognized that an extension of the deterministic approaches to two di-
mensions is prohibited by the enormous increase of the memory requirements, a
fact which remains true even for todays computers. Indeed, despite the progress
of the deterministic Boltzmann simulators which nowadays can consider even
3D problems, the situation with Wigner model remains unchanged. The reason
is that, in contrast to the sparse Boltzmann scattering matrix, the counter-
part provided by the Wigner potential operator is dense. A basic property of the
stochastic methods is that they turn the memory requirements of the determinis-
tic counterparts into computation time requirements. Recently two Monte Carlo
methods for Wigner transport have been proposed [7,5]. The first one has been
derived by an operator splitting approach. The Wigner function is presented
by an ensemble of particles which are advanced in the phase space and carry
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the quantum information via a quantity called affinity. The latter is updated at
consecutive time steps and actually originates from the Wigner potential, whose
values are distributed between particles according their phase space position.
This ensemble method has been applied in a self-consistent scheme to resonant-
tunneling diodes (RTD’s), the scattering with phonons is accounted in a rigorous
way [7]. Recently it has been successfully extended to quasi two dimensional sim-
ulations of double gate MOSFET’s [6]. The second method is based on a formal
application of the Monte Carlo theory on the integral form of the Wigner equa-
tion. The action of the Wigner potential is interpreted as generation of couples
of positive and negative particles. The quantum information is carried by their
sign, all other aspects of their evolution including the scattering by phonons are
of usual Boltzmann particles. The avalanche of generated particles is controlled
by the inverse process: two particles with opposite sign entering given phase
space cell annihilate. The approach offers a seamless transition between classical
and quantum regions, a property not yet exploited for practical applications.

WIENS is envisaged as an union of theoretical and numerical approaches, al-
gorithms and experimental code for 2D Wigner simulation of nanostructures. In
contrast to device simulators which, being tools for investigation of novel struc-
tures and materials rely on well established algorithms, WIENS is comprised
by mutually related elements which must be developed and tested for relevance
and viability. Many open problems need to be addressed such as the choice of
the driving force in the Wigner equation, pure quantum versus mixed classical-
quantum approaches, the correct formulation of the boundary conditions, ap-
propriate values for the parameters and a variety of possible algorithms. We
present the first results in this direction. In the next section a semi-discrete for-
mulation of the Wigner equation for a typical MOSFET structure is derived. An
Ensemble particle algorithm is devised in the framework of the second approach.
Next, simulation experiments are presented and discussed. It is shown that, de-
spite the nanometer dimensions, the temporal and momentum scales introduce
a large scale computational problem.

2 Semi-discrete Wigner Equation

A system of carriers is considered in a typical 2D structure, for example of a
MOSFET shown in Fig. 1. The device shape is a perfect rectangle with the highly
doped Source and Drain regions at the left and right bottom ends respectively.
At the very bottom, to the left and right of the Gate are shown parts of the leads.
These supply carriers and thus specify the boundary conditions in the two tinny
strips marked in black. It is assumed that the current flows between the device
and the leads only, that is, at the rest of the device boundary including the region
under the gate carriers are reflected. The state of the carriers is characterized by a
wave function which becomes zero at and outside these boundaries. Accordingly
the density matrix ρ(r1, r2), will vanish if some of the arguments r = (x, y)
is outside of the rectangle (0,L) = (0, Lx); (0, Ly) determined by the device
dimensions. This condition holds everywhere but on the leads. We postpone the
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discussion of the leads and first introduce the Wigner function as obtained from
the density matrix by the continuous Wigner-Weyl transform:

fw(r,k, t) =
1

(2π)2

∫ ∞

−∞
dse−iksρ(r +

s
2
, r− s

2
, t); (1)

where r = r1+r2
2 , s = r1 − r2.

The condition 0 < r1, r2 < L, (which holds everywhere but on the leads) gives
rise to the following condition for s:

− Lc < s < Lc Lc = 2 min (r, (L − r)) . (2)

The confinement of s allows to utilize a discrete Fourier transformation in the
definition (1). Two details must be adjusted. Lc, which is actually the coher-
ence length, depends on r. Thus the discretization of the wave vector space will
change with the position which is inconvenient. Fortunately, since any partially
continuous function of s defined in given interval (a,b) can be presented by the
Fourier states of a larger interval, we can conveniently fix the coherence length
to the maximal value of the minimum in (2): Lc = L. As the values of the
function outside (a,b) are extrapolated to 0, we must formally assign to ρ a do-
main indicator θD(s), which becomes zero if (2) is violated. However, according
the above considerations, θD is implicitly included in ρ. From a physical point of
view the problem whether to consider the leads or not is still open: Usually leads
are included in 1D simulations and the integral in (1) is truncated somewhere
deep in them for numerical reasons. In a recent study [2] it is argued that in
the leads there are processes which entirely destroy the quantum interference
between the point r− s, Fig. 1, and the corresponding counterpart r+ s. In this
way the integral in (1) has to be truncated already at the point where the line
along s enters into the gate (G) region. Alternatively, if leads are considered, the
segment of this line lying in the gate region (and the corresponding counterpart
in the device) are excluded from the integral. The correlation is enabled after the
point of entering into the leads. However, even in this case, s remains bounded.

Fig. 1. Typical 2D structure
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In this case Lc must be augmented to (0, Lx); (−Ly, Ly). By changing s to 2s
and applying the discrete Fourier transform:

f(r,n) =
1
Lc

Lc/2∫
Lc/2

dsei2n∆ksρ(r, s)

ρ(r, s) =
∞∑

n=−∞
ei2n∆ksf(r,n)

∆k = π/Lc

to the von-Neumann equation for the density matrix we obtain a Wigner equa-
tion which is continuous in space and discrete in momentum:

∂f(r,M, t)
∂t

+
h̄

m
M∆k

∂f

∂r
(r,M, t) =

∞∑
m=−∞

Vw(r,m)fw(r, (M−m), t).

Here the Wigner potential is defined as:

Vw(r,M) =
1
ih̄

1
Lc

∫ Lc/2

−Lc/2

dse−i2M∆ks(V (r + s)− V (r− s))θD(s) (3)

We note the presence of the domain indicator in this definition. According the
particle sign approach [5], the Wigner potential generates particles with a fre-
quency given by the Wigner out-scattering rate γ obtained from (3):

γ(r) =
∞∑

M=0

|Vw(r,M)| (4)

The shape and magnitude of γ strongly depend on the treatment of the leads,
as it will be shown in what follows.

3 Numerical Aspects and Simulations

The above theoretical considerations are presented for a coherent transport,
where the interaction with phonons is switched off. As the corresponding coher-
ent algorithm is the core module of WIENS, it must be carefully developed and
tested. We furthermore focus on the stationary case, where the boundary con-
ditions control the carrier transport. The initial picture of the algorithm under
development is of an ensemble of particles which is evolved in the phase space
at consecutive time steps. The boundary conditions are updated after each step
in the usual for device simulations way.

The magnitude of γ is of order of [1015/s] so that the avalanche of particles
does not allow an individual treatment of each particle as in the classical En-
semble Monte Carlo algorithm. Particles must be stored on grid points of a mesh
in the phase space, where the inverse process of annihilation occurs. Thus along
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with the wave vector spacing ∆k, also the real space must be divided into cells
of size ∆r. Actually two arrays are needed to store the particles.

At the beginning of an evolution step the initial one, f1, is occupied by par-
ticles, while the second one, f2, is empty. Particles are consecutively taken from
f1, initiating from randomly chosen phase space coordinates around the corre-
sponding grid point. A selected particle evolves untill the end of the time step
and then is stored in f2. The stored wave vector corresponds to the initial value
since there is no accelerating field. The particle gives rise to secondary, ternary
etc. particles which are evolved in the phase space for the rest of the time and
then stored in f2. As they are generated on the same grid in the wave vector
space, the assignment in straightforward. As a rule the particles injected by the
boundary conditions are slow (low wave vector), while these generated by the
Wigner potential are fast. The wave vector ranges over several orders of magni-
tude so that the task for the position assignment becomes a large scale problem:
A straightforward approach is to assign the particle position to the nearest grid
point. For fast particles which cross several cells during the time step this intro-
duces small error in the spatial evolution. More dramatic is the situation with
the slow particles: if during the time step a particle crosses a distance less than
a half of the mesh step it can remain around a grid point for a long time. This
is an example for artificial diffusion which is treated in the following way:

(i) Slow particles, e.g., these which belong to the ground cell around the origin
of the wave vector are treated in a standard ensemble approach: the phase
space evolution is followed continuously throughout the device.

(ii) The grid assignment is chosen stochastically, according a probability propor-
tional to the distance to the neighborhood grid points.

Another large-scale aspect is related to the range of the time constants involved
in the problem. The existence of very fast particles imposes an evolution step of
few hundreds of femtosecond. The time step ta between successive assignments
to the grid is of order of femtosecond, while the total evolution must be above
picosecond in order to reach the stationary conditions. Accordingly large com-
putational times are expected. Thus the first objective of the computations is
to investigate the convergence, to optimize where possible the algorithm and to
find appropriate values for the parameters leading to stable results. The latter
are a necessary condition for solving the physical aspects of the problem: finding
a proper normalization, a choice of the boundary conditions and investigation
of the quantum phenomena will be focused on a next step.

Two structures, A and B of the type shown on Fig. 1 are considered in the
experiments. A Γ valley semiconductor with a small effective mass (0.036) has
been chosen to enhance the effects of tunneling. The potential and dimensions
of device A are twice as small as compared to device B.

The potential of B is shown in Fig. 2 and Fig. 3 as a contour plot respectively.
The potential is obtained from the self-consistent Boltzmann-Poisson solution: In
the quantum case the entire potential is used to calculate γ(r) and the scattering
probability table. The driving force is zero so that the carriers perform a free
motion throughout the device until the reflecting boundaries.
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Fig. 2. Device potential Fig. 3. Contour plot of the potential

Fig. 4. γ(r), device B

Fig. 4 shows γ(r) computed for the case including the leads. At the injecting
boundaries in the source and drain regions (compare Fig. 1) the generation rate
is very high so that an injected particle feels the Wigner potential already at the
boundary. On contrary, if leads are excluded the generation rate is zero at this
boundary.

Figures 5 and 6 show γ in device A, computed for either of the two cases. There
is a profound difference of the shape and magnitude of this quantity on the two
pictures. The contour plots of the classical and quantum densities in device A,
no leads considered, are compared in Fig. 7 and 8. Both densities have the same
shape, however the quantum counterpart is more spread inside the device which
can be related to tunneling effects. We note that the quantum density is due to
effects of generation and recombination only, so that the basic similarity was the
first encouraging result. In particular, since the small generation rate � 1014/s
the time tabetween successive assignments is a femtosecond, so that the effect
of artificial diffusion is negligible. Here the algorithms treating this effect have
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Fig. 5. γ(r), device A Fig. 6. γ(r), device A, leads are excluded

Fig. 7. Boltzmann carrier density Fig. 8. Wigner carrier density

been introduced and tested by reducing ta. Fig. 9 demonstrates the much slower
convergence of the quantum current as a function of the evolution time.

The potential of device B, Fig. 3, has a shape of two valleys separated by
a high barrier with a maximum between the valleys. Between this maximum
and the high potential at the bottom of the base there is a saddle point. The
carrier density is expected to follow this pattern: carriers fill the valleys while
their number should decrease with the raise of the potential. This is essentially
the behavior of the quantum densities at Fig. 10 and Fig. 11. The former is
obtained for a spatial step of 0.2nm giving rise to a Wigner function with 41.106

elements. Since the great number of particles the evolution time reached after
30 days of CPU time of a regular 2.5 GHz PC is one picosecond only. Fig. 11
corresponds to a 0.4nm step: the dimension of the Wigner function is around one
order of magnitude smaller and the convergence is as much faster. The use of
such step became possible due to the algorithms avoiding the artificial diffusion.
A difference in the normalization factor along with some nuances in the shape
exist, e.g., in the density around the saddle point and the position of the left peak.
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Fig. 9. Convergence of the current

Fig. 10. Carrier density for a 0.2 nm mesh Fig. 11. Carrier density for a 0.4 nm mesh

Several factors can be responsible for this difference: the annihilation mesh is
different, the number of the used k states, the option that Fig. 10 is not yet in a
stationary state. These problems can not be answered without implementation
of MPI and GRID technologies which is currently underway.

4 Conclusions

A stochastic approach is developed within a semi-discrete Wigner-Weyl trans-
form, for which the problem of 2D Wigner transport is not an impossible numer-
ical task. The obtained first results are qualitative and mainly demonstrate the
convergence, which, furhtermore characterizes a large-scale computational prob-
lem. MPI and GRID technologies must be implemented to address the physical
aspects such as proper boundary conditions, normalization and resolution of the
incorporated quantum phenomena.
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Abstract. The paper presents the RELSYAN software, which is a tool
for reliability analysis of the reparable systems. One focus on the software
capability to consider, for a system, a model conceived by a pattern chart
(block diagram) plus one or more fault trees. The core of the discourse
is the simulation, using the Monte Carlo method, the functioning of the
system, taking into account different maintenance strategies, spare parts
and manpower policies, mission profiles, skills in operation and external
stress factors. The benefits of fast simulations are outlined.

Keywords: Reparable Systems, Pictorial Modeling, Reliability
Analysis, Maintenance Management, Monte Carlo Simulation.

1 Introduction

Due to the development of large industrial plants in Romania, in the computer
science era, efforts have been made so far as to design information systems meant
to contribute to their optimal control. In the paper, advanced solutions in sim-
ulating the systems functioning (which is the main yield of the Brite-Euram
95 – 1007 project “Innovative software tools for reliability centred maintenance
management”) will be presented. As the analytical and Markov chains based
methods have a lot of drawbacks, for example they do not allow time variable fail-
ure rates [1], RELSYAN will implement the Monte-Carlo simulation method to
analyse the infrastructure behaviour of a manufacturing/service/benchmarking/
other type system [7,3]. In order to create a solid basis for decision-making in
maintenance management, the software is able to simulate the life of a system
infrastructure taking into account different maintenance strategies, spare parts
and manpower policies, mission profiles, skills in operation and external stress
factors.
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2 System’s Model Building

The system structure and behavior will be specified using graphical editors [6]
which produce pattern charts (block diagrams) and fault trees. The pattern
chart, whose hierarchical editing is determined by the organizational structure,
will ask for data in the basic entities in maintenance database and organize them
in a graphical formalism which represents the system. Conceptually, the resulting
drawing is a directed graph. The graph nodes will be represented by pictograms,
either shadowed-outline rectangles if they indicate non-terminal structure ele-
ments (blocks), or regular-outline rectangles if they indicate terminal structure
elements (components). The graph arcs are connections among the structure
elements. They can be viewed in terms of failure effects, or even more, they
can acquire information about the nature of the tasks performed by a struc-
ture element on behalf of another structure element. In order to build a pattern
chart, a user has two types of micro-structures of pictograms which he/she may
invoke. The first type, known as standard micro-structures, contains series, par-
allel (k-out-of-n, consecutive or not), stand-by, with fault alarm device, bridge
micro-structures of components or blocks. The standard micro-structures are
pre-defined. The second type, known as specific (or user) micro-structures, in-
cludes user’s productions. Highly recurrent micro-structures will always direct
towards using such a facility. In fact, RELSYAN software will in time suppress
the differentiation between standard and specific micro-structures.

The fault tree cannot be but an alternative to the pattern chart. It can sup-
plement the system reliability analysis, which must be a very complex analysis.
The so-called stress factors (environmental, climate, and ambient conditions,
natural disasters such as flood, hurricanes, and earthquakes, conflicts, fires, sab-
otages, long mental and physical exhaustion, nonobservance of the maintenance
schedule, wrong operation of human factors, etc.) will always escape from the
pattern charts. A fault tree is a logical diagram describing the interactions be-
tween a potential critical event (an accident) of a system and the causal factors
of such an event. The RELSYAN software only refers to the quality-oriented
fault trees, while the quantitative analysis stays with the Monte-Carlo method,
which applies in simulating the system functioning. If the pattern chart insists
on the structural description, embedding the functional description, the fault
tree is mostly concerned with the functional description taking into account
even the external stress factors. While making a fault tree description, the user
calls for a generic pictogram, a rectangle with a proceeding symbol, the unde-
veloped symbol, which generates by means of customization any of the graphi-
cal symbols used in this case, namely and/or gates, out/in transfers and basic
events. To the elements of both types of diagrams, the user can attach attributes
referring to their identification and individual time-behaviour, if they are termi-
nal elements. Various failure and repair time models (exponential, normal, log-
normal, Weibull, Gamma, Pareto, Birnbaum-Saunders, Gumbel-small extreme,
inverse-Gaussian, Rayleigh, Fisk, etc.) are possible. Discrete random events are



150 C. Resteanu, I. Vaduva, and M. Andreica

simulated by using various discrete probability distributions (Bernoulli, bino-
mial, Pascal, Poisson, etc). Pattern charts and fault trees can be validated in an
explicit mode so that the user might be able to solve special situations such as:
incorrectness, inconsistency, incompleteness.

3 System Function in RELSYAN Context

The structure function Φ bridges the components state vector x = (x1, x2, . . .,
xn) and the system state, namely Φ : {0, 1}n → {0, 1} with Φ(x) = xs, where

xs =
{

1, if the system works
0, if the system has a breakdown

is the synthetical form of the system state. For a proper presentation of the
system function associated algorithms, one consider:

— V �= Φ, V = (v1, v2, . . . , vn) the vertices (or nodes) set, where n =card V ;
— A ⊆ V × V the arcs set, as an ordered set of 2-uples (vi, vj), vi, vj ∈ V .
DG = (V,A) is the directed graph which, in the condition that it is free

of circuits, can be the inner model for pattern charts and with the condition
od(vi) = 1, (∀) i = 1, n can be the inner model for fault trees. The inner
model is stored in a multi-m-tree shaped file, which is dynamically balanced
throughout editing the external model. This file can be used both for restoring
the drawing, by key-reading, and for rapidly restoring the graph, by sequential
reading. Notice that the same mechanism is valuable both for pattern chart
and fault tree. An m-tree contains a model page. The pages are linked by a
system of double pointers. Each page contains a sub-graph / sub-tree stored in
a specific gamma format (all emergent arcs from a node in a single record). In
order to obtain a very performing system function, one should next consider the
system as a directed graph where two privileged nodes categories are indicated,
the input nodes and the output nodes. The rest of nodes are considered to be
intermediary nodes. Based on the arc matrix A = (aij)1≤i,j≤n, the path matrix
P = (pij)1≤i,j≤n is obtained, where:

aij =
{

1, if the i-th node is linked with the j-th node,
0, otherwise,

and

pij =
{

1, if there is a path from the i-th node to the j-th node,
0, otherwise.

Theoretically, the path matrix will be calculated by consecutive raisings A =
A(1), A(k+1) = A(k) ⊗ A, for k = 1, 2, . . . , until A(k+1) = Ak is obtained.
The operation ⊗ is defined as follows: if we denote A = (aij)1≤i,j≤n, B =
(bij)1≤i,j≤n, C = (cij)1≤i,j≤n, then

A⊗B = C with cij = max
i≤k≤n

{min(aik, bkj)}.
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Fig. 1. Pattern chart: new system’s state after a transaction in X24
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Therefore P = A(k+1) for which A(k+1) = A(k). The matrix P, (i.e. path
matrix), is the simplest way for defining a structure function:

Φ(x) = pij =
{

1, if there is a path from the node i to the node j
0, otherwise.



152 C. Resteanu, I. Vaduva, and M. Andreica

One can easily notice that following any transaction on the arc matrix, and
through updating the path matrix, one instantly gets Φ(x) = pij . Fig. 1 and 2
show a graphical example for the evaluating of structure function, both for pat-
tern chart and fault tree, in the RELSYAN way, that replaces the above con-
suming time method by re-computing only the components’ status influenced by
the component which supports at a moment a staus changing.

4 Monte Carlo Simulations

Before starting the algorithm presentation, it is worth noting that the user will
be saved to invoke mathematical concepts of the reliability theory. The model
of the production system in its complexity, embedding its behavior over time
and the external stress factors, is the basis of informational content for the main
functions of the RELSYAN software.

4.1 Problems Building

Having a model, it is possible to build more problems that are different. For a
problem building, there are necessary: the input parameters such as the maximal
area of model consideration with a view to constructing a problem (the user may
specify the level in organizational structure, other than system-level, considered
as implicit), the time horizon, the identification code for a pre-defined mainte-
nance strategy, the switch that indicates whether the functioning calendar of
the system is under consideration or not, the switch that indicates whether the
production plan is under consideration or not, and the output parameters which
are related to the need to compute or not the detailed statistical indicators ex-
pressing the necessary resources by types of resources. The problems having the
same maximal area and time horizon are considered belonging to the same class.
A problem allows the parameters tuning in concordance with different desired
maintenance strategies. Therefore, starting from a given problem, a new problem
that belongs to the same class as the basic problem can be built.

4.2 Problem Solving by Monte Carlo Simulation

The solving method is the Monte Carlo method, tailored in accordance with
the specific demands of the maintenance activity. All types of maintenance jobs:
corrective (direct, postponed, curative), preventive (regular, conditional, system-
atic, cyclical, indicative, critical, limitative), mixed (functional, cellular, permis-
sive, cyclical, indicative), spare parts acquisition policies and modalities to use
the available manpower can be under consideration.

The main idea of the simulation model will be first underlined. We assume
that the system consists of independent components, in stochastic sense. Each
component Ci has its own clock time T [i] (or operational time) specified
separately for different types of maintenance (corrective, preventive, and mixed).
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In order to describe the correct dynamic behavior of the system, we will use
the technique of the variable increment clock time, which is calculated during
the simulation run as [2,10]: clock = min

1≤i≤n
T [i]. (1)

In short, the simulation algorithm looks as follows: initially the clock is zero
and the system components are set in some given states which are either read
into the computer or (better) generated from a specified distribution together
with their life times, i.e. the times components remain in these initial states; the
logical succession of states is also specified, e.g. is: 1, 0, 1, 0, ... etc. Then the
clock time is advanced according to the next event rule (i.e. given by (1)). The
components are then analyzed and processed by updating statistics of interest
as: counting some events (number of values with Φ(x) = 1, number of times
when financial resources are available for maintenance which can be used for
estimating system’s sufficiency etc.) updating sums of repair times or waiting
times or quantities of resources (e.g. spare parts or manpower) necessary to es-
timate the maintainability, updating costs of inventories of spare parts involved
in reliability management and so on. After simulating a trajectory, the required
reliability characteristics are determined. Then, using a large number of trajec-
tories, the estimates as arithmetic means, empirical variances or other statistics
are calculated giving more accurate information.

A structured description of the simulation algorithm, named RELSIM, is given
in the following:

begin
call INITP;
{This module initializes the simulation variables
and inputs the parameters of the model}

call INITSTATALL;
{This module initializes all statistics of the model}
call PRELIMSIM;
{This module simulates a small number NS of histories
in order to define the basic limits of the histograms and
contingency tables}
call DEFINETABLES;
{This module determines the limits of all
tables and initializes the frequencies}

for nrhist:=1 to N do {N is the number of histories to be
simulated}

begin
call INITHIST; {This module initializes data necessary

to simulate a history}
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call INITCLOCK; {Determine the initial clock of the his-
tory}

while clock ≤ TMAX {TMAX is time-duration of a
simulated history} do

begin
call MAINREL; {This is the main module}
call UPDATECLOCK; {This module updates the clock}

end;
call UPDATEHIST; {This updates statistics

for the current history}
end;
call OUTPUTSIM; {This module calculates the

output of simulation}
end.

The procedure INITP is almost self explanatory; it initializes all parameters
of the simulation model. But there is a necessity of some comments to be made
on INITSTATALL, PRELIMSIM, and DEFINETABLES. While each history
is simulated, it is produced one sampling value of some reliability character-
istics (e.g. availability, maintainability, etc.). By simulating many histories we
produce samples on these characteristics. The simulation estimates mean values,
variances, and correlation coefficients of these characteristics as well as their em-
pirical probability distributions (e.g. histograms or contingency tables for pairs of
such characteristics). All statistics used to calculate these estimates are initial-
ized in INITSTATALL. Here is a counter recording the number of system failures.
Its initial value is zero. The PRELIMSIM simulates initially a small number of
histories necessary to define limits of intervals of histograms. For instance if for
a variable Y the histogram has the limits of intervals a0, a1, a2, . . . , ak, the
PRELIMSIM simulates NS histories (the NS, NS < N , is a small integer) pro-
ducing the sample Y1, Y2, . . . , YNS and the DEFINETABLES calculates the
elements of the histogram:

a1 = min
1≤i≤NS

Yi, ak−1 = max
1≤i≤NS

Yi, δ = (ak−1 − a1)/(k − 2),

ai = a1 + (i− 1) ∗ δ, 1 ≤ i ≤ k − 1.

The limits a0 and ak will be updated during the simulation of the following
histories. Procedures INITHIST, INITCLOCK, and UPDATECLOCK are also
self explanatory; the INITHIST initializes the history and INITCLOCK initial-
izes the clocks of components and determines the first value of the system clock.
The last one for instance updates the clock according to formula (1).

The procedure MAINREL is one very important. Here are some comments
on it. This procedure selects first the event to be processed. If the component
whose clock is equal to the simulation clock in (1) is failed, then first it is repaired
(put in state 0), the structure function Φ is calculated and if Φ = 0 then the
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counter of failures is updated; otherwise the component is put to run (i.e. is in
state 1). In each case the corresponding times (repair or run) are simulated as
random variates and all sums are updated. For each current value of the clock,
appropriate statistical indicators (see bellow) are recorded and / or updated. The
procedure is complex and it can be expanded by computing various indicators,
both of technical or economical nature, and by considering diverse maintenance
or inspection specifications. It could be itself a huge computer package. In case
of repair, all situations deriving from maintenance policy are performed and
corresponding characteristics are calculated or updated. When necessary, various
probability distributions, involving even correlated variables, and other discrete
random events are simulated. (See for instance [10].)

The procedure UPDATEHIST updates all statistics with the output values
produced by the previous history and tabulates the corresponding characteristics
(in histograms or contingency tables) [4,5,8,9].

The procedure OUTPUTSIM calculates the estimates of mean values, vari-
ances and correlation coefficients, calculates the economic importance of the
components, estimates the reliability of the system, and displays the calculated
values. The output will offer estimations of the Reliability, Availability, Maintain-
ability (RAM) indicators. The offered statistics are of three kinds: basics, com-
plementary and details. Basic Statistical Indicators are: Reliability, Availability,
Maintainability, Spare parts costs, Manpower costs. Complementary Statisti-
cal Indicators are: Unavailability, Number of system failures, Down time, Down
time due to failures, Down time due to corrective maintenance, Down time due
to preventive maintenance, Down time due to lack of spare parts, Down time
due to lack of manpower, Total cost, Production loss cost due to unavailability,
Maintenance cost, Cost due to corrective maintenance, Cost due to preventive
maintenance, Cost due to lack of spare parts, Cost due to lack of manpower.

5 Conclusions

In order to obtain a clearer image of RELSYAN performances, an implemen-
tation result will be presented for a model of medium size and complexity
(500 nodes, 6 imbrications levels, all kinds of micro-structures, 30% k-out-of-
n micro-structures, two fault trees supporting events of exogenous nature with
125 nodes). The simulation was done over a year. The input data were offered by
the software company SIVECO-ROMANIA, which has done aplications for some
factories in Romania. This one year history is not relevant for testing; relevant
is the fact that were simulated 10 different maintenance strategies, 5000 histo-
ries (ensuring good estimates), and all the computing capabilities of the product
were taken into consideration. It was noticed that the span of evaluating the
system function, after the changes of variable’s states, took 15% out of the total
running time. The performance was considered very well because, on a Pentium
4 computer, this task takes only one hour. To the authors’ knowledge, no famous
product is available on the market, which can concurrently consider, during a
Monte Carlo simulation process, a hybrid model consisting of a pattern chart
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and more fault trees. The situation is the same for the couple system function,
Monte Carlo simulation. As one can see, to put simulation at work is obtained a
good maintenance strategy and, in the same time, a good resources (spare parts
and manpower) policy, which is very usefull in maintenance management.
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Abstract. We generalize the Monte Carlo algorithm originally designed
for small signal analysis of the three-dimensional electron gas to quasi-
two-dimensional electron systems. The method allows inclusion of ar-
bitrary scattering mechanisms and general band structure. Contrary to
standard Monte Carlo methods to simulate transport, this algorithm
takes naturally into account the fermionic nature of electrons via the
Pauli exclusion principle. The method is based on the solution of the lin-
earized Boltzmann equation and is exact in the limit of negligible driving
fields. The theoretically derived Monte Carlo algorithm has a clear phys-
ical interpretation. The diffusion tensor is calculated as an integral of
the velocity autocorrelation function. The mobility tensor is related to
the diffusion tensor via the Einstein relation for degenerate statistics.
We demonstrate the importance of degeneracy effects by evaluating the
low-field mobility in contemporary field-effect transistors with a thin sil-
icon body. We show that degeneracy effects are essential for the correct
interpretation of experimental mobility data for field effect transistors in
single- and double-gate operation mode. In double-gate structures with
(100) crystal orientation of the silicon film degeneracy effects lead to an
increased occupation of the higher subbands. This opens an additional
channel for elastic scattering. Increased intersubband scattering compen-
sates the volume inversion induced effect on the mobility enhancement
and leads to an overall decrease in the mobility per channel in double-
gate structures.

1 Introduction

Monte Carlo is a well-established numerical method to solve the Boltzmann
transport equation. Traditionally, the so called forward Monte Carlo technique [5]
is used to find the distribution function. Within this approach, particles are mov-
ing on classical trajectories determined by Newton’s law. The motion along the
trajectory is interrupted by scattering processes with phonons and impurities.
Scattering is modeled as a random process. The duration of a free flight, the
scattering mechanism and the state after scattering are selected randomly from
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a given probability distribution which is characteristic of the scattering process.
This technique of generation sequences of free flights and scattering events ap-
pears to be so intuitively transparent that it is frequently interpreted as a direct
emulation of transport process. Due to the Pauli exclusion principle, scattering
into an occupied state is prohibited. Therefore, scattering rates depend on the
probability that the final state is occupied, given by the distribution function,
which is the solution of the Boltzmann equation. Dependence of scattering rates
on the solution makes the Boltzmann transport equation nonlinear. In many
cases the occupation numbers are small and can be safely neglected in transport
simulations for practically used devices. With downscaling of semiconductor de-
vices continuing, the introduction of double-gate (DG) silicon-on-insulator field-
effect transistors (FETs) with ultra-thin (UTB) silicon body seems increasingly
likely [6]. Excellent electrostatic channel control makes them perfect candidates
for the far-end of ITRS scaling [1]. However, in UTB FETs degeneracy effects are
more pronounced, and their proper incorporation becomes an important issue
for accurate transport calculations.

Different approaches are known to include degeneracy effects into Monte Carlo
algorithms. One method is to compute the occupation numbers self-consis- tently
[2,8]. This approach is applicable not only to mobility simulations at equilibrium
but also for higher driving fields [7]. When the distribution function is close to the
equilibrium solution, the blocking factor can be approximated with the Fermi-
Dirac distribution function [3]. A similar technique to account for degeneracy
effects was recently reported in [14].

In this work we use a Monte Carlo algorithm originally developed for three-
dimensional simulations [10] which was recently generalized to a quasi-two-
dimen- sional electron gas [11,4]. This method incorporates degeneracy effects
exactly in the limit of vanishing driving fields and is valid for arbitrary scattering
mechanisms and for general band structure. We demonstrate that in UTB DG
FETs degeneracy effects lead to a qualitatively different mobility behavior than
in the classical simulations. Degeneracy results in higher occupation of upper
subbands which substantially increases intersubband scattering in (100) UTB
DG FETs, resulting in a mobility decrease.

2 Simulation Method

In order to obtain the low-field mobility in UTB FETs, we compute the response
of a quasi-two dimensional electron system to the small electric field E(t). The
system is described by a set of subband functions ψn(z) in the confinement di-
rection and dispersions En(k) relating subband energies to the two-dimensional
quasi-momentum k = (kx, ky) along Si/SiO2 interfaces. Representing the distri-
bution function as f(En(k, t)) = f0(En(k)) + δfn(k, t), where f0(En(k)) is the
equilibrium Fermi-Dirac distribution and δfn(k, t) is a small perturbation, we
arrive to the system of coupled linearized subband equations:

∂δfn(k, t)
∂t

= −eE(t)∇kf0(En(k)) + Qn[δf ], (1)
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where Qn is the scattering operator of the linearized Boltzmann equation

Qn[δf ] =
∑
m

∫
d2k′

(2π)2
(Λnm(k,k′)δfm(k′, t)− Λmn(k′,k)δfn(k, t)). (2)

The scattering rates Λmn(k,k′) in (2) are related to the rates Smn(k,k′) of the
original Boltzmann equation via

Λmn(k′,k) = (1− f0(Em(k′)))Smn(k′,k) + f0(Em(k′))Smn(k,k′), (3)

where f0(E) is the Fermi-Dirac distribution function, and En(k) is the total
energy in the n-th subband. The equation for the perturbation has a form similar
to the Boltzmann equation, with two important differences: (i) a source term
which depends on the small driving field and is proportional to the derivative of
the equilibrium function is present, and (ii) it has renormalized scattering rates
which enforce the equilibrium solution of the homogeneous equation (1) to be
f0(En(k))(1 − f0(En(k))), and not f0(En(k)).

In order to calculate the mobility, a subband Monte Carlo method is used to
solve the system (1). Following the procedure outlined in [10], we assume the
time dependence of the driving field to be a set of instantaneous delta-like pulses:

E(t) = E0τ
∑

i

δ(t− ti), (4)

In (4) E0 is the value of the field averaged over a long simulation time T

E0 =
1
T

∫ T

0

dt E(t).

Then τ is the average period between the delta-pulses.
We compute the current response Ii(t) produced by an electric field pulse at

the moment ti as

Ii = eH(t− ti)
∑
m

∫
d2k

(2π)2
vm(k)δfm(k, t− ti), (5)

where v is the velocity, and H(t) is the Heaviside function. The instanteneous
current density J(t) =

∑
i Ii is calculated as the sum over current densities Ii

produced by all pulses i. The current density value averaged over the long time
T is expressed as J =

(∑
i

∫ T

0 dtIi(t)
)
/T . The low field mobility is defined as

µαβ = Jα/(enEβ), where the direction of β-axis coincides with the direction of
E0, and n is the carrier concentration. Now the mobility can be easily computed
using a single-particle Monte Carlo technique.

The method can be illustrated as follows. The diffusion tensor Dαβ is calcu-
lated as an integral of the velocity autocorrelation function [9]

Dαβ =
∫ ∞

0

dτ 〈vα(t)vβ(t + τ)〉 , (6)
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where angular brackets denote the time averaging over the stochastic dynamics
determined by the rates Λmn(k,k′) of the linearized multi-subband Boltzmann
scattering integral in case of degenerate statistics. The mobility tensor µ̃αβ is
related to the diffusion tensor via the Einstein relation for degenerate statistics

µ̃αβ = eDαβ
1
n

δn

δEF
, (7)

where EF is the Fermi level.
In order to compute the mobility, we accumulate three temporary estimators

t, wβ , and ναβ during the Monte Carlo simulations:
(i) initialize t = 0, wβ = 0, ναβ = 0, and start the particle trajectory with the

stochastic dynamics determined by the scattering rates Λmn(k,k′) from (3) of
the linearized multi-subband Boltzmann equations;

(ii) before each scattering event update ναβ , wβ , and t:

t = t +
τ(j)

1− f(E(j))
,

wβ = wβ + vβ(j)τ(j),
ναβ = ναβ + τ(j)vα(j)wβ(j);

(iii) When t is sufficiently large, compute the mobility tensor as

µ̃αβ =
e

kBT

ναβ

t
,

where vα(j) denotes the α-component of the velocity, E(j) is the particle energy,
f(E) is the Fermi-Dirac function, and τ(j) is the time of j-th free flight. The
convergence of the method is improved by resetting wβ = 0 each time a velocity
randomizing scattering event occurs.

3 Degeneracy Effects and Intersubband Scattering

We demonstrate the importance of degeneracy effects by evaluating the low-field
mobility in inversion layers and in UTB FETs. The phonon-limited mobility in
inversion layers shows a different behavior if the Pauli exclusion principle is taken
into account. However, if surface roughness scattering is included, the relative
difference decreases, and the universal mobility curve can be reproduced equally
well using both degenerate and nondegenerate statistics [14], as shown in Fig. 1.

In UTB FETs degeneracy effects are expected to be more pronounced. We
consider as example a 3 nm thick (100) UTB FET. The nondegenerate statistics
is assured by using the rates Smn(k′,k) of the original Boltzmann equation in
the Monte Carlo algorithm described above. Results of mobility calculations for
single-gate (SG) and DG structures, with and without degeneracy effects taken
into account in the Monte Carlo simulations are summarized in Fig. 2. Mobility
in a DG FET is plotted as function of the carrier concentration per channel, or
NDG/2. When degeneracy effects are neglected, the DG mobility is superior as
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Fig. 1. Effective mobility of a Si inversion layer at (100) interface computed with
Boltzmann (open symbols) and Fermi-Dirac (filled symbols) statistics reproduces well
the universal mobility curve [12] (circles). Phonon-limited mobility for degenerate and
nondegenerate statistics is also shown.
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Fig. 2. Mobility in 3 nm thick (100) SG (circles) and DG (squares) structures computed
with Boltzmann (open symbols) and Fermi-Dirac (filled symbols) statistics

compared to the SG mobility. When the degeneracy effects are included, behavior
of the DG mobility is qualitatively different. Namely, the DG mobility becomes
lower than the SG mobility at high carrier concentrations, in agreement with
experimental data [13].
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Fig. 3. Mobility in (100) 3 nm thick DG (squares) and SG (circles) structures computed
with (open symbols) and without (filled symbols) in-plane biaxial stress of 1.6 GPa.
Inset: occupation of primed subbands in relaxed (filled symbols) and biaxially stressed
(open symbols) DG structure.

The difference between the mobility values for degenerate and nondegenerate
statistics shown in Fig. 2 looks surprising. Indeed, at high carrier concentra-
tions the principal scattering mechanism limiting the low-field mobility is elastic
surface roughness scattering. For elastic scattering the forward and inverse scat-
tering rates are equal: Sel

mn(k′,k) = Sel
nm(k,k′), so that the Pauli blocking factor

cancels out from the equations for the elastic scattering rates (3), and degener-
acy effects seem to be irrelevant. This is not correct, however, since the Pauli
blocking factor is also present in the inelastic electron-phonon part of the total
scattering integral and ensures the equilibrium solution to be the Fermi-Dirac
distribution function. In case of Fermi-Dirac statistics the Fermi level in a DG
FET is higher than in a SG FET, due to twice as high carrier concentration
for the same gate voltage [11]. This results in a higher occupation of upper
subbands. To study the influence of the occupation of primed subbands on the
mobility lowering in (100) DG FETs we apply a biaxial stress of 1.6 GPa. This
level of stress provides an additional splitting between the primed and unprimed
subbands high enough to depopulate the primed ladder completely. Results of
the mobility simulation in 3 nm DG and SG structures, with biaxial stress ap-
plied, are shown in Fig. 3 together with the results for the unstrained structure.
Both mobilities in strained and unstrained structures are similar in the whole
range of concentrations. The inset displays the population of primed subbands
in a 3 nm DG structure, showing that the primed ladder in a strained FET is
practically depopulated. Since the mobilities of strained and unstrained UTB
FETs are almost equivalent for both SG and DG structures, it then follows that
the higher occupation of primed subbands is not the reason for the DG mobility
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Fig. 4. Mobility in 3 nm thick (100) structures, computed with and without (Inset)
inter-subband scattering. Higher carrier concentration in a UTB DG structure (squares)
at the same gate voltage pushes the Fermi-level up and opens additional inter-subband
scattering channels between unprimed subbands. It decreases the mobility in (100)
UTB DG FETs below its SG values (diamonds) at high carrier concentrations.

lowering in (100) DG UTB structures. Another consequence of twice as high car-
rier concentration in a DG UTB FET is the higher occupation of upper unprimed
subbands. When the carrier energy is above the bottom E1 of the next unprimed
subband, and intensive elastic intersubband scattering occurs. This additional
scattering channel leads to a step-like increase in the density of after-scattering
states, which results in higher scattering rates.

To demonstrate the importance of intersubband scattering for mobility cal-
culations, we artificially switch off the scattering between unprimed subbands.
We consider degenerate statistics and restore screening. Results of the mobility
calculations for a 3 nm thick UTB structure, with and without intersubband
scattering are shown in Fig. 4. Without intersubband scattering, the DG FET
mobility is higher than the corresponding SG mobility, in analogy to nondegen-
erate results. It confirms our finding that as soon as the additional intersubband
scattering channel becomes activated, the DG mobility value sinks below the SG
mobility.

4 Conclusion

The Monte Carlo algorithm originally designed for small signal analysis of the
three-dimensional electron gas response is generalized to quasi-two-dimensional
electron systems. In the limit of vanishing driving fields the method includes
degeneracy effects exactly. The method is valid for arbitrary scattering rates and
includes realistic band structure. The Monte Carlo method is applied to compute
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the low-field mobility in UTB FETs. It is demonstrated that degeneracy effects
play a significant role in compensating the volume inversion induced mobility
enhancement in (100) DG structures. They lead to a significant occupation of
higher subbands in the unprimed ladder, which results in increased intersubband
scattering and mobility lowering.
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Abstract. Multidimensional engine simulation is a very challenging
field, since many thermofluid processes in complex geometrical config-
urations have to be considered. Typical mathematical models involve
the complete system of unsteady Navier-Stokes equations for turbulent
multi-component mixtures of ideal gases, coupled to equations for mod-
eling vaporizing liquid fuel spray and combustion. Numerical solutions
of the full system of equations are usually obtained by applying an oper-
ator splitting technique that decouples fluid flow phenomena from spray
and combustion, leading to a solution strategy for which a sequence of
three different sub-models have to be solved. In this context, the solu-
tion of the combustion model is often the most time consuming part of
engine simulations. This work is devoted to obtain high-performance so-
lution of combustion models in the overall procedure for simulation of
engines in a distributed heterogeneous environment. First experiments
of multi-computer simulations on realistic test cases are discussed.

1 Introduction

The design of modern engines relies on sophisticated technologies devoted to re-
duce pollutant emissions and combustion noise. The impact on engine modeling
is the need of accurately simulating highly complex, different physical-chemical
phenomena occurring in each engine cycle. Mathematical models for the descrip-
tion of the overall problem typically involve unsteady Navier-Stokes equations
for turbulent multi-component mixtures of ideal gases, coupled with suitable
equations for fuel spray and combustion modeling. The solution of the overall
model usually relies on an operator splitting technique, where different physical
phenomena are decoupled, and different sub-models are separately solved on a
3d computational grid.
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In recent years much attention has been addressed to the combustion
models, by introducing detailed chemical reaction models, where the number
of the chemical species and the reactions to be considered reach also several
hundreds. Therefore, the numerical solution of chemistry has become one of the
most computationally demanding parts in simulations, thus leading to the need
of efficient combustion solvers. The typical main computational kernel in this
framework is the solution of systems of non-linear Ordinary Differential Equa-
tions (ODEs), characterized by a very high stiffness degree. The chemical re-
actions do not introduce any coupling among grid cells, therefore combustion
models show an instrinsic parallelism to be exploited for making possible even
more detailed chemical models and advanced solution methods, as reported in
[2,3]. In this work we focus on the efficient implementation of a distributed com-
bustion solver in heterogeneous environments, by using MJMS, a Multi-site Job
Management System for execution of MPI applications in a Grid environment
[5]. The combustion solver is based on the CHEMKIN-II package for managing
detailed chemistry and on a multi-method ODE solver for the solution of the
ODE systems arising from the chemical reaction model. The software is inter-
faced with the sequential KIVA3V-II code [1] for the simulation of the entire en-
gine cycle. The paper is organized as follows. In Section 2 we report the complete
system of unsteady compressible Navier-Stokes equations used in the KIVA3V-II
code and we describe the detailed combustion model used for our simulations. In
Section 3 we describe the main features of the combustion solver, both in terms
of employed numerical algorithms and software and in terms of the distributed
implementation. In Section 4 we analyze results of simulations on a realistic test
case. Some conclusions and future work are included in Section 5.

2 Mathematical Models for Engine Simulations

Mathematical models for engine simulations, such as that employed into
KIVA3V-II, usually solve the following system of equations:

– Species continuity:

∂ρm

∂t
+∇ · (ρmu) = ∇ · [ρD∇(

ρm

ρ
)] + ρ̇c

m + ρ̇s
mδml

where ρm is the mass density of species m, ρ is the total mass density, u
is the fluid velocity, ρ̇c

m is a source term due to combustion, ρ̇s
m is a source

term due to spray and δ is the Dirac delta function.
– Total mass conservation:

∂ρ

∂t
+∇ · (ρu) = ρ̇s

– Momentum conservation:
∂(ρu)
∂t

+∇ · (ρuu) =

− 1
α2
∇p−A0∇(

2
3
ρk) +∇ · σ + Fs + ρg
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where σ is the viscous stress tensor, Fs is the rate of momentum gain per unit
volume due to spray and g is the constant specific body force. The quantity
A0 is zero in laminar calculations and unity when turbulence is considered.

– Internal energy conservation:

∂(ρI)
∂t

+∇ · (ρIu) =

−p∇ · u + (1−A0)σ : ∇u−∇ · J + A0ρε + Q̇c + Q̇s

where I is the specific internal energy, the symbol : indicates the matrix
product, J is the heat flux vector, Q̇c and Q̇s are the source terms due to
combustion heat release and spray interactions.

Two additional transport equations are considered. These are the standard K−ε
equations for the turbulence with terms due to interaction with spray. Suitable
initial and boundary conditions are added to the equations.

In the above mathematical model, the source term ρ̇c
m defines the contribution

of the chemical reactions to the variation in time of mass density for species m.
Its computation is decoupled from the solution of the Navier-Stokes equations,
following a linear operator splitting that separates contribution of chemistry
and contribution of spray from equations driving the turbulent fluid flow. Unlike
the original KIVA3V-II code, where a reduced chemical reaction mechanism is
solved, we consider a complex and detailed chemical reaction model for Diesel
engine simulations. The model is based on a recent detailed kinetic scheme, which
involves 62 chemical species and 285 reactions. The kinetic scheme considers the
H abstraction and the oxidation of a N-dodecane, with production of alchil-
peroxy-radicals, followed by the ketoydroperoxide branching. In the model the
fuel pirolysis determines the chetons and olefins formation. Moreover, a scheme
of soot formation and oxidation is provided, together with a classical scheme
of NOx formation. The reaction system is expressed by the following system of
non-linear ODEs:

ρ̇m = Wm

R∑
r=1

(bmr − amr)ω̇r(ρ1, . . . , ρm, T ), m = 1, . . . ,M, (1)

where R is the number of chemical reactions involved in the system, ρ̇m is the
production rate of species m, Wm is its molecular weight, amr and bmr are
integral stoichiometric coefficients for reaction r and ω̇r is the kinetic reaction
rate.

Production rate terms can be separated into creation rates and destruction
rates [7]:

ρ̇m = Ċm − Ḋm, m = 1, ...M, (2)

where Ċm, Ḋm are the creation and the destruction rate of species m respec-
tively. It holds

Ḋm =
Xm

τc
m

, m = 1, ...M, (3)
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where Xm is the molar concentration of species m and τc
m is the characteristic

time of species m, that is, the time needed by species m to reach equilibrium
state. Expression (3) shows that the eigenvalues of the Jacobian matrix of the
right-hand side of system (1) are related to the characteristic times of species
involved in the combustion model. Detailed reaction models involve a great num-
ber of intermediate species and no equilibrium assumption is made. Thus, the
overall reaction systems include species varying on very different timescales; this
motivates the high stiffness degree that typically characterizes ODE systems
arising in this framework. Note that, in order to take into account the effects of
the turbulence during the combustion, we consider an interaction model between
complex kinetics and turbulence which preserves the locality of the reaction pro-
cess with respect to the grid cells [3].

3 Distributed Solution of Combustion Model

In this Section we describe the main features of the software component we
developed for distributed solution of complex chemical reaction schemes in sim-
ulation of Diesel engines. The computational kernel is the solution of a system
of non-linear ODEs per each grid cell of a 3d computational domain, at each
time step of an operator splitting procedure. Since reaction schemes do not in-
troduce any coupling among the grid cells, the solution of the ODE systems is
a so-called inherently distributed problem, and we can exploit modern features
of Grid environments in order to obtain high-performance solution of reaction
schemes in large-scale simulations.

In our software, the systems of stiff ODEs are solved by means of a multi-
method solver, based on an adaptive combination of a 5-stages Singly Diagonally
Implicit Runge-Kutta (SDIRK) method [6] and variable coefficient Backward
Differentiation Formulas (BDF) [4]. Results on the use of the multi-method
solver in the solution of detailed chemical kinetics arising from multidimensional
Diesel engine simulations are reported in [3].

Note that physical stiffness is strongly related to local conditions, therefore,
when adaptive solvers are considered in a distributed environment, also including
heterogeneous resources, data partitioning and process allocation become critical
issues for computational load balancing and reduction of idle times.

In order to reduce the impact of local stiffness and adaptive solution strate-
gies on a possible computational load imbalance, our software component sup-
ports a data distribution where systems of ODEs related to contiguous cells
are assigned to different processors. To this aim, grid cells are reordered ac-
cording to a permutation of indices, deduced by a pseudo-random sequence,
and the ODE systems per each grid cell are distributed among the available
processes, following the new order of the grid cells. Furthermore, in order to
take into account possible load imbalance due to the use of heterogeneous re-
sources, the ODE systems are distributed on the basis of CPU performances,
as we explain in the following, so that faster processors get more workload. Our
software is written in Fortran and it is based on CHEMKIN-II [7], a software
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package for managing large models of chemical reactions in the context of sim-
ulation software. It provides a database and a software library for computing
model parameters involved in system (1). The parallel software component for
combustion modeling is also interfaced with the sequential KIVA3V-II code, in
order to properly test it within real simulations.

The distributed implementation of our combustion solver relies on a job man-
agement system, named MJMS (Multi-site Jobs Management System) [5]. This
system interacts with the pre-webservices portions of the Globus Toolkit 4.0 for
job submission and monitoring, with the MPICH-G2 implementation of MPI for
interprocess communication on Grids and with the Condor-G system for job al-
location and execution. MJMS allows the users to submit execution requests for
multi-site parallel applications which consist of multiple distributed processes
running on one or more potentially heterogeneous computing resources in dif-
ferent locations. The processes are mapped on the available resources according
to requirements and preferences specified by the user in order to meet the ap-
plication needs. In our context we require multiple parallel computing resources
for the execution of the combustion solver. Once the resources have been se-
lected, MJMS makes available the information about the number of processors
for each computing resource and the corresponding CPU performances, then our
application, taking into account the above information, configures itself at run
time in order to perform a balanced load distribution. This data distribution is
achieved through the algorithm described as follow. Let p1, ..., pn be the number
of processors respectively for the n computing resources c1, ..., cn selected by the
system and let cpow1, . . . , cpown be the corresponding CPU performances. The
algorithm computes

powmin = min{cpow1, . . . , cpown}
and k1, ..., kn such that

ki =
cpowi

powmin
, i = 1, . . . , n

Then it computes the factor

f =
1∑n

i=1 piki

so that each processor of the ci computing resource get the fraction f · ki of the
total workload, i.e. each processor, at each time step, owns the data for solving
the ODE systems related to f · ki · ncells computational grid cells, where ncells
is the total number of active grid cells. Note that in the previous algorithm
we neglect possible performance degradations due to network heterogeneity and
interprocess communication and synchronization, which we are going to consider
for future experiments.

4 Numerical Experiments

In this Section we show preliminary results concerning distributed simulations
performed on a prototype, single cylinder Diesel engine, having characteristics
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Table 1. Multijet 16V Engine Characteristics

Bore[mm] 82.0
Stroke[mm] 90

Compression ratio 16.5:1
Engine speed 1500 rpm

Displacement[cm3] 475
Valves per cylinder 4

Injector microsac 7 holes Φ 0.140 mm
Injection apparatus Bosch Common Rail III generation

Fig. 1. Computational grid

similar to the 16 valves EURO IV Fiat Multijet. Main engine parameters are
reported in Table 1. Our typical computational grid is a 3d cylindrical sector
representing a sector of the engine cylinder and piston-bowl. It is formed by about
3000 cells, numbered in counter-clockwise fashion on each horyzontal layer, from
bottom-up (Figure 1).

The structure of the active computational grid changes within each simulation
of the entire engine cycle in order to follow the piston movement into the cylinder.
The limit positions of the piston, that is the lowest point from which it can leave
and the highest point it can reach, are expressed with respect to the so called
crank angle values and they correspond to −180o and 0o.

ODE systems have been solved by means of the multi-method solver we devel-
oped. In the stopping criteria, both relative and absolute error control tolerances
were considered; at this purpose, we defined two vectors, rtol and atol, respec-
tively. In all the experiments here analyzed atol values were fixed in dependence
of the particular chemical species. The reason motivating this choice relies on the
very different concentrations characterizing chemical species involved in detailed
reaction models. All the components of rtol were set to 10−3, in order to satisfy
the application accuracy request.

We carried out our preliminary experiments using a small Grid testbed com-
posed of two Linux clusters:
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– Vega: a Beowulf-class cluster of 16 nodes connected via Fast Ethernet, oper-
ated by the Naples Branch of the Institute for High-Performance Computing
and Networking (ICAR-CNR). Each processor is equipped with a 1.5 GHz
Pentium IV processor and a RAM of 512 MB.

– Imbeo: a Beowulf-class cluster of 16 nodes connected via Fast Ethernet, op-
erated by the Engine Institute (IM-CNR). Eight nodes are equipped with a
2.8GHz Pentium IV processor, while the others have a 3.8GHz Pentium IV
processor. All the processors have a RAM of 1 GB.

The Globus Toolkit 4.0 and MPICH-G2 rel. 1.2.5.2 are installed on both clusters
as Grid middleware; MPICH 1.2.5 based on the ch p4 device is the local version
of MPI library.

MJMS gathers the information about the CPU performances provided by the
Globus Information System as ClusterCPUsSpecF loat value and the applica-
tion configures itself at run time by using those information as cpowi values. Note
that this feature becomes more important in a general Grid environment, where
available resources are not known in advance. The ClusterCPUsSpecF loat
value obtained for the single processor of Vega is 534 Mflops, while a value
of about 1474 Mflops is obtained for the processors of Imbeo. Therefore, the
workload factor Ki is 1 for the first ones (processors of cluster c1) and nearly
3 for the latter ones (processors of cluster c2). This means that adding the 16
processors of Vega to the 16 processors of Imbeo can be seen as an increase of
about 25% of the computational power of Imbeo.

In our experiments, we ran engine simulations for the Crank angle interval
[−180, 40] both on each cluster, using the local version of MPI, and also on the
Grid testbed via MPICH-G2. For the distributed simulations we analyzed the
performances, in terms of the total execution times, running the code for increas-
ing values of the workload factor K2, starting from the value 1, corresponding
to a 50% of workload for each resource, in terms of the total number of grid cells
assigned to the resources. As expected, we obtained performance improvements
with respect to the best parallel performance for K2 ≥ 3. The improvement
is about 15.5% of the performance obtained on 16 processors of Imbeo, when
K2 = 3 is used. The total execution times obtained on each cluster and also for
the distributed simulation, when we choose K2 = 3, are reported in Table 2.

Table 2. Total execution times in seconds

Vega 4307
Imbeo 1480

Grid (Vega+Imbeo) 1250

5 Conclusions

In this work we present preliminary results of some experiments in using hetero-
geneous distributed resources for high-performance solution of detailed chemi-
cal reaction models in engine simulations. The inherently distributed chemical
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reaction model is solved in a Grid environment composed of different Linux clus-
ters operated in different sites. Distribution of workload is based on a strategy
that take into account both model features, such as local stiffness and use of
adaptive solvers, and platform features, such as different computational power
of processors, in order to get performance in distributed engine simulations. Pre-
liminary results on a small size test case are encouraging, therefore, future work
will be devoted to improve the model to estimate process workload, also tak-
ing into account data communication and synchronization, and to analyze the
performance of our approach on larger problems and larger Grid platforms.
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Abstract. We propose an approach to identifying the solutions of the
steady incompressible Navier-Stokes equations for high Reynolds num-
bers. These cannot be obtained as initial-value problems for the unsteady
system because of the loss of stability of the latter. Our approach consists
in replacing the original steady-state problem for the Navier-Stokes equa-
tions by a boundary value problem for the Euler-Lagrange equations for
minimization of the quadratic functional of the original equations. This
technique is called Method of Variational Imbedding (MVI) and in this
case it leads to a system of higher-order partial differential equations,
which is solved by means of an operator-splitting method. As a featuring
example we consider the classical flow around a circular cylinder which
is known to lose stability as early as for Re = 40. We find a station-
ary solution with recirculation zone for Reynolds numbers as large as
Re = 200. Thus, new information about the possible hybrid flow regimes
is obtained.

1 Introduction

Navier-Stokes (N-S) equations, describing the flows of viscous incompressible
liquid, exhibit reach phenomenology. Especially challenging are the flows for
high Reynolds numbers when the underlying stationary flow loses stability and
a complex system of transients takes place leading eventually to turbulence. In
high Reynolds numbers regimes, the steady solution still exists alongside with the
transients, but cannot be reached via numerical approximations of the standard
initial-boundary value problem. It is important for the theory of the N-S model,
to find the shape of the stationary solution even when it loses stability.

To illustrate the point of the present work, we consider the classical flow
around a circular cylinder which has attracted the attention because of the early
instability and intriguing transitions to turbulence. The flow becomes unstable
as early as Re = 40 and the stationary regime is then replaced by an unsteady
laminar flow called “Kármán vortex street, for 40 < Re < 100. With further
increase of the Reynolds number the experiments show that the flow ends up
in the turbulent regime around Re = 180. The appearance of 3D instabilities
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around Re = 200 was also confirmed by direct numerical simulations [9]. In
spite of the many numerical calculations of the flow past a circular cylinder,
accurate steady-state solutions for very large Reynolds numbers up to about
700 have been obtained only by Fornberg [7,8]. In his works, Fornberg reached
high values of Reynolds number by means of a smoothing technique, which
means that the problem is still not rigorously solved and is open to different
approaches.

Although some agreement between theoretical, numerical and experimental
results exists, there is a need for further work in this classical problem. To
answer some of the above questions, we present here a new approach to identify
the two-dimensional steady-state solution of N-S for the flow around a circular
cylinder.

2 Problem Formulation

Consider the two-dimensional steady flow past a circular cylinder. The governing
equations and the boundary conditions are presented in dimensionless form and
polar coordinates (r, ϕ). The N-S equations read

Ω = ur
∂ur
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where ur = u(r, ϕ) and uϕ = v(r, ϕ) are the velocity components parallel re-
spectively to the polar axes r and ϕ; p = p(r, ϕ) is the pressure. Furthermore,
D ≡ ∂2

∂r2 + 1
r

∂
∂r −

1
r2 + 1

r2
∂2

∂ϕ2 is the so-called Stokesian. As usually, the Reynolds
number (Re = U∞d/ν) is based on the cylinder diameter d = 2a, velocity at
infinity U∞, with ν standing for the kinematic coefficient of viscosity. In terms
of dimensionless variables, the cylinder surface is represented by r = 1 and the
velocity at infinity is taken equal to the unity, i.e., U∞ = 1.

The boundary conditions reflect the non-slipping at the cylinder surface and
the asymptotic matching with the uniform outer flow at infinity, i.e. at certain
large enough value of the radial coordinate, say, r∞. Due to the flow symmetry
the computational domain may be reduced. Thus

ur(1, ϕ) = uϕ(1, ϕ) = 0,
ur(r∞, ϕ) = cosϕ, uϕ(r∞, ϕ) = − sinϕ,

uϕ =
∂ur

∂ϕ
=

∂p

∂ϕ
= 0 at ϕ = 0 and ϕ = π.

(4)
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3 Method of Variational Imbedding (MVI)

For tackling inverse and incorrect problems Christov [1] developed the already
mentioned MVI. Consider the imbedding functional of the governing equations
(1)–(3)

J (ur, uϕ, p) =
∫ π

0

∫ ∞

1

(
Φ2 + Ω2 + X2

)
r drdϕ. (5)

The idea of MVI is to solve the equations of Euler-Lagrange, which are the
necessary conditions of the minimization of the functional with respect to ur,
uφ, and p, respectively[
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The last equation after acknowledging the continuity equation becomes the
well-known Poisson equation for pressure
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To Eq. (4) we add also the so-called natural boundary conditions for mini-
mization, which in this case reduce to Φ = Ω = Ξ = 0 for r = a and r = r∞.

4 Interpretation of the MVI System and Implementation

Preserving the implicit nature of the system is of crucial importance because
of the implicit nature of the boundary conditions, which involves the continu-
ity equation but does not have explicit condition on pressure. To this end we
introduce the vector unknown and right-hand sides

θθθ = Column[Φ, uφ, Ω, ur, p], F = Column[FΦ, Fuϕ , FΩ, Fur , F p], (10)
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We denote the linear differential operators as Λr = ∂
∂r , Λϕ = 1
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Then the matrix operators have the form
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The original system under consideration is non-linear but the way we in-
troduced the non-homogeneous vector F hints at the obvious linearization: we
invert just the linear operators Li. The iterative procedure is based on the op-
erator splitting and the novel element here is that we perform the splitting in
the vector form of the system. We generalize the second Douglas scheme [6],
sometimes called the scheme of stabilizing correction (see also [15]) in the form

θθθn+ 1
2 − θθθn

σ
= L1θθθ

n+ 1
2 + L2θθθ

n + F n,
θθθn+1 − θθθn+ 1

2

σ
= L2θθθ

n+1 − L2θθθ
n, (12)

or, which is the same

(I − σL1)θθθ
n+ 1

2 = (I + σL2)θθθ
n + σF n, (I − σL2)θθθ

n+1 = θθθn+ 1
2 − τL1θθθ

n, (13)

where σ is the increment of the artificial time, and L1 and L2 are one-dimensional
operators. The superscript n stands for the “old” time stage, n + 1

2 for the
intermediate step and (n + 1) – for the “new” step.
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Fig. 1. Grid-points distribution

The scheme of stabilizing correction approximates in the full time step the
backward Euler scheme and, therefore, for linear systems it is unconditionally
stable. For the nonlinear problem under consideration it retains its strong sta-
bility allowing us to choose rather large time increments σ and to obtain the
steady solution with fewer steps with respect to the artificial time.

We chose finite difference method with symmetric differences for the spatial
discretization. The number of points in r direction is M , and in φ direction – N .
The pointwise values of the set functions that comprise the vector of unknowns θθθ
are arranged in the same order and as a result we get a vector of dimension 5M
or 5N . Note that each of the five equations of the system on each half-time step
is represented by a tri-diagonal algebraic system. However, in order to preserve
the coupling, we render it to an eleven-diagonal system for the properly arranged
vector of unknowns. Thus we are able to impose the boundary conditions as they
stand: two conditions on a velocity component and no conditions on pressure.
As a result, the scheme is fully implicit with respect to the boundary conditions
which is extremely beneficial for the stability. We have used this idea in different
algorithms for solving the N-S equation and it proved crucial for the effectiveness
of the scheme ([11,13]).

We use both uniform and non-uniform grids in order to evaluate better the
approximation properties of the algorithm. The special non-uniform grid

ri = exp
[
(i− 1)

R− 1
Nr − 1

]
, ϕj =

1
π

[
(j − 1)

π

Nϕ − 1

]2
,

takes into account the a-priori information of the regions of large gradients of
the flow and it is presented in Fig. 1. The grid is staggered for p in direction
ϕ, which ensures the second order of approximation of the pressure boundary
condition on the lines of symmetry ϕ = 0 and ϕ = π. For the same reason the
grid for ur and Ω is staggered in both directions. The grid-lines in direction r
are denser near the cylinder and sparser far from the body. The grid in direction
ϕ is chosen to be denser behind the body. All boundary conditions are imposed
implicitly with the second order of approximation.
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Table 1. Results for Cp, Cf , CD and p(1, π) − p(1, 0), obtained on uniform grid with
different hϕ and hr and fixed Re = 4, r∞ = 16

Grid Cp Cf CD p(1, π) − p(1, 0)

51 × 26 2.9732 2.3695 5.3427 1.9533
101 × 51 2.9652 2.5203 5.4855 1.9420
201 × 101 2.9623 2.5812 5.5435 1.9384

5 Scheme Validation

Since we use artificial time and splitting scheme, the first thing to verify is that
the result for the steady problem does not depend on the time increment. We
computed the solution for Re = 40 on the non-uniform grid using three different
artificial-time steps: σ = 0.1, 0.01, 0.001 and have found that after the stationary
regime is reached, the results for the three different time steps do not differ more
than 10−6, which is of the order of the criterion of convergence of the iterations.

The next important test is the verification of the spatial approximation of
the scheme. We have conducted a number of calculations with different values
of mesh parameters in order to confirm the practical convergence and the ap-
proximation of the difference scheme. In these tests, the mesh is uniform in
both directions with spacings hr and hϕ. The uniform grid is adequate only for
Re ≤ 40, but it is enough for the sake of this particular test. Results for some of
the important characteristics as obtained with different spacings hr and hϕ are
presented in Table 1 for r∞ = 16 and Re = 4.

The third test is to find the magnitude of r∞ for which the solution is ad-
equate. Clearly, the boundary conditions should be posed as close to the body
as possible to save computational resources. On the other hand, the boundary
condition has to be at a sufficiently large distance from the end of the separa-
tion bubble. We examined the dependence of solution on r∞ for Re = 20 when a
separation is known to exist. Table 2 presents some of the flow characteristics as
computed with different r∞. The impact of r∞ is significant for small values, but
the results converge with the increase of r∞. It is clear that r∞ ≥ 20 presents
a large enough computational domain, so the further change of the parameters
with the increase of r∞ is insignificant.

Table 2. Separation angle ϕsep, bubble length L and width W , pressure drag coefficient
Cp, friction drag coefficient Cf , difference pdiff = p(1, π) − p(1, 0), max |ω(1, ϕj)| as
functions of r∞ grid for Re = 20 and uniform grid with hr = 0.07 and hϕ = π/100

r∞ ϕsep L W Cp Cf pdiff max |ω(1, ϕj)|
4.5 0.636(36.45◦) 1.81 0.581 2.5105 1.4345 1.8219 6.61
8 0.717(41.06◦) 2.35 0.689 1.7368 1.0701 1.3945 5.15
15 0.744(42.63◦) 2.68 0.728 1.4208 0.9098 1.0706 4.45
22 0.749(42.94◦) 2.78 0.749 1.3308 0.8621 1.0056 4.24
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Fig. 2. Flow patterns for Re = 20 and Re = 200

6 Results

The above described algorithm yielded stable computations for Reynolds num-
bers as high as Re = 200, much higher than the threshold of instability, which
is believed to be around Re = 40. In Fig. 2 we present the streamlines and the
vorticity distribution for two Reynolds numbers.

Our results indicate that the flow separation and formation of a recirculation
zone behind the body appears first for Re = 10. The length of the wake (sepa-
ration bubble) becomes longer and wider with increasing the Reynolds number.
Our numerical results with Re = 20 on a non-uniform grid (r∞ ≈ 88) differ less
than 10% from those with the uniform grid 301×101, where r∞ = 22. The reason
for the relatively high discrepancies are the large spacings of the uniform grid
near the surface of the body, in particular in the r-direction, where hr = 0.07.
In this case the value of r∞ = 22 is not sufficiently large as well.

Fornberg [7] has found that the wake bubble (region of recirculating flow)
has eddy length L ∝ Re, width W ∝

√
Re up to Re = 300, and W ∝ Re be-

yond that. Smith [14] and Peregrine [12] have performed theoretical work which
gives a fresh interpretation of Fornberg’s results. There are several discrepancies
between the theories of Smith and Peregrine, some of which are a matter of
interpretation. These are unlikely to be resolved without further analysis and
computational work. Our works is a contribution to this direction. The charac-
teristics of the wake are presented in Fig. 3. Similarly, the values of the separation
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angle ϕsep measured from the rear stagnation point are in good agreement with
the computations of [5].

7 Conclusion

The results of the present work validate the proposed approach in the sense that
the possibility of finding the steady solution even when it is unstable physically
is clearly demonstrated. It should be noted that within the truncation error, our
approach is exact, and no additional procedures, like filtering or smoothing, are
applied. Steady solutions have been computed in primitive variables formulation
for Re ≤ 200. The Reynolds numbers range of our work is wider than the oth-
ers with the exception of Fornberg’s work in stream function/vorticity function
formulation, where an ad hoc smoothing is used.
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Abstract. It is known from the literature that applying the same ODE
solver by using two different step sizes and combining appropriately the
obtained numerical solutions at each time step we can increase the con-
vergence order of the method. Moreover, this technique allows us to esti-
mate the absolute error of the underlying method. In this paper we apply
this procedure, widely known as Richardson extrapolation, to the sequen-
tial splitting, and investigate the performance of the obtained scheme on
several test examples.

1 Introduction

It has been shown [15] that the order of a time discretization method can be
increased by the technique of Richardson extrapolation [2]. Namely, if one solves
a problem by a numerical method of order p by using some time step τ1, and
then applies the same method with a different time step τ2, the results can be
combined to give a method of order p + 1. Moreover, the combination of the
two methods in this way allows us to estimate the global error of the underlying
method [13].

The above idea can be applied to any time discretization method, so it can also
be used to increase the order of a splitting method. The application of operator
splitting is a necessary step during the solution of many real-life problems. If the
required accuracy is high, then even if we use a higher-order numerical method
for solving the sub-problems, we need to use a higher-order splitting scheme as
well [4].

The Richardson extrapolation has been successfully applied to the second-
order Marchuk-Strang splitting [5,14]. In this paper we apply this method to
the first-order sequential splitting. In Section 2 we present the basic idea of
the Richardson extrapolation for increasing the order of a numerical method.
In Section 3 the Richardson-extrapolated sequential splitting is introduced. In
Section 4 numerical experiments are given for checking the theoretically derived
convergence order. We present numerical results for the matrix case as well as
for a more realistic stiff reaction-diffusion problem.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 184–191, 2008.
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2 Increasing the Order

Consider the Cauchy problem

du(t)
dt

= Au(t), t ∈ (0, T ]

u(0) = u0

⎫⎪⎬⎪⎭ (1)

where X is a Banach space, u : [0, T ]→ X is the unknown function, A is a linear
operator X → X, and u0 ∈ X a given initial function.

Assume that we apply some convergent numerical method of order p to solving
the problem (1). Let yτ (t∗) denote the numerical solution at a fixed time level
t∗ on a mesh with step size τ . Then we have

u(t∗) = yτ (t∗) + α(t∗)τp +O(τp+1). (2)

On the meshes with step sizes τ1 < τ and τ2 < τ the equalities

u(t∗) = yτ1(t
∗) + α(t∗)τp

1 +O(τp+1) (3)

and
u(t∗) = yτ2(t

∗) + α(t∗)τp
2 +O(τp+1) (4)

hold, respectively. Our aim is to get a mesh function with accuracy O(τp+1). For
the intersection of the above two meshes we define a mesh function ycomb(t∗) as
follows:

ycomb(t∗) = c1yτ1(t
∗) + c2yτ2(t

∗). (5)

Let us substitute (3) and (4) into (5). Then we get

ycomb(t∗) = (c1 + c2)u(t∗)− (c1τ
p
1 + c2τ

p
2 )α(t∗) +O(τp+1). (6)

From (6) one can see that a necessary condition for the combined method to be
convergent is that the relation

c1 + c2 = 1 (7)

holds. Moreover, we will only have a convergence order higher than p if

c1τ
p
1 + c2τ

p
2 = 0. (8)

The solution of system (7)–(8) is c1 = −τp
2 /(τ

p
1 − τp

2 ), c2 = 1− c1. For example,
if τ2 = τ1/2, then for p = 1 we have c1 = −1 and c2 = 2, and for p = 2 we have
c1 = −1/3 and c2 = 4/3 (cf. [10], p. 331).

If the original method is convergent (as we assumed) then ycomb is also con-
vergent, which implies stability according to Lax’s equivalence theorem.

The application of the same method by using two different time steps allows
us to estimate the global error of the underlying method, see e.g. [13], p. 513.
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Formulas (3) and (4) allow us to determine the coefficient α(t∗) approximately.
Let us subtract (3) from (4). Then we get

0 = yτ2(t
∗)− yτ1(t

∗) + α(t∗)(τp
2 − τp

1 ) +O(τp+1).

Expressing α(t∗) gives

α(t∗) =
yτ2(t∗)− yτ1(t∗)

τp
1 − τp

2

+
O(τp+1)
τp
1 − τp

2

.

The second term on the right-hand side is O(τ), so the ratio α̂(t∗) := (yτ2(t∗)−
yτ1(t∗))/(τ

p
1 − τp

2 ) approximates α(t∗) to the first order in τ . Then the absolute
errors of the methods (3) and (4) can be approximated by the expressions α̂(t∗)τp

1

and α̂(t∗)τp
2 , respectively, to the order O(τp+1) (a posteriori error estimates).

3 Richardson-Extrapolated Splittings

The Richardson extrapolation can be used for any time discretization method,
i.e., also for splitting methods. Operator splitting is widely used for solving
complex time-dependent models, where the stationary (elliptic) part consists of
a sum of several structurally simpler sub-operators. The classical splitting meth-
ods include the sequential splitting, the Marchuk–Strang (MS) splitting [6,7,18]
and the recently re-developed symmetrically weighted sequential (SWS) split-
ting [3,17]. Further, newly constructed schemes include the first-order additive
splitting and the iterative splitting [8].

In this paper we will focus on the sequential splitting. Assume that the oper-
ator of problem (1) is decomposed into a sum A1 + A2. Denote by S1(tn, τ) the
solution operator belonging to the sub-problem defined by A1 on [tn, tn +τ ], and
by S2(tn, τ) that defined by A2 on [tn, tn + τ ]. We remark that S1 and S2 may
be the exact solution operators of the sub-problems in the splitting [1,7] as well
as their numerical solution operators if the sub-problems are solved numerically
[4]. If yseq(tn) denotes the solution obtained by the sequential splitting at time
level tn, then the solution at time tn+1 reads

yseq(tn+1) = S2(tn, τ)S1(tn, τ)yseq(tn).

Since the sequential splitting is a first-order time discretization method, there-
fore by the choice c1 = −1 and c2 = 2 the Richardson-extrapolated sequential
splitting

yRi(tn+1) = {−S2(tn, τ)S1(tn, τ) + 2(S2(tn, τ/2)S1(tn, τ/2))2}yRi(tn).

has second order.
Here we also introduce briefly the second-order MS and SWS splittings, since

we will use them in our numerical comparisons. The MS splitting is defined as

yMS(tn+1) = S1(tn + τ/2, τ/2)S2(tn, τ)S1(tn, τ/2)yMS(tn),

and the SWS splitting as

ySWS(tn+1) =
1
2
(S2(tn, τ)S1(tn, τ) + S1(tn, τ)S2(tn, τ))ySWS(tn).
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4 Numerical Experiments

In this section some numerical experiments done in Matlab are presented in
order to confirm our theoretical results. We will check the convergence order
of the Richardson-extrapolated sequential splitting in matrix examples (by ex-
act/numerical solution of the sub-problems) as well as in a stiff reaction-diffusion
problem.

4.1 Order Analysis in the Matrix Case

We considered the Cauchy problem⎧⎨⎩
c′(t) = Ac(t), t ∈ [0, 1]

c(0) = c0

(9)

with

A =
[
−7 4
−6 −4

]
and c0 = (1, 1)T . (10)

We decomposed matrix A as

A = A1 + A2 =
[
−6 3
−4 1

]
+
[
−1 1
−2 −5

]
. (11)

In the first group of experiments the sub-problems were solved exactly. We ap-
plied the Richardson-extrapolated sequential splitting, the SWS splitting and
the MS splitting with decreasing time steps τ to problem (9). The obtained er-
ror norms at the end of the time interval are shown in Table 1. One can conclude
that while all the methods have second order, the extrapolated splitting performs
better for each time step than the SWS splitting, and almost as well as the MS
splitting. If we assume that the sequential splitting has already been applied for
some time step τ , then to complete the extrapolated splitting (one sequential
splitting with halved step size) takes practically equally as much time as the
SWS splitting. However, both methods require more CPU time for the same
time step than the MS splitting. (Here we assumed that all computations are

Table 1. Comparing the errors of the solutions obtained by the Richardson-
extrapolated sequential splitting, the SWS splitting and the MS splitting in example (9)

τ Ri seq. SWS MS
1 9.6506e-2 1.0301e-1 7.8753e-2

0.1 5.8213e-4 1.2699e-3 3.3685e-4

0.01 5.9761e-6 1.2037e-5 3.3052e-6

0.001 5.9823e-8 1.1974e-7 3.3046e-8

0.0001 5.9829e-10 1.1967e-9 3.3047e-10
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Table 2. Comparing the errors of the solutions obtained by the Richardson-
extrapolated sequential splitting and the SWS splitting in example (9), when the sub-
problems are solved by the explicit Euler method

τ Ri sequential SWS splitting
1 2.7494e+1 1.2657e+1

0.1 2.6149e-3 (9.511e-5) 5.4703e-3 (4.322e-4)
0.01 1.2927e-5 (4.944e-3) 7.2132e-4 (1.319e-1)
0.001 1.2322e-7 (9.531e-3) 7.3991e-5 (1.026e-1)
0.0001 1.2264e-9 (9.954e-3) 7.4173e-6 (1.002e-1)

performed sequentially.) In order that we compare equally expensive methods,
some of the further comparisons will be restricted to the SWS splitting.

In the second group of experiments we combined the Richardson-extrapolated
sequential splitting and the SWS splitting with numerical methods. So in this
case S1 and S2 are numerical solution operators.

The results obtained by the explicit Euler method in the case of problem
(9) are shown in Table 2. Here and in the following tables the numbers in
parentheses are the ratios by which the errors decreased in comparison with
the error corresponding to the previous step size. In this case the extrapolated
splitting shows second-order convergence, while the SWS splitting has only first
order. This is understandable, since the sequential splitting applied together
with a first-order numerical method has first order, and the application of the
Richardson-extrapolation to this method must give second order. However, the
SWS splitting applied together with a first-order numerical method has only first
order. The results for the implicit Euler method, not shown here, were similar
as for the explicit Euler method.

If the sub-problems are solved by a second-order numerical method, then the
order achieved by the SWS splitting will be two. Since the sequential splitting
combined with any numerical method will have first order, the extrapolated
version is expected to have second order when combined with a second-order
method. All this is confirmed by the results presented in Table 3.

Table 3. Comparing the errors of the solutions obtained by the Richardson-
extrapolated sequential splitting and the SWS splitting in example (9), when the sub-
problems are solved by the midpoint method

τ Ri sequential SWS splitting
1 2.9205e+1 4.0007e+1

0.1 4.4780e-4 (1.533e-5) 9.0087e-4 (2.252e-5)
0.01 2.4508e-6 (5.473e-3) 4.8727e-6 (5.409e-3)
0.001 2.3227e-8 (9.478e-3) 4.6428e-8 (9.528e-3)
0.0001 2.3101e-10 (9.946e-3) 4.6206e-10 (9.952e-3)
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4.2 Order Analysis in a Stiff Diffusion-Reaction Problem

We move on to a more complex model problem, studied in [8,11], and investigate
the effect of stiffness on the accuracy of the Richardson-extrapolated sequential
splitting. Stiffness has been shown to reduce the order of the MS splitting from
two to one [9,16,19], which gives rise to the question of how to obtain stiff
convergence of order two with a splitting method [16].

Consider the diffusion-reaction equations

∂u

∂t
= D1

∂2u

∂x2
− k1u + k2v + s1(x)

∂v

∂t
= D2

∂2v

∂x2
+ k1u− k2v + s2(x),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12)

where 0 < x < 1 and 0 < t ≤ T = 1
2 , and the initial and boundary conditions

are defined as follows:⎧⎨⎩
u(x, 0) = 1 + sin(1

2πx),

v(x, 0) = k1
k2

u(x, 0),

⎧⎨⎩
u(0, t) = 1,
v(0, t) = k1

k2
,

∂u
∂x (1, t) = ∂v

∂x (1, t) = 0.
(13)

We used the following parameter values: D1 = 0, 1, D2 = 0, k1 = 1, k2 = 104,
s1(x) ≡ 1, s2(x) ≡ 0. The reference solution for the discretized problem was
computed by the Matlab’s ODE45 solver.

We solved problem (12)–(13) by the Richardson-extrapolated sequential split-
ting, the SWS splitting and the MS splitting. The differential operator defined
by the right-hand side was split into the sum D + R, where D contained the
discretized diffusion and the inhomogeneous boundary conditions, and R the
reaction and source terms. The spatial discretization of the diffusion terms and
the big difference in the magnitude of the reaction rates give rise to stiffness, also
indicated by the big operator norms ‖D‖ = O(103) and ‖R‖ = O(104). We em-
phasize that here both sub-operators are stiff, while most studies are restricted
to the case where one of the operators is stiff, the other is non-stiff, see e.g. [19].

The sub-problems were solved by two different time integration methods: 1)
the implicit Euler method and 2) the two-step DIRK method. Tables 4–5 show
the maximum norms of the errors at the end of the time interval for methods 1)
and 2). For the implicit Euler method the extrapolated sequential splitting shows
the expected second-order convergence only in the sequence R-D. The errors
obtained in the sequence D-R are at least one magnitude higher, moreover, here
we only obtained first-order convergence (order reduction). The worst results
were produced by the SWS splitting, which, as expected, behaves as a first-
order method, just like the MS splitting. For the MS splitting we only give the
errors for the sequence D-R-D, which generally produced better results.

Table 5 illustrates that it is not worth combining the extrapolated sequential
splitting with a second-order numerical method. Note that the order of the SWS
and MS splittings did not increase to two (order reduction). We only obtained
factors close to 0.25 in the case of the MS splitting for the smallest time steps.
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Table 4. Comparing the errors of the solutions obtained by the Richardson-
extrapolated sequential, SWS and MS(D-R-D) splittings in the reaction-diffusion prob-
lem (12)–(13) for the implicit Euler method

τ Ri D-R Ri R-D SWS MS

1/10 7.07e-3 5.86e-4 4.80e-2 1.26e-2

1/20 3.67e-3 (0.52) 1.78e-4 (0.30) 2.40e-2 (0.50) 7.52e-3 (0.60)
1/40 1.86e-3 (0.51) 4.96e-5 (0.28) 1.20e-2 (0.50) 4.28e-3 (0.57)
1/80 9.21e-4 (0.50) 1.31e-5 (0.26) 6.02e-3 (0.50) 2.35e-3 (0.55)
1/160 4.59e-4 (0.50) 3.22e-6 (0.25) 3.01e-3 (0.50) 1.26e-3 (0.54)
1/320 2.22e-4 (0.48) 6.52e-7 (0.20) 1.50e-3 (0.50) 6.63e-4 (0.53)

Table 5. Comparing the errors of the solutions obtained by the Richardson-
extrapolated sequential, SWS and MS(D-R-D) splittings in the reaction-diffusion prob-
lem (12)–(13) for the two-step DIRK method

τ Ri D-R Ri R-D SWS MS
1/10 2.13e-2 3.86e-3 8.43e-2 1.91e-2

1/20 1.06e-2 (0.50) 1.86e-3 (0.48) 3.99e-2 (0.47) 9.48e-3 (0.50)
1/40 4.86e-3 (0.46) 8.95e-4 (0.48) 1.86e-2 (0.47) 4.42e-3 (0.47)
1/80 2.51e-3 (0.52) 3.47e-4 (0.39) 8.55e-3 (0.46) 2.25e-3 (0.51)
1/160 1.10e-3 (0.44) 9.50e-5 (0.27) 3.92e-3 (0.46) 1.01e-3 (0.45)
1/320 3.71e-4 (0.34) 2.04e-5 (0.21) 1.80e-3 (0.46) 3.76e-4 (0.37)
1/640 9.42e-5 (0.25) 8.54e-6 (0.42) 8.45e-4 (0.47) 1.15e-4 (0.31)

5 Conclusions

We applied Richardson extrapolation for increasing the convergence order of the
first-order sequential splitting. The computer experiments with matrix examples
confirmed the theoretically derived second-order convergence of the method. The
extrapolated sequential splitting proved to be competitive both with the MS and
SWS splittings. Moreover, when combined with a first-order numerical method,
it still has second order, which is not true for the other two splitting schemes.

The method was also tested on a fully stiff diffusion-reaction system. While
the traditional second-order splittings suffered from order reduction, the extra-
polated method in the sequence R-D (reaction-diffusion) was able to produce
second-order convergence.
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Abstract. We deal with the time-dependent Navier-Stokes equations
with Dirichlet boundary conditions on all the domain or, on a part of
the domain and open boundary conditions on the other part. It is shown
numerically that a staggered mesh with penalty-projection method yields
reasonable good results for solving the above mentioned problem. Simi-
larly to the results obtained recently by other scientists using finite ele-
ment method (FEM) [1] and [2] (with the rotational pressure-correction
method for the latter), we confirm that the penalty-projection scheme
with spatial discretization of the Marker And Cell method (MAC) [3] is
compatible with our problem.

1 Introduction

The numerical simulation of the time-dependent Navier-Stokes equations for in-
compressible flows is CPU-time consuming. In fact, at each time step the velocity
and the pressure are coupled by the incompressibility constraint. There are vari-
ous ways to discretize the time-dependent Navier-Stokes equations. However the
most popular is using projection methods, like pressure-correction methods. This
family of methods has been introduced by Chorin and Temam ([4,5]) in the late
sixties. They are time-marching techniques based on a fractional step technique
that may be viewed as a predictor-corrector strategy aiming at uncoupling vis-
cous diffusion and incompressibility effects. The interest of pressure-correction
projection methods is that the velocity and the pressure are computed sepa-
rately. In fact, in a first step, we solve the momentum balance equation to obtain
an intermediate velocity and then, this intermediate velocity is projected on a
space of solenoidal vector fields. Using this method, a numerical error named
the splitting error appears and several papers have been written to estimate this
error.

In [6], Shen introduced another approach which consists of constraining the
divergence of the intermediate velocity field by adding in the first step of the
scheme an augmentation term built from the divergence constraint (of the same
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form as in augmented lagrangian methods [7]). And recently, some authors ap-
plied this penalty-projection method in a different way than it has been designed,
and obtained with finite element approximation, reasonably good results [1]. We
will show that the results obtained with different pressure-correction schemes us-
ing finite difference approximation with staggered mesh are as accurate as these
obtained by the same approach but using FEM.

This paper is organized as follows:
Firstly, after we recall some preliminaries in section 2, we present the penalty
pressure-correction schemes with time discretization. In section 3, we show the
main numerical results: we compare the penalty projection scheme to reference
algorithms with prescribed velocity on Dirichlet boundary and open boundary
conditions. And finally, in the last section we report concluding remarks.

2 Formulation of the Problem

2.1 The Continuous Unsteady Navier-Stokes Problem

In this paper, we study numerical approximations with respect to time and space
of the time-dependent Navier-Stokes equations which read as follows:{

∂uuu
∂t
− ν∆uuu + (uuu · ∇)uuu +∇p = fff in Ω × [0, T ]

∇ · uuu = 0 in Ω × [0, T ],
(1)

for which, we add the following boundary and initial conditions:{
uuu = uuuΓD

on ΓD × [0, T ],
∇uuu ·nnn− pnnn = fffN on ΓN × [0, T ] and uuu |t=0= uuu0 in Ω.

(2)

fff is a smooth term source and uuu0 stands for an initial velocity field, nnn is the nor-
mal vector and ν stands for the dynamic viscousity of fluid. Ω is an open set con-
nected and bounded in R2 representing the domain of the fluid, Γ , a sufficiently
smooth set, representing its boundary. We assume that the boundary Γ can be
splitted into two sets ΓN and ΓD where the subscripts N and D stand for Neumann
and Dirichlet boundary conditions. Then, the following non trivial partition
holds : Γ = ΓN∪ΓD, ΓD ∩ ΓN = ∅, with meas(ΓN) �= ∅, and meas(ΓD) �=
∅. On ΓD the velocity set to the value uuuΓD

whereas the force per unit area exerted
at each point of the boundary ΓN is given, equals to fffN.

2.2 The Non Incremental and Incremental Projection Schemes

Projection methods are time-marching techniques composed of two substeps for
each time step in order to solve efficiently some problems coming from CFD.
Whereas the first substep takes the viscous effects into account, the incompress-
ibility constraint is secondly treated. To describe projection methods, one needs
to introduce the following orthogonal decomposition:

L2(Ω) = H⊕H⊥, where H = {vvv ∈ [L2(Ω)]2, ∇ · vvv = 0, vvv ·nnn |ΓD
= uuuΓD

·nnn},
(3)
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and H⊥ is the orthogonal complement of H in L2(Ω). Classical results shown
that functions of H⊥ can be characterized by functions of L2(Ω) which can be
written like the gradient of a function of H1(Ω) [8].

To introduce some projection methods often mentioned in litterature as
pressure-correction methods, let us set notations to develop semi-discrete for-
mulations with respect to the time variable. Let ∆t > 0 be a time step and for
0 ≤ k ≤ K = [T/∆t], set tk = k∆t such that 0 = t0 < t1 < · · · < tK is a uniform
partition of the time interval of computation. Let also fffk+1 be fff(tk+1).

The first algorithm introduced by Chorin and Temam consists of decoupling
each time step into two substeps. Using implicit Euler time stepping, the algo-
rithm is as follows:

Set u0 = u0, for k ≥ 0, compute first ũuuk+1 by solving the equation accounting
for the viscous effects:

1
∆t

(ũuuk+1 − uuuk)− ν∆ũuuk+1 + (uuuk · ∇)ũuuk+1 = fffk+1, ũuuk+1 |ΓD
= uuuk+1

ΓD
. (4)

Following that, compute (uk+1, pk+1) by projecting the intermediate velocity
ũuuk+1 onto H, the space of vanishing divergence. Due to the decomposition (3)
and its characterization, this substep can be written as follows:

1
∆t

(uuuk+1 − ũuuk+1) +∇pk+1 = 0, ∇ · uuuk+1 = 0, uuuk+1 ·nnn |ΓD
= uuuk+1

ΓD
·nnn.

The last algorithm can be improved by adding in its first substep a value of
pressure gradient already computed. Thus, this algorithm known as incremental
form of pressure-correction reads as follows:

Set u0 = u0 and p0 = p0 for k ≥ 0, compute first ũuuk+1 by solving the problem
accounting for the viscous effects:

1
∆t

(ũuuk+1 − uuuk)− ν∆ũuuk+1 + (uuuk · ∇)ũuuk+1 +∇pk = fff(tk+1), (5)

ũuuk+1 |ΓD
= uuuk+1

ΓD
, (∇uuuk+1 ·nnn− pnnn) |ΓN

= fffk+1
N . (6)

The second substep consists also of projecting ũuuk+1 onto H orthogonally with
respect to L2. But for a sake of efficiency, we deal with the following elliptic
problem, obtained after applying the divergence operator:

∆φ =
1
∆t
∇ · ũuuk+1, with ∇φ ·nnn |ΓD

= 0, φ |ΓN
= 0. (7)

The computed pressure can be recovered with the solution of (7) by the next
formula, where χ is a coefficient equal to 0 or 1:

pk+1 = pk + φ− χν∇ · ũuuk+1. (8)

The choice χ = 0 yields the standard version of the algorithm whereas χ = 1
yields the rotational version.
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2.3 The Penalty Projection Scheme

Firstly introduced by Shen in [9], this form yields to find the intermediate velocity
ũuuk+1, solution of the following elliptic problem at time tk+1. For example, using
the Backward Difference Formula of second order (BDF2) for the approximation
of the time derivative, the time semi-discrete scheme can be described as follows:

3ũuuk+1 − 4uuuk + uuuk−1

2∆t
− ν∆ũuuk+1 + ((2uuuk − uuuk−1) · ∇)ũuuk+1

+∇pk − r∇(∇ · ũuuk+1) = fffk+1, (9)

ũuuk+1 |ΓD
= uuuk+1

ΓD
, (∇ũuuk+1 ·nnn− pnnn), |ΓN

= fffk+1
N .

Then, the projection step consists of projecting onto H orthogonally with respect
to L2 the intermediate velocity, which takes the following form:

3uuuk+1 − 3ũuuk+1

2∆t
+∇φ = 0, (10)

∇ ·uuuk+1 = 0, (11)
uuuk+1 ·nnn |ΓD

= uuuk+1
ΓD
·nnn, (12)

φ |ΓN
= 0. (13)

Practically, we also take the divergence of (10) and using (12) into (10), we
obtain the following Poisson problem for φ :

∆φ =
3

2∆t
∇ · ũuuk+1, (14)

(∇φ ·nnn) |ΓD
= 0, φ |ΓN

= 0. (15)

Due to the relation (10) we obtain the end-of-step velocity which reads as follows:

uuuk+1 = ũuuk+1 − 2∆t

3
∇φ. (16)

To recover an expression for an approximation of the pressure at time tk+1,
first adding (9) to (10), one obtains an expression of the discrete momentum
balance equation at time tk+1:

3ũuuk+1 − 4uuuk + uuuk−1

2∆t
− ν∆ũuuk+1 + ((2uuuk − uuuk−1) · ∇)ũuuk+1

+∇(pk − r∇ · ũuuk+1 + φ) = fffk+1. (17)

Then, the equation (17) suggests the following expression of pk+1, where r is a
parameter to be specified:

pk+1 = pk + φ− r∇ · ũuuk+1. (18)

There are two forms (the standard and the rotational one) of the penalty
pressure-correction scheme which can be summarized by the following algorithm.
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Assuming that uuuk−1,uuuk, pk are known, the viscous step consists of computing
ũuuk+1 by:

3ũuuk+1 − 4uuuk + uuuk−1

2∆t
− ν∆ũuuk+1 + ((2uuuk − uuuk−1) · ∇)ũuuk+1

+∇pk − r1∇(∇ · ũuuk+1) = fffk+1, (19)

ũuuk+1 |ΓD
= uuuk+1

ΓD
, (∇ũuuk+1 ·nnn− pnnn) |ΓN

= fffk+1
N . (20)

Then, the projection step consists of computing φ, the solution of the next elliptic
problem:

∆φ =
3

2∆t
∇ · ũuuk+1, (21)

(∇φ · n) |ΓD
= 0, φ |ΓN

= 0. (22)

Therefore, the approximation of the velocity and pressure at time tk+1 is straight-
forward:

uuuk+1 = ũuuk+1 − 2∆t

3
∇φ, pk+1 = pk + αφ − r2∇ · ũuuk+1,

where r1, r2 and α are parameters to be specified.
The choice of the parameters r1, r2 and α leads to different methods. For ex-

ample, setting r1 = r2 = 0 and α = 1 leads to the so-called standard incremental
method. Whereas r1 = 0, r2 = ν and α = 1 leads to the so-called rotational in-
cremental method introduced by Van Kan in [10]. The choice r1 = r2 = r
and α = 1 leads to the standard penalty projection method and the rotational
penalty projection method is obtained by the choice r1 = r, r2 = r + ν and
α = 1.

3 Main Results

We illustrate in this section the convergence properties of the pressure-correction
algorithm using BDF2 to march in time and MAC method for the spatial dis-
cretization of the problem. We also do a comparative study between the penalty
projection method and some pressure-correction schemes often used in the lit-
terature for the solution of unstationnary imcompressible flow problems. The
results trend to prove that a Navier-Stokes flow with either Dirichlet boundary
conditions or open boundary conditions can be well computed with this penalty-
projection method combined with staggered mesh.

3.1 A Stokes Flow with Dirichlet Boundary Conditions

To compute a Stokes flow with Dirichlet boundary conditions, we consider a
square domain Ω =]0, 1[2 with Dirichlet boundary conditions on the velocity.
We assume that the exact solution (uuu, p) of the Stokes problem (1)-(2) is:

uuu(x, y, t) = (sin(x+t) sin(y+t), cos(x+t) cos(y+t)), p(x, y, t) = cos(x−y+t),

which define the right hand side of the balance momentum equation.
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Fig. 1. Pressure error at T=1 in ]0, 1[2

for the standard form of the penalty
pressure-correction method, with r = 1
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Fig. 2. Pressure error at T=1 in ]0, 1[2

for the standard form of the penalty
pressure-correction method, r = 100

First, to check the pressure error at T = 1, we set h = 1/80 whereas ∆t =
1/160. With the standard form of the incremental pressure-correction method,
we obtain the pressure error of 1.26 10−2, whereas with the rotational form, it
equals to 3.73 10−3.

With the penalty pressure-correction, we made the same test at (Figure 1)
and we obtain that the error of pressure fields for the penalty form with r ranging
between 1 and 10 are equivalent to the error of pressure field for the rotational
form of the incremental pressure-correction method. But, for higher values of
the r parameter, like r = 100 (cf. Fig. 2), the error is well reduced (the vertical
range is approximatively divided by 10).

At Figure 3, we plot the l∞−norm of the error of the pressure as a function
of the time step ∆t. The error is measured at T = 2, after we made series of
computation on the unit square domain with the mesh size h equal to 1/160.
The results of the error of the computed pressure prove that 3/2 is the conver-
gence rate for the approximate pressure in rotational form. This result conforms
with those which has been reported in [11]. Also, as it has been shown elsewhere
[12] that the error of pressure for the penalty form with r ranging between 1
and 10 seems to be almost the same comparing to those computed from the
rotational form. Moreover, we notice that the convergence rate for the penalty-
projection scheme is smaller than those computed by the rotational form. In
fact, the higher the parameter of the penalty-projection method is, the smaller
the error of the pressure is.

3.2 A Stokes Flow with Open Boundary Conditions

We consider the unit square as our computation domain Ω =]0, 1[2 with open
boundary conditions on the velocity. We take the exact solution (uuu, p) of (1)-(2)
to be:

uuu(x, y, t) = (sin(x) sin(y + t), cos(x) cos(y + t)), p(x, y, t) = cos(x) sin(y + t),
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satisfying the boundary conditions: (pnnn − ∇uuu · nnn) |ΓN
= 0, ΓN = {(x, y) ∈ Γ,

x = 0}.
At Figure 4, we compare the l∞-norm of the pressure error as a function of

∆t for different pressure-correction methods. The error is measured at T = 1
after we performed computations on a square domain with the mesh size h equal
to 1/250.

For each time step, we obtain that the penalty-projection method (with
r ≥ 10) is more accurate than the incremental method. Moreover, a space con-
vergence order of 1/2 and 1 is observed respectively for the incremental and the
rotational projection method, whereas for the penalty-projection methods the
convergence order is of 1. Our results match with those obtained by [1] with
FEM.

3.3 Taylor-Green Vortices

Now, we treat a well-known benchmark which consists of a periodic flow governed
by Navier-Stokes equations. This particular case of non-forcing flow has the
advantage of owning analytic solutions. Then, let us consider a square domain
Ω =]1/8, 5/8[2 with Dirichlet boundary conditions on the velocity. For the tests
we use the following exact solution: (uuu, p) of (1)-(2) to be:⎧⎨⎩uuu(x, y, t)=

(
−cos(2πx) sin(2πy) exp(−8π2µt), sin(2πx) cos(2πy) exp(−8π2µt)

)
,

p(x, y, t) = − (cos(4πx) + cos(4πy))
4 exp(−16π2µt),

At Figure 5, we compare the L2-norm of the pressure error as a function of ∆t
for different pressure-correction methods. The error is measured at T = 1 after
we performed computations on a square domain with the mesh size h equal to
1/80.
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All the curves show the decrease of the error with the time step. For the small
values of this time step, a plateau is observed, which corresponds to the space
discretization error. We can observe that the rate of convergence agrees with the
theoretical studies.

4 Concluding Remarks

The numerical results show that with the penalty-projection method, the com-
putations are more accurate than these obtained with incremental projection
schemes. Our results of either the Stokes flow with Dirichlet boundary condi-
tions, and the Stokes flow with open boundary conditions, or the Taylor-Green
vortices match with the ones which have been reported in [13] and in [1]. In one
hand, these results prove the compatibility of the spatial discretization by MAC
mesh and the projection methods for our problems with various boundary con-
ditions. In other hand, the penalty-projection scheme is more time-consuming
than an incremental projection scheme for a given time-step. This fact can be
confirmed by computing the condition number of the matrix of the viscous step
for various values of the r parameter. The computations from several experi-
ments of three values of r (r = 1, r = 10, r = 100) show that the condition
number increases with the r parameter. From Figure 6, one could think that the
condition number varies as a power of r. This might be confirmed by further next
works. Nevertheless, our experiment with the penalty-projection suffers from a
lack of well-designed preconditioner to speed-up the solver of the viscous step.

Acknowledgements

The authors are pleased to acknowledge the Centre Commun de Calcul Intensif
of UAG where computational tests have been performed.



200 C. Févrière, Ph. Angot, and P. Poullet

References

1. Jobelin, M., et al.: A Finite Element penalty-projection method for incompressible
flows. J. Comput. Phys. 217(2), 502–518 (2006)

2. Guermond, J.L., Minev, P., Shen, J.: Error analysis of pressure-correction schemes
for the time-dependent Stokes equations with open boundary conditions. SIAM J.
Numer. Anal. 43(1), 239–258 (2005)

3. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompress-
ible flow of fluid with free surfaces. J. E. Phys. Fluids 8, 2181–2189 (1965)

4. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Com-
put. 22, 745–762 (1968)

5. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par
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Abstract. We deal with one subproblem of an air pollution model, the
horizontal diffusion, which can be mathematically described by a linear
partial differential equation of parabolic type. With different space dis-
cretization schemes (like a FDM, FEM), and using the θ-method for time
discretization we get a one-step algebraic iteration as a numerical model.
The preservation of characteristic qualitative properties of different phe-
nomena is an increasingly important requirement in the construction of
reliable numerical models. For that reason we analyze the connection
between the shape and time-monotonicity in the continuous and the nu-
merical model, and we give the necessary and sufficient condition to fulfil
this property.

1 Introduction

When constructing numerical models, engineers and scientists involved in sci-
entific computing must take into consideration the qualitative properties of the
original phenomenon. Numerical models should not give results that contradict
to the physical reality. For example in air-pollution models, which are an in-
dispensable tool of environmental protection, the solution methods should not
result in negative concentration values. These values would have no physical
meaning. Certain choices of the time steps in the numerical schemes result in
qualitatively correct numerical models, while others do not. Even uncondition-
ally stable schemes, like the Crank-Nicolson or the implicit Euler scheme, can
produce qualitative deficiencies, see [4].

The main goal of this paper is to define a property which is essential for the
diffusion sub-model, and we give the necessary and sufficient condition for this
property.

1.1 Air Pollution Models and Application of Splitting Techniques

Operator splitting methods are frequently applied to the solution of air pollu-
tion problems ([11]). The governing equation is split into several subproblems
according to the physical processes involved, and these subproblems are solved
cyclically ([10]). In this way, a qualitatively incorrect solution of the diffusion

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 201–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



202 K. Georgiev and M. Mincsovics

subproblem can cause a series of problems in the solving process of the other
subproblems, because the solution of the first problem will be input to the second
one.

Large air pollution models are normally described by systems of partial dif-
ferential equations (PDE’s):

∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
(1)

+
∂

∂x

(
κx

∂cs

∂x

)
+

∂

∂y

(
κy

∂cs

∂y

)
+

∂

∂z

(
κz

∂cs

∂z

)
+Es − (λ1s + λ2s)cs + Qs(c1, c2, . . . , cq), s = 1, 2, . . . , q ,

where (i) the concentrations of the chemical species are denoted by cs, (ii) u, v
and w are wind velocities, (iii) κx, κy and κz are diffusion coefficients, (iv) the
emission sources are described by Es, (v) λ1s and λ2s are deposition coefficients
and (vi) the chemical reactions are denoted by Qs(c1, c2, . . . , cq) (e.g. [11]).

It is difficult to treat the system of PDE’s (1) directly. This is the reason for
using different kinds of splitting. A splitting procedure, based on ideas proposed
in [6] and [8], leads, for s = 1, 2, . . . , q, to five sub-models, representing the
horizontal advection, the horizontal diffusion (together with the emission terms),
the chemistry, the deposition and the vertical exchange. We will investigate the
diffusion submodel.

2 Connection Between the Shape and the
Time-Monotonicity

In the following we will denote by I the identity operator. The matrices will be
typeset in boldface, for example A, in the fully discretized case we will use the
following style: A, and the operators in the continuous case will be typeset in
normal font: A.

In this section we define two qualitative properties of the solution, namely the
shape and time-monotonicity, and we investigate their relation. We present these
properties and the effect of time discretization on them through examples. Our
examples will range from simple to complex. We consider the diffusion equation
in the following form.

Dtu(x, t) = D2
xu(x, t) + f(x, t), x ∈ Ω, t > 0

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0 .

⎫⎬⎭ (2)

Here u ∈ C2,1(QT ) ∩ C(QT ) is the unknown function, QT = Ω × (0, T ) with
some T > 0. Let Ω = (0, 1) in the examples, but we remark that all works in
higher dimension, too.
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Definition 1. Let U denote the set of solutions of (2) for the different (suf-
ficiently smooth) initial functions u0. We define with S(Y )U,ρ a subset of U
projected on the time level ρ for a given operator Y in the following way:

S(Y )U,ρ := {u(x, t)|t=ρ : u(x, t) ∈ U, Y u(x, t)|t=ρ ≥ 0} ,

and we denote for a given τ ∈ IR the shift (in time) operator with Lτ :

Lτ (u(x, t)|t=ρ) := u(x, t)|t=ρ+τ for u(x, t) ∈ U .

2.1 Example 1

Let u(0, t) = u(1, t) = 0, t > 0 and f(x, t) = 0 in (2).
Note that S(−Dt)U,ρ is the set of the time-decreasing solutions on the ρ-th

time level, similarly S(−D2
x)U,ρ is the set of the concave solutions on the ρ-th

time level. In this case the following result is important:

LτS(−D2
x)U,ρ ⊆ S(−D2

x)U,ρ+τ for τ > 0 .

Namely the solution preserves the concavity (shape), see [2]. We remark that
LτS(−D2

x)U,ρ ⊆ S(−D2
x)U,ρ for τ > 0, since S(−D2

x)U,ρ+τ ⊆ S(−D2
x)U,ρ for

τ > 0. Here we cannot write equality due to the problem of the backward
solvability. From the relation

S(−D2
x)U,ρ = S(−Dt)U,ρ for ρ ≤ T (3)

we have
LτS(−Dt)U,ρ ⊆ S(−Dt)U,ρ+τ for τ > 0 .

We remark that if u(x, t)|t=ρ =
∑∞

k=1 ξk sin kπx and ξ1 > 0, then there exists
ω ≥ 0: Lω(u(x, t)|t=ρ) ∈ S(−D2

x)ρ+ω (and ∈ S(−Dt)ρ+ω), see [3].
The relation (3) presents the connection between the concavity (shape) and

the time-monotonicity. We are interested in how this relation changes due to
time distretization. Let us imagine the time distretization as if we could see the
solution not continuously, but on certain time levels, namely we choose a time
step τ and

Σ := {kτ : k ∈ IN, kτ ≤ T }
is the set of the visible time levels. The problem arises from this, because the
solution may decrease from one time level to the next even if it was not concave
on the first one. At the same time the following two statements are true:

– If a solution on some time level is concave, then it will decrease in the next
step.

– With decrease we can only get a concave solution on some time level.

To describe this we approximate (in time) the operator −Dt with 1
τ (I−Lτ) (and

D2
x with itself), thus the corresponding approximated subsets are S(I − Lτ )U,ρ

and S(−D2
x)U,ρ for t ∈ [ρ, ρ+ τ). Therefore the property corresponding to (3) in

the time-discretized case is:

S(I − Lτ )U,ρ ⊇ S(−D2
x)U,ρ ⊇ S((I − Lτ )L−1

τ )U,ρ ∀ρ ∈ Σ . (4)
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2.2 Example 2

Let u(x, t) = g(x) for x ∈ ∂Ω and f(x, t) = f(x) in (2).
We proceed similarly as in Subsection 2.1. The only difference is that the op-

erator which is responsible for the shape will be Q̂, defined as follows: Q̂u(x, t) :=
−D2

xu(x, t)−f(x). Therefore the property corresponding to (3) in the continuous
and the time-discretized case can be formulated simply.

S(Q̂)U,ρ = S(−Dt)U,ρ for ρ ≤ T , (5)

S(I − Lτ )U,ρ ⊇ S(Q̂)U,ρ ⊇ S((I − Lτ )L−1
τ )U,ρ ∀ρ ∈ Σ . (6)

We give the following trivial statement without proof.

Lemma 1. The following statements are equivalent.
(i) S(Q̂)U,ρ = S(−Dt)U,ρ ∀ρ ≤ T .
(ii) S(I − Lτ )U,ρ ⊇ S(Q̂)U,ρ ⊇ S((I − Lτ )L−1

τ )U,ρ ∀τ > 0, ∀ρ ∈ Σ.

Clearly, this statement is valid for Example 1, too.
We remark that if f(x, t) or g(x, t) depends on t, then we can approximate Q̂

with Q̂approx, Q̂approxu(x, t) = −D2
xu(x, t) − C(g(x, t), g(x, t + τ), f(x, t + 1

2τ))
at every [t, t+ τ), t ∈ Σ with some operator C. But substituting Q̂ with Q̂approx

in (6) we get only an approximation of the property (6).
In the next section we show what all this means for the diffusion submodel

discretized by the finite difference or finite element method in space and by the
θ-method in time.

3 The Diffusion Submodel

We will investigate the diffusion submodel in the form of the following initial
boundary value problem:

C
∂c(x, t)

∂t
−∇(κ∇c(x, t)) = f(x, t), (x, t) ∈ Qtmax := Ω × (0, tmax), (7)

c(x, t) = g(x, t), x ∈ ∂Ω, 0 ≤ t ≤ tmax, (8)

c(x, 0) = c0(x), x ∈ Ω, (9)

where (8) is the boundary condition and (9) is the initial condition. The suffi-
ciently smooth unknown function c = c(x, t) is defined in Ω × [0, tmax], where
Ω is a d-dimensional domain and tmax > 0 is a fixed real number. The symbol
∂Ω denotes the boundary of Ω. As usual, ∇ stands for the nabla operator. The
function C : Ω → IR has the property 0 < Cmin ≤ C ≤ Cmax. The bounded
function κ : Ω → IR fulfils the property 0 < κmin ≤ κ ≤ κmax and has continuous
first derivatives. The function g : Γtmax → IR is continuous on the lateral surface
of Qtmax denoted by Γtmax . Furthermore, the function f : Qtmax → IR is bounded
in Qtmax .
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3.1 Discretization, One-Step Iteration

Using the finite difference method (on rectangular domain) or the Galerkin finite
element method to the semidiscretization, and the θ-method to get a fully dis-
cretized model, we arrive at an algebraic one-step iteration in a partitioned form:

[A0|A∂ ]
[
un+1

gn+1

]
= [B0|B∂ ]

[
un

gn

]
+ τ fn+1/2 . (10)

In Equation (10), the vectors un, gn, gn+1, and fn+1/2 are known: un is
known from the previous time level (originally from the initial condition), gn

and gn+1 are given from the boundary condition, and fn+1/2 can be computed
from the source function f . τ is the time step. The matrices come from the
spatial discretization, see [4,5].

Remark 1. It can be shown, that A0 ∈ IRN×N is regular for both the finite
difference and the Galerkin finite element method (with corresponding basis
functions), see [5], which yields that the numerical solution does exist and it is
unique for each setting of the source and the initial and boundary conditions.
In the case of the finite difference method A0 is an M -matrix (see [1]) and in
the case of the Galerkin finite element method it is a Gram matrix. We can tell
the same about the matrix Q = A0−B0 ∈ IRN×N . We suppose in the following
that B0 ∈ IRN×N is also regular.

In an unpartitioned form (10) looks as follows

un+1 = A−1
0 B0un −A−1

0 A∂gn+1 + A−1
0 B∂gn + τA−1

0 fn+1/2 . (11)

With the notations H = A−1
0 B0, hn = A−1

0 (−A∂gn+1 + B∂gn − τfn+1/2),
Lnx = Hx + hn (11) has the form

un+1 = Lnun . (12)
Ln is an approximation of Lτ on the n-th time level. Note that Ln is invertible
for every n due to Remark 1.

3.2 Connection Between the Shape and the Time-Monotonicity

We denote the sequences (un) for the different initial vectors with U. Note
that for a given operator Y : IRn → IRn the equality S(Y)U,ρ = S(Y)U,ρ+τ =
{x ∈ IRn : Yx ≥ 0} holds, since Ln is invertible. This explains the following
definition.

Definition 2. Let Y : IRn → IRn be an operator, then we define the subset
S(Y) ⊆ IRn as follows:

S(Y) := {x ∈ IRn : Yx ≥ 0} .

When Y is linear, i.e., Y ∈ IRn×n is a matrix, then S(Y) is a cone. If Y is a
nonsingular matrix, then S(Y) is a proper cone, and S(Y) = Y−1IRn

+, where
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IRn
+ denotes the nonnegative orthant, shows that it is a simplicial cone [1]. For

example S(I) = IRn
+.

First we investigate the Example of Subsection 2.1, discretized both in space
and time. Here we have Ln = H, due to the homogeneous boundary condition and
to the lack of the source. Let us notice that here Q = −N2tridiag[−1, 2− 1] ∈
IRN×N is the discrete analogue of the second-order differential operator in a
space variable.

The concavity of the vector x ∈ IRn is defined as Qx ≥ 0, which is in ac-
cordance with the continuous case. Therefore, the set of the concave vectors is
S(Q). Similarly, the time-decreasing of a vector x ∈ IRn with respect to the
iteration can be defined as x ≥Hx or equivalently (I−H)x ≥ 0. Therefore, the
set of the time-decreasing vectors is S(I−H) (it is not depending on n).

Consequently, we call the discrete model correct if it possesses the discrete
analogue properties formulated in Subsection 2.1. The property of concavity
preserving is discussed in [2,3,9], and the time-monotonicity in [3,9]. We are
interested now in the connection between the concavity (shape) and time-mono-
tonicity. The expectations can be formulated as follows.

Definition 3. The discrete model corresponding to the Example of 2.1 is said
to be correct from the point of view of the connection between concavity and
time-monotonicity if the following statement holds:

S(I −H) ⊇ S(Q) ⊇ S((I−H)H−1) .

With this we change over to the general case: we will see what is the correspond-
ing definition, and then we will already give the conditions for the discrete model
to fulfil this property.

The operator Q̂
n
x = (A0−B0)x+(A∂gn+1−B∂gn+τfn+1/2) = Qx−A0hn is

responsible for the shape. The property corresponding to Definition 3 is exactly
as follows: S(I − Ln) ⊇ S(Q̂

n
) ⊇ S((I − Ln)(Ln)−1) for all n ∈ IN. However we

will see that the realization of this property does not depend on n. Therefore it
is enough to check for the two operators defined as

Q̂x := (A0 −B0)x + (A∂g′ −B∂g + τ f̂) = Qx−A0h ,

Lx := A−1
0 B0x + A−1

0 (−A∂g′ + B∂g− τ f̂) = Hx + h . (13)

This means that
(I− L)x = A−1

0 Q̂x . (14)

Definition 4. The discrete model corresponding to (7), (8) is said to be correct
from the point of view of the connection between shape and time-monotonicity,
if the following statement holds:

S(I− L) ⊇ S(Q̂) ⊇ S((I − L)L−1) .

Now we have arrived at the point to investigate under what assumption the
discrete model is correct. The next lemma will be helpful in this.
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Lemma 2. Let X,Y : V → V be operators, where V is a vector space over an
ordered field. If X is bijective, then the following statements are equivalent.

(i) S(X) ⊆ S(Y ).
(ii) Y X−1 ≥ 0.

Proof. It follows from the following equivalent statements.
a ∈ S(X) ⇒ a ∈ S(Y ). Xa ≥ 0 ⇒ Y a ≥ 0. While X is bijective, we can

introduce b as a = X−1b. b ≥ 0⇒ Y X−1b ≥ 0. ��

Theorem 1. (a) The following statements are equivalent.
(a1) S(I − L) ⊇ S(Q̂).
(a2) A−1

0 ≥ 0.

(b) The following statements are equivalent.
(b1) S(Q̂) ⊇ S((I − L)L−1).
(b2) B0 ≥ 0.

Proof. (a) It follows from Remark 1, Lemma 2 and Equation (14).
(b) Using Remark 1, (13) and (14) we can write that (I − L)x = (I −H)x − h
and Q̂x = A0[(I −H)x − h]. Using Lemma 2 we get that (b1) is equivalent to
x ≥ 0⇒ A0{(I−H)[H(I−H)−1(x+h)+h]−h} ≥ 0. While H and (I−H)−1

commute we can write it in a simplified form: x ≥ 0 ⇒ B0x ≥ 0, which proves
the statement. ��

4 Remarks and Summary

Remark 2. In the discrete case the connection between shape and time mono-
tonicity is in a close relation with the nonnegativity preservation property (DNP)
and the maximum-minimum principle (DMP), since the necessary and suffi-
cient conditions to fulfil the DMP (and DNP, too) in the general case are (P1)
−A−1

0 A∂ ≥ 0 and (P2) A−1
0 B ≥ 0, see [4,5].

Let us consider Example 2 with homogeneous Dirichlet boundary condition
(g(x, t) = 0). Since f(x, t) does not depend on time, therefore to it corresponds a
discretized elliptic problem Qu = τf. The iteration un+1 = A−1

0 B0un + τA−1
0 f,

which solves it, is based on a so-called regular splitting of Q if A−1
0 ≥ 0, B0 ≥ 0,

a weak regular splitting if A−1
0 ≥ 0, A−1

0 B0 ≥ 0, ([1]) and a weak splitting if
A−1

0 B0 ≥ 0, ([7]).

Remark 3. In this case (P1) and (P2) get a simplified form, namely A−1
0 ≥ 0

and A−1
0 B0 ≥ 0. This means that the DNP and DMP corresponds to the weak

regular splitting.
The correct discrete model from the point of view of the connection between

shape and time-monotonicity corresponds to the regular splitting.
It is easy to check that S(I− L) ⊇ S((I− L)L−1) is equivalent to A−1

0 B0 ≥ 0,
which means that this qualitative propery corresponds to the weak splitting.
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Summary

We defined a property, the connection between the shape and time monotonicity
of the diffusion submodel. We formulated this property in the time-discretized
case, too. After that we gave the necessary and sufficient conditions to fulfil this
property in a practical case, when we used the finite difference or finite element
method for space discretization and the θ-method for time discretization. Finally
we pointed out the connection between the qualitative properies and matrix
splittings.
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Limit Cycles and Bifurcations in a Biological

Clock Model

Bálint Nagy

Department of Mathematical Analysis,
College of Dunaújváros, Hungary

Abstract. A three-variable dynamical system describing the circadian
oscillation of two proteins (PER and TIM) in cells is investigated. We
studied the saddle-node and Hopf bifurcation curves and distinguished
four cases according to their mutual position in a former article. Other
bifurcation curves were determined in a simplified, two-variable model
by Simon and Volford [6]. Here we show a set of bifurcation curves that
divide the parameter plane into regions according to topological equiv-
alence of global phase portraits, namely the global bifurcation diagram,
for the three-variable system. We determine the Bautin-bifurcation point,
and fold bifurcation of cycles numerically. We also investigate unstable
limit cycles and the case when two stable limit cycles exist.

Keywords: limit cycle, bifurcation, circadian rhythm model.

1 Introduction

Chronobiological rhythms can be observed in the physiology and behavior of
animals entrained to the 24h cycle of light and darkness. Discoveries show that
there is an internal biological clock at molecular level. Two proteins (PER and
TIM) are thought to be responsible for this mechanism. Leloup and Goldbeter [3]
introduced a model for this phenomenon. Tyson et al. [7] developed the original
model applying a new positive feedback-loop. The original six variable model
can be reduced to three differential equations [7] in which the state variables are
the concentration of mRNA (M), the protein (P1) and the dimer (P2) [7]:

Ṁ =
νm

1 +
(

P2
Pc

)2 − kmM (1)

Ṗ1 = νpM −
k1P1

Jp + P1 + rP2
− k3P1 − 2kaP

2
1 + 2kdP2 (2)

Ṗ2 = kaP
2
1 − (kd + k3)P2 −

k2P2

Jp + P1 + rP2
(3)

Equation (1) includes the inhibition of the mRNA transcription by the dimer.
The reaction constants k1, k2, k3 are related to the phosphorylation and the
reaction constants ka, kd belong to the dimerization process. The ratio of enzyme
substrate dissociation constant is r. νm is the maximum rate of synthesis of

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 209–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. D–curve, H–curve and E1, E2, E3, E4 domains for Pc = 0.5

mRNA, km is the first-order rate constant for mRNA degradation, νp is the rate
constant for translation of mRNA, Pc is the dimer concentration at the half-
maximum transcription rate and Jp is the Michaelis constant for protein kinase
(DBT) [7]. With additional simplifying assumptions the system can be reduced
to two equations [7]. The two variable model was studied by Simon and Volford
in [6].

System (1)–(3) consists of three variables and eleven parameters. k1 and νp

are linearly involved, hence these can be used as control parameters, the other
nine are fixed at the values taken from [7]. In a former article [4] we gave the
saddle-node, i.e. the D- and the Hopf-, i.e. the H-curves paramterized by the
state variable P1 by the parametric representation method (PRM) [5]. We also
investigated the qualitative shape of these curves and determined how the curves
change if the parameters are varied. Crossing the D-curve the number of sta-
tionary points changes, while crossing the H-curve the stability changes. Since
the curves are parametrized by P1 one can determine (νp, k1) point of curves by
the value of P1. We also discussed the connection between these curves, especially
the common points of the two curves, the Takens-Bogdanov bifurcation points
are determined. The system has the most complex behavior if Pc > P�

c ≈ 0.26.
We studied the stationary points and found that for example for Pc = 0.5 there
are four regions in the (νp, k1) plane according to the number and type of station-
ary points, see Figure 1. If (νp, k1) ∈ E1 the system (1)–(3) has one stationary
point and it is stable, if (νp, k1) ∈ E2 the system has one unstable station-
ary point [4]. Stability and the number of periodic orbits change crossing the
H-curve.

Deciding whether the Hopf bifurcation is subcritical or supercritical we calcu-
late Lyapunov coefficient σ in the (1)–(3) three-variable system. The coefficient
σ determines the stability. If σ > 0, there is a subcritical Hopf-bifurcation at
the appropriate point of the H-curve and the periodic orbit is unstable. If σ < 0,
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there is a supercritical Hopf-bifurcation, the periodic orbit is stable. Bautin-
bifurcation (generalized Hopf-bifurcation) [2] occurs, if σ = 0.

The number of periodic orbits can change as well when a stable and an un-
stable periodic orbit coalesce and disappear, i.e. the fold bifurcation of cycles.
The Fc-curve consists of points, where a fold bifurcation of periodic orbits oc-
curs. From the Bautin-bifurcation point an Fc curves starts as it is stated by the
general theory [2].

In Section 2 we show how a center manifold reduction can be carried out to
reduce the three-variable case to the two-variable one. In Section 3 we apply this
method for system (1)–(3), hence we determine the Bautin bifurcation point, and
fold bifurcation of cycles numerically. We determine the region where two stable
limit cycles exist, hence bistability arises.

2 Andronov-Hopf Bifurcation

In this section we show how to calculate Lyapunov coefficient σ in a three variable
model.

In [1] it is shown that in the system(
ẋ
ẏ

)
=
(

0 −ω
ω 0

)(
x
y

)
+
(

F (x, y)
G(x, y)

)
(4)

with F (0) = G(0) = 0 and DF (0) = DG(0) = 0, the normal form calculation
yields

σ =
1
16

[Fxxx + Fxxy + Gxxy + Gyyy]+

+
1

16ω
[Fxy(Fxx + Fyy)−Gxy(Gxx + Gyy)− FxxGxx + FyyGyy], (5)

where Fxy denotes (∂2F/∂x∂y)(0, 0), etc.
Let us consider the system

Ẋ(t) = f(X(t)), (6)

where X(t) ∈ R3 and J is the Jacobian of f.
Let (xs, ys, zs) be the stationary point of system (6). To determine σ, first we

translate this stationary point into the origin with the transformation

x̄ = x− xs, ȳ = y − ys, z̄ = z − zs. (7)

The stability of the stationary points can be determined by

g = TrJ(A11 + A22 + A33)−DetJ.

It can be proved, that if the Jacobian of the system (6) has two pure imaginary
eigenvalues, then g = 0. Here TrJ and DetJ denote the trace and the deter-
minant of J , and A11, A22, A33 are the corresponding minors of J . It can be
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shown that g = 0 and sgn DetJ = sgn TrJ imply that the Jacobian has two
pure imaginary eigenvalues hence a Hopf–bifurcation exists. However, if g = 0
and sgn DetJ �= sgn TrJ, then the Jacobian has only real eigenvalues, thus there
is no Hopf-bifurcation.

Let g = 0 and sgn DetJ = sgn TrJ , hence the Jacobian at the origin has one
real eigenvalue (λ1), and two pure imaginary eigenvalues (λ2, λ3), λ2 = λ̄3 hence
λ2 + λ3 = 0.

Let the eigenvectors of the Jacobian be v1, v2, v3, and T = (v1,v2,v3)T ,
where (·)T denotes the transposed of a matrix.

Now we introduce the new variable U = T−1X.
Hence the system (6) is transformed to a diagonal one:

U̇ = T−1JTU + a(U), (8)

where T−1JT =

⎛⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ , U =

⎛⎝ u
v
w

⎞⎠ , a(U) = T−1f(TU)−T−1JTU.

We will approximate the center manifold W c of system (8) with

u = q(v, w) = αv2 + βvw + γw2. (9)

Remark 1. Since our aim is to determine whether the Hopf-bifurcation is su-
percritical or subcritical, its enough to approximate u with second order terms
[1].

Differentiating (9), we have

u̇ = (2αv + βw)v̇ + (βv + 2γw)ẇ. (10)

Let us write (8) into the form

u̇ = λ1u + a1(u, v, w) (11)
v̇ = λ2v + a2(u, v, w) (12)
ẇ = λ3w + a3(u, v, w) (13)

where

a1 = c1w
2 + c2vw + c3v

2 + c4u
2 + c5uv + c6uw +O(u3, v3, w3). (14)

Substituting (11)–(13) into (10), we get

λ1u + a1(u, v, w) = (2αv + βw)(λ2v + a2(u, v, w))
+(2γw + βv)(λ3w + a3(u, v, w)). (15)

Let us observe, that if we substitute (9) into (14) the terms c4u
2, c5wv, c6w

2

will not contain v2, wv, w2. Hence at the second order a1 = c1w
2 + c2vw+ c3w

2.
Moreover, neither (2αv + βw)a2(u, v, w), nor (2γw + βv)a3(u, v, w) contain v2,
wv, w2, because a is the nonlinear part of f.
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Now we use (9) and write (15) into the form

λ1(αv2 + βvw + γw2) + c1w
2 + c2vw + c3v

2 = 2αλ2v
2 + 2γλ3w

2. (16)

Equating the coefficients of v2, we have αλ1 + c3 = 2αλ2, hence

α =
c3

2λ2 − λ1
.

The value of β and γ can be calculated similarly. Hence we have proved the
following statement:

Lemma 1. In (9)

α =
c3

2λ2 − λ1
, β =

c2
−λ1

, γ =
c1

2λ3 − λ1
.

Introducing ā(v, w) = a(q(v, w), v, w) we can approximate the system (8) in the
center manifold: (

v̇
ẇ

)
=
(

λ2 0
0 λ3

)
·
(

v
w

)
+
(

ā2(v, w)
ā3(v, w)

)
. (17)

Let
v = ξ − i · η, w = ξ + i · η. (18)

The system for ξ, η takes the form(
ξ̇
η̇

)
=
(

0 −ω
ω 0

)
·
(

ξ
η

)
+
(

F (ξ, η)
G(ξ, η)

)
. (19)

Proposition 1. For F, G in (19) we have

F (ξ, η) =
1
2
(ā2(ξ − i · η, ξ + i · η) + ā3(ξ − i · η, ξ + i · η)), (20)

G(ξ, η) =
1
2i

(ā3(ξ − i · η, ξ + i · η)− ā2(ξ − i · η, ξ + i · η)). (21)

Proof. For brevity we show (20) and use the notation āi = āi(ξ − i · η, ξ + i · η),
i = 2, 3. Since (18)

ξ =
1
2
(v + w), η =

1
2i

(w − v).

Using λ2 + λ3 = 0 and introducing ω = (λ2 − λ3)i/2

ξ̇ =
1
2
(v̇ + ẇ) =

=
1
2
(λ2(ξ − i · η) + ā2 + λ3(ξ + i · η) + ā3) =

=
1
2
((λ2 + λ3)ξ + i · η(λ3 − λ2) + ā2 + ā3 =

=
1
2
(0 − 2ωη + ā2 + ā3) = −ωη +

1
2
(ā2 + ā3). (22)

(21) can be seen similarly.
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3 Determining the Bautin Bifurcation Point

In this section we apply the method showed in Section 2 for the (1)–(3) model.
Let us consider the system (1)-(3). With X = (M,P1, P2)T (1)–(3) takes the
form of (6). Let us suppose that (νp, k1) ∈ E1 ∪ E2 (see Figure 1), hence the
system has one stationary point, with coordinates (xs, ys, zs). First we translate
this stationary point into the origin with transformation (7), that is we introduce
the new variables M̄, P̄1, P̄2 : M̄ = M−xs, P̄1 = P1−ys, P̄2 = P2−zs. Dropping
the bars we get:

Ṁ =
νm

1 +
(

P2+zs

Pc

)2 − km(M + xs) (23)

Ṗ1 = νp(M + xs)−
k1(P1 + ys)

Jp + P1 + ys + r(P2 + zs)
−

−k3(P1 + ys)− 2ka(P1 + ys)2 + 2kd(P2 + zs) (24)
Ṗ2 = ka(P1 + ys)2 − (kd + k3)(P2 + zs)−

− k2(P2 + zs)
Jp + P1 + ys + r(P2 + zs)

(25)

The Jacobian of the system (23)–(25) takes the form

J =

⎛⎝ a11 0 a13

νp k1c̄1 + c̄2 k1c̄3 + c̄4
0 a32 a33

⎞⎠ ,

where

a11 = −km, a13 = − 2νm(P2 + zs)P 2
c

((P2 + zs)2 + P 2
c )2

,

c̄1 = − Jp + r(P2 + zs)
(Jp + P1 + ys + r(P2 + zs))2

, c̄2 = −k3 − 4ka(P1 + ys),

c̄3 =
(P1 + ys)r

(Jp + P1 + ys + r(P2 + zs))2
, c̄4 = 2kd,

a32 = 2ka(P1 + ys) +
k2(P2 + zs)

(Jp + P1 + ys + r(P2 + zs))2
,

a33 = −k3 − kd − k2
Jp + P1 + ys

(Jp + P1 + ys + r(P2 + zs))2
.

Hence we can determine the eigenvalues and eigenvectors of J(0, 0, 0), and the
matrix T . To calculate T , we used Mathematica. Introducing new variables
(u, v, w) where (M,P1, P2)T = T · (u, v, w)T we can transform the system into a
diagonal form, and approximate the center manifold with (9). Now we have the
system transformed into the form (4).

We determined the H–curve with the PRM in [4], hence (νp, k1) are parame-
terized by P1, thus using the method above σ can be determined for any P1, i.e.
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for any (νp, k1) from (5) using (20) and (21). For example P1 = 0.07 yields νp ≈
0.43, k1 ≈ 22.92 and σ ≈ −0.003, hence in the point (0.43, 22.92) supercritical
Hopf-bifurcation occurs. P1 = 0.055 yields (νp, k1) ≈ (0.15, 11.81) and σ ≈ 0.009,
hence there is a subrcritical Hopf-bifurcation in the point (0.15, 11.81). Our nu-
merical investigation shows, that for P̌1 ≈ 0.065 there is a Bautin-bifurcation
point, i.e. σ = 0.

In system (1)–(3) the number of periodic orbits can change in different ways.
The first is Hopf bifurcation, along the points of the H-curve. The value of σ
determines the type of Hopf bifurcation [2]. If σ > 0, then the bifurcation is
subcritical and an unstable limit cycle arises or disappears. If σ < 0, then the
bifurcation is supercritical, and a stable limit cycle emerges or disappears.

The number of periodic orbits can change as well crossing an Fc-curve, when
a fold bifurcation of periodic orbits occurs.

4 Bifurcation Diagram

In this section we summarize what we know about the bifurcation curves, the
stationary points and the limit cycles of system (1)–(3).

Our numerical investigation shows, that system (1)–(3) has two Fc-curves. Fc1

is under the H-curve and Fc2 starts from the Bautin point B with coordinates
(νB

p , k1B) [2].
Now we give the bifurcation diagram for Pc = 0.5 in the region E1 ∪ E2,

see Figure 2. The D-, H-, Fc1-, Fc2-curves divide the (νp, k1) parameter plane
into E1

1 , E
2
1 , E

1
2 , E

2
2 regions. We discuss how the number of limit cycles changes

varying νp and k1, see Figure 2.

Νp

k1

E1
1

E1
2

E2
1E2

2

H

Fc1

Fc2

B
D

E1
1

E2
2

E1
2

E2
1

Fig. 2. Schematic figure for region E1 ∪ E2 with bifurcation curves and typical phase
portraits
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Let νp < νB
p , and (νp, k1) ∈ E1

1 . System (1)–(3) has a stable stationary point
(as we showed in [4]), and there is no limit cycle. Increasing k1 we cross the Fc1

curve where two cycles emerge, we get to region E2
1 . There is a stable stationary

point, since we did not get through the D-curve and we found, that there are two
limit cycles. A stable and an unstable one, since we crossed a fold bifurcation
curve (Fc1). Crossing the H-curve (νp, k1) is in region E2

2 . Since νp < νB
p on

the H-curve an unstable limit cycle disappear, σ > 0, thus subcritical Hopf-
bifurcation occurs. In E2

2 there is an unstable stationary point and a stable limit
cycle.

Let us change (νp, k1) in E2
2 to gain νp > νB

p . If we cross the Fc2 fold bifurca-
tion curve, two limit cycles — a stable and an unstable one — arise: we get to
region E1

2 . In E1
2 there are three limit cycles — two stable and an unstable one

— and there is an unstable stationary point. Crossing the H-curve with νp > νB
p

supercritical Hopf bifurcation occurs, hence a stable limit cycle disappears and
the unstable stationary point becomes stable. We get one stable stationary point
and two limit cycles — a stable and an unstable one — as it is stated before in
region E2

1 .
We found that two stable limit cycles occur in region E1

2 if (νp, k1) lies between
the H- and Fc1-curves. This bistability can be important in biological systems.
Depending on the initial condition the system may approach two alternative
stable limit cycles. Bistable systems can approach one of two stable periodic or-
bits, hence may undergo sudden transitions, corresponding to switches from one
stable limit cycle to the other because of small changes in the initial conditions.
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Eötvös Loránd University Budapest, Hungary

simonp@cs.elte.hu

Abstract. Traveling wave solutions of reaction-diffusion (semilinear
parabolic) systems are studied. The number and stability of these solu-
tions can change via different bifurcations: saddle-node, Hopf and trans-
verse instability bifurcations. Conditions for these bifurcations can be
determined from the linearization of the reaction-diffusion system. If an
eigenvalue (or a pair) of the linearized system has zero real part, then
a bifurcation occurs. Discretizing the linear system we obtain a matrix
eigenvalue problem. It is known that its eigenvalues tend to the eigenval-
ues of the original system as the discretization step size goes to zero. Thus
to obtain bifurcation curves we have to study the spectra of large matri-
ces. The general bifurcation conditions for the matrices will be derived.
These results will be applied to a reaction-diffusion system describing
flame propagation.

1 Introduction

Let us consider the equation

∂tu = D∆u + f(u), (1)

where u : R+×R2 → Rm, D is an m×m diagonal matrix with positive elements
and f : Rm → Rm is a differentiable function. The traveling wave solution of
this equation (moving in the x direction) has the form u(t, x, y) = U(x − ct),
where

U : R→ Rm, U(−∞) = U− ∈ Rm, U(∞) = U+ ∈ Rm.

For this function we have
DU ′′(z) + cU ′(z) + f(U(z)) = 0, (z = x− ct). (2)

Several bifurcations of the traveling wave U can be determined from the spec-
trum of the linear differential operator obtained by linearizing (1) around U ,
the details will be given in Section 2. We will refer to this operator as linearized
operator. The spectrum of this operator has been widely investigated. The posi-
tion of the essential spectrum has been estimated, see e.g. [3], and Weyl’s lemma
� This work was supported by the Hungarian National Science Foundation OTKA No.
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in [8]. In [7] an algorithm is given for the determination of the exact position
of the essential spectrum. In this paper we concentrate on the eigenvalues of
the linearized operator that can be determined only numerically. Discretizing
the linearised operator its spectrum can be approximated by the eigenvalues
of a large matrix. It is known that for a traveling wave solution of a reaction-
diffusion system the eigenvalues of the matrix approximate the spectrum of the
original differential operator [1,4].

In Section 2 the linearization around a traveling wave is derived. Then the
three most important bifurcations of traveling waves are introduced and suffi-
cient conditions for these bifurcations in terms of the linearized operator are
presented. In Section 3 the matrix that is the discretization of the operator is
derived. Then the sufficient conditions of the bifurcations are expressed for the
matrix. In Section 4 a flame propagation model is studied. This model consists
of two reaction diffusion equations, the traveling wave solutions of which were
determined in [6]. Here the bifurcations of these traveling waves are investigated
by using the bifurcation conditions for the discretization of the system.

2 Bifurcations of Traveling Waves

The stability of U can be determined by linearization. Put u(t, x, y) = U(x −
ct) + v(t, z, y). Then the linearized equation for v takes the form

∂tv = D∆v + c∂zv + f ′(U(z))v. (3)

Here we used the linear approximation, i.e. instead of f(U + v) we put f(U) +
f ′(U)v. If the solution of this equation starting from a sufficiently small initial
value tends to zero as t tends to infinity, then the traveling wave solution U is said
to be linearly stable. It is important to note, that shifting the function U we get
another traveling wave solution, i.e. U(z) = U(z+z0) is also a solution of (2) for
any z0 ∈ R. Hence the traveling wave solution cannot be asymptotically stable
in the usual sense. This is reflected in the fact that the function v(t, z, y) = U ′(z)
is always a solution of (3), which obviously does not tend to zero.

Thus for the linear stability of the traveling wave solution one has to study the
spectrum of the linear differential operator in the right hand side of (3). If the
spectrum is in the left half of the complex plane then the traveling wave solution
is said to be linearly stable. If it has points in the right half of the complex plane
then the traveling wave solution is said to be linearly unstable. The spectrum of
this differential operator consists of two parts: the isolated eigenvalues and the
essential spectrum. The position of the later can be determined theoretically,
in some cases it can be determined explicitly [6,7]. The eigenvalues can be ob-
tained only numerically. In this paper we study the eigenvalues and determine
them numerically. In the case of the most important bifurcations as a param-
eter in the system is varied an eigenvalue crosses the imaginary axis and the
corresponding eigenfunction does not depend on y or depends on y periodically.
If an eigenvalue crosses the imaginary axis at the origin and the corresponding
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eigenfunction does not depend on y, then we have a so-called saddle-node bifur-
cation. In this case the number of traveling wave solutions changes by two. If
a pair of complex eigenvalues crosses the imaginary axis and the corresponding
eigenfunction does not depend on y, then we have a so-called Hopf bifurcation.
In this case the number of traveling wave solutions does not change, however,
it loses its stability and a wave propagating with periodically changing veloc-
ity appears. If a pair of complex eigenvalues crosses the imaginary axis and the
corresponding eigenfunction depends on y periodically, then we have a so-called
transverse instability bifurcation. In this case the number of traveling wave so-
lutions does not change, however, it loses its stability and a non planar traveling
wave appears.

Thus in order to study these bifurcations it is enough to determine the solu-
tions of (3) in the form v(t, z, y) = V (z) exp(iky + σt). Substituting this form
into (3) we get for V

DV ′′(z) + cV ′(z) + (f ′(U(z))−Dk2)V (z) = σV (z) (4)
V (±∞) = 0.

For a given real value of k this is an eigenvalue problem. The eigenvalue is σ,
the eigenfunction is V . Let us denote by σ(k) the eigenvalue with largest real
part. The plot of σ(k) against k is called a dispersion curve. For instability we
require a range of k over which Re σ(k) > 0. If (4) has a pair of purely imaginary
eigenvalues for k = 0, then Hopf bifurcation occurs.

3 Discretization

In order to study transverse instability we plot the dispersion curves for different
values of the parameters. We solve the eigenvalue problem with finite difference
discretization. First the problem is truncated, i.e. we solve (4) subject to V (−l) =
V (l) = 0 ∈ Rm with some l large enough. In [1] it is shown that the eigenvalues
of the truncated problem tend to those of the original problem as l→∞. Then
choosing a sufficiently large number l we discretize the truncated problem with
finite differences on a grid of N points:

−l < z1 < z2 < . . . < zN < l.

The discretization of the i-th coordinate function Vi is

vi = (Vi(z1), Vi(z2), . . . , Vi(zN ))T ∈ RN .

(In this Section v will denote the discretization and not the solution of the lin-
earization of the differential equation.) The derivatives of V will be approximated
by finite differences, that is we introduce the N×N matrices A and B for which

(V ′
i (z1), V ′

i (z2), . . . , V ′
i (zN))T = Avi

(V ′′
i (z1), V ′′

i (z2), . . . , V ′′
i (zN ))T = Bvi.
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System (4) consists of m equations and holds in N grid points, yielding m · N
equations. The first equation of the system written in the N grid points and
using the finite difference approximation of the derivatives takes the form

D1Bv1 + cAv1 + Q11v1 + Q21v2 + . . . + Qm1vm −D1k
2v1 = σv1 (5)

where Qij is the N ×N diagonal matrix with elements

∂ifj(U(z1)), ∂ifj(U(z2)), . . . ∂ifj(U(zN )).

Similarly, we can write the second equation of the system at the grid points:

D2Bv2 + cAv2 + Q12v1 + Q22v2 + . . . + Qm2vm −D2k
2v2 = σv2. (6)

Finally, the discretization of the m-th equation takes the form

DmBvm + cAvm + Q1mv1 + Q2mv2 + . . . + Qmmvm −Dmk2vm = σvm. (7)

Let us introduce the column vector v with m ·N elements as

v = (vT
1 , vT

2 , . . . , vT
m)T

and the m ·N ×m ·N matrices M and P as

M =

⎛⎜⎜⎜⎝
D1B + cA + Q11 Q21 . . . Qm1

Q12 D2B + cA + Q22 . . . Qm2

...
...

. . .
...

Q1m Q2m . . . DmB + cA + Qmm

⎞⎟⎟⎟⎠

P =

⎛⎜⎜⎜⎝
D1I 0 . . . 0
0 D2I . . . 0
...

...
. . .

...
0 0 . . . DmI

⎞⎟⎟⎟⎠
where I stands for the N ×N unit matrix. Then the discretization of (4) is the
m ·N dimensional matrix eigenvalue problem

(M − κP )v = σv (8)

where κ stands for k2. It can be shown that the eigenvalues of the matrix M−κP
tend to those of the truncated problem as N →∞ [4]. We can increase the values
of l and N until the required accuracy is achieved.

The matrices M and P involve the parameters of the reaction-diffusion system.
If for some values of the parameters M has a pair of pure imaginary eigenvalues,
then at these parameter values Hopf-bifurcation occurs. If for some κ the eigen-
value problem (8) has an eigenvalue σ with positive real part, then the traveling
wave is transversally unstable.

Thus we have to solve the matrix eigenvalue problem (8) as the value of κ is
varied. Let us denote by ν an eigenvalue of M . In the next Lemma we show that
under suitable conditions there is a differentiable function sν that associates to
κ an eigenvalue σ = sν(κ) of (8) and sν(0) = ν.
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Lemma 1. Let ν be an eigenvalue of the matrix M ∈ Rn×n, for which dim ker
(M − νI) = dim ker(MT − νI) = 1. Let us denote by u0 and v0 the eigenvectors
(with unit length) that span these one-dimensional eigenspaces. If 〈u0, v0〉 �= 0,
then there exists δ > 0 and there exist differentiable functions s : (−δ, δ) → C
and U : (−δ, δ)→ Cn, such that U(0) = u0, s(0) = ν and for all κ ∈ (−δ, δ) we
have

(M − κP )U(κ) = s(κ)U(κ). (9)

Moreover,

s′(0) = −〈Pu0, v0〉
〈u0, v0〉

. (10)

Proof. The implicit function theorem will be applied to the function F : Rn ×
C× R→ Rn ×C

F (u, σ, κ) =
(
(M − κP )u− σu, ‖u‖2 − 1

)T
.

According to the assumptions F (u0, ν, 0) = 0 ∈ Rn×C and in the case F (u, σ, κ)
= 0 ∈ Rn × C the vector u is an eigenvector with unit length and σ is an
eigenvalue in (8). In order to apply the implicit function theorem we have to
show that

det ∂(u,σ)F (u0, ν, 0) �= 0,

that is kerA = 0 ∈ Rn ×C, where

A = ∂(u,σ)F (u0, ν, 0) =
(

M − νI −u0

2uT
0 0

)
.

Assume that A· (v, α)T = 0, then (M −νI)v = αu0 and 〈u0, v〉 = 0. Multiplying
the first equation by v0 and using that (M − νI)T v0 = 0 we get

0 = 〈v, (M − νI)T v0〉 = α〈u0, v0〉.

Because of the assumption 〈u0, v0〉 �= 0 we get α = 0. Now we have to show
that v = 0. Since (M − νI)v = αu0 = 0 and the eigenspace is one-dimensional
there exists β ∈ R such that v = βu0. Hence from 〈u0, v〉 = 0 we get β = 0,
since ‖u0‖ �= 0. Then β = 0 implies v = 0 yielding kerA = 0. Hence the implicit
function theorem ensures the existence of the functions s and U .

It remains to prove (10). Differentiating (9) and substituting κ = 0 we get

MU ′(0)− PU(0) = s(0)U ′(0) + s′(0)U(0).

Multiplying this equation by v0 and using s(0) = ν we get

〈U ′(0), (MT − νI)v0〉 − 〈PU(0), v0〉 = s′(0)〈U(0), v0〉.

Using (MT − νI)v0 = 0 and U(0) = u0 we get the desired expression for s′(0). $
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The significance of s′(0) is the following. If the traveling wave is stable in the 1D
geometry, i.e. M has a zero eigenvalue (because of the translational invariance)
and the other eigenvalues have negative real part, and s′(0) > 0, then the wave is
transversally unstable, since (8) has positive eigenvalues for some positive values
of κ. If the traveling wave is stable in the 1D geometry and s′(0) < 0, then
the wave is transversally stable at least for small positive values of κ, since (8)
has positive eigenvalues. In fact, in many problems s(κ) < 0 for all κ. That
is the wave is transversally stable if s′(0) < 0, and transversally unstable if
s′(0) > 0. Therefore the transverse instability appears when s′(0) = 0, i.e. this
is the condition for the transverse instability bifurcation.

Thus the bifurcation curves can be obtained numerically as follows. For the
Hopf-bifurcation curve we have to determine those parameter values for which
M has a pair of pure imaginary eigenvalues. For the transverse instability bifur-
cation curve we have to determine those parameter values, for which

〈Pu0, v0〉 = 0, (11)

where Mu0 = 0 and MT v0 = 0. In the next Section we will show some examples
where these bifurcation values are determined.

4 Application

Now we apply the procedure presented above in a flame propagation model. We
consider the simple case of a first-order reaction, when the reactant (fuel) is burnt
to an inert product during an exothermic reaction in the presence of heat loss,
see [2,5,6,9]. Here the longitudinal and transverse instability of a planar laminar
premixed flame moving in the direction of the x coordinate axis is studied in
this model case with linear heat loss.

The dimensionless equations governing our model are

∂ta = L−1
A

(
∂2

xa + ∂2
ya
)
− ag(θ) (12)

∂tθ = ∂2
xθ + ∂2

yθ + ag(θ)− γθ (13)

where a is the concentration of the fuel, θ is temperature (both are dimension-
less), LA is the Lewis number (ratio of thermal to mass diffusivity), γ is the heat
loss parameter,

g(θ) = ε−2 exp(
θ − 1
εθ

) (14)

is the scaled Arrhenius function (determining the reaction rate to a given value
of the temperature) and 1/ε is the activation energy. We will consider plane wave
solutions moving along the positive direction of the x co-ordinate axis, hence we
assume that ahead of the combustion front a→ 1, and θ → 0 since the ambient
temperature is assumed to be zero in order to avoid the so-called cold boundary
problem, see e.g. [2,6,9].
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In order to get the traveling wave equations (2) in this case let us substitute
a(x, y, t) = a0(z) and θ(x, y, t) = θ0(z) into (12)–(13), where z = x − ct. Then
we get

L−1
A a′′0 + ca′0 − a0g(θ0) = 0 (15)

θ′′0 + cθ′0 + a0g(θ0)− γθ0 = 0 (16)

(where primes denote differentiation with respect to z).
The main question concerning problem (15)–(16) is the number and stability

of traveling wave solutions. Three different bifurcations of traveling waves may
occur in this model. Increasing the value of the heat loss parameter the number
of traveling wave solutions changes from two to zero through saddle-node bifur-
cation at a critical value of γ. That is there is no propagating flame when the
heat loss is strong enough. The traveling wave can loose its stability via Hopf
bifurcation as the Lewis number or γ is varied. Considering the traveling wave in
2D geometry it can be stable under 1D perturbations but unstable for perturba-
tions which are transversal to the direction of its propagation. This phenomenon
is called transverse instability and yields cellular flames.

After linearization around the traveling wave (4) takes the form

L−1
A A′′

0 + cA′
0 − (L−1

A k2 + σ + f(θ0))A0 − a0f
′(θ0)T0 = 0 (17)

T ′′
0 + cT ′

0 − (k2 + σ + γ − a0f
′(θ0))T0 + f(θ0)A0 = 0 (18)

on −∞ < ζ <∞, subject to

A0 → 0, T0 → 0 as ζ → ±∞. (19)

For a given real value of k this is an eigenvalue problem. The eigenvalue is σ, the
eigenfunctions are (A0, T0). We solve this eigenvalue problem numerically with
finite difference discretization.

The Hopf-bifurcation points can be obtained for κ = 0, i.e. the eigenvalues of
the matrix M have to be determined. For a fixed value of LA we can determine
that value of γ for which M has a pair of pure imaginary eigenvalues. Changing
the value of LA we get the Hopf-bifurcation curve in the (γ, LA) parameter
plane. It is shown in Figure 1. In this figure the saddle-node bifurcation curve
and its common point with the Hopf-curve, the Takens-Bogdanov bifurcation
point (TB) are also shown, these were computed in [6].

The transverse instability bifurcation point can be determined from condition
(11) as follows. First we fix a value of γ and define a function which associates
to a given value of LA the left hand side of (11). For the computations we used
MATLAB. With the given values of γ and LA we solve first the discretization of
(17)–(19) and get the values of a0 and θ0 at the grid points. These determine the
matrix M in (8). Then we determine the eigenvectors of M and MT belonging to
the eigenvalue zero, these are u0 and v0 that are used to compute the left hand
side of (11). Then we apply a root finding algorithm to get the bifurcation value
of LA for which (11) holds. This way we get a point of the bifurcation curve. In-
creasing the value of γ starting from zero we determine the bifurcation value of
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Fig. 1. The saddle-node, Hopf and transverse instability bifurcation curves. The num-
ber of stable and unstable planar flame solutions is indicated in the different regions
determined by the bifurcation curves.

LA to each γ, hence we obtain the transverse instability bifurcation curve, shown
in Figure 1. The bifurcation curves divide the (γ, LA) parameter plane into four
regions where the number and type of planar flame solutions are constant. The
number and stability of them are also given in the figure.

References

1. Beyn, W.J., Lorenz, J.: Stability of traveling waves: Dichotomies and eigenvalue
conditions on finite intervals. Numer. Func. Anal. Optim. 20, 201–244 (1999)

2. Giovangigli, V.: Nonadiabatic plane laminar flames and their singular limits. SIAM
J. Math. Anal 21, 1305–1325 (1990)

3. Henry, D.: Geometric theory of semilinear parabolic equations. Springer, Heidelberg
(1981)

4. Keller, H.B.: Numerical methods for two-point boundary-value problems. Blaisdell
Publishing Company (1968)

5. Lasseigne, D.G., Jackson, T.L., Jameson, L.: Stability of freely propagating flames
revisited. Combust. Theory Modelling 3, 591–611 (1999)

6. Simon, P.L., et al.: Evans function analysis of the stability of non-adiabatic flames.
Combust. Theory Modelling 7, 545–561 (2003)

7. Simon, P.L.: On the structure of spectra of travelling waves. Elect. J. Qual. Th. Diff.
Equ. 15, 1–19 (2003)

8. Smoller, J.A.: Shock waves and reaction diffusion equations. Springer, Heidelberg
(1983)

9. Weber, R.O., et al.: Combustion waves for gases (Le = 1) and solids (Le → ∞).
Proc. Roy. Soc. Lond. A 453, 1105–1118 (1997)



 
 
 
 
 
 
 
 

Part V 

Recent Advances in Methods and 
Applications for Large Scale 

Computations and Optimization of 
Coupled Engineering Problems 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 



Parallel Implementation of LQG Balanced

Truncation for Large-Scale Systems�

Jose M. Bad́ıa1, Peter Benner2, Rafael Mayo1, Enrique S. Quintana-Ort́ı1,
Gregorio Quintana-Ort́ı1, and Alfredo Remón1
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Abstract. Model reduction of large-scale linear time-invariant systems
is an ubiquitous task in control and simulation of complex dynamical
processes. We discuss how LQG balanced truncation can be applied to
reduce the order of large-scale control problems arising from the spatial
discretization of time-dependent partial differential equations. Numerical
examples on a parallel computer demonstrate the effectiveness of our
approach.

Keywords: model reduction, LQG balancing, algebraic Riccati equa-
tion, Newton’s method, parallel algorithms.

1 Introduction

We consider linear time-invariant (LTI) dynamical systems in state-space form:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0, (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn is the initial
state of the system. In particular, we are interested in LTI systems arising from
the semi- or spatial discretization of a control problem for a time-dependent lin-
ear partial differential equation (PDE) like the instationary heat or convection-
diffusion equations. In such a situation, the state matrix A is typically large and
sparse and, often, n� m, p. The number of states, n, is known as the state-space
dimension (or the order) of the system. Applying the Laplace transform to (1)
and assuming x0 = 0, we obtain the input-output mapping in frequency domain,

y(s) = G(s)u(s), s ∈ C, (2)
� This research has been partially supported by the DAAD programme Acciones
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I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 227–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



228 J.M. Bad́ıa et al.

where G is the associated transfer function matrix (TFM) defined by G(s) =
C(sI −A)−1B + D.

For purposes of control and simulation, it is often desirable to reduce the order
of the system; see, e.g., [1,6,11]. Specifically, the task of model reduction is to
find a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(3)

of order r, r % n, with associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ which ap-
proximates G(s). Using (2), this becomes an approximation problem for TFMs:

y(s)− ŷ(s) = G(s)u(s) − Ĝ(s)u(s) = (G(s) − Ĝ(s))u(s),

so that in an appropriate norm,

‖y − ŷ‖ ≤ ‖G− Ĝ‖‖u‖.

There are plenty of approaches for computing a reduced-order model. Here we
focus on balancing-related methods due to their favorable system theoretic prop-
erties. Among these, linear-quadratic Gaussian balanced truncation (LQG BT)
[7] can be used as a model reduction method for unstable plants, but also pro-
vides a closed-loop balancing technique as it directly provides a reduced-order
LQG compensator. Compared with the standard model reduction method of bal-
anced truncation, the only difference is that the controllability and observability
Gramians, Wc and Wo respectively, are replaced by the stabilizing solutions of
the dual algebraic Riccati equations (AREs)

AWc + WcA
T −WcC

TCWc + BBT = 0, (4)
ATWo + WoA−WoBBTWo + CTC = 0, (5)

associated with the regulator and filter AREs used in LQG control design.
In this paper we describe a coarse-grain parallel algorithm for model reduction,

extending the applicability of LQG BT methods to sparse systems with up to
O(105) states. Specifically, we will investigate the parallel solution of sparse large-
scale AREs as this is the main computational step in LQG BT model reduction.
Our derivations will be based on [3], where we developed a parallel algorithm
based on the combination of the Newton-Kleinman iteration for the (generalized)
AREs and the low-rank ADI method for the (generalized) Lyapunov equation.
We will also discuss the quality of the obtained LQG reduced-order model.

Numerical experiments on a large parallel architecture consisting of Intel Ita-
nium 2 processors will illustrate the numerical performance of this approach and
the potential of the parallel algorithms for model reduction of large-scale sparse
systems via LQG BT.

2 LQG Balanced Truncation

In this section we briefly review the main computational steps necessary to com-
pute a LQG reduced-order model. We will assume that the LTI system (1) is
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stabilizable and detectable, i.e., there exist matrices K ∈ IRm×n and L ∈ IRn×p

such that both A−BK and A−LC are stable. Under these assumptions, the sta-
bilizing solutions of the AREs (4) and (5) are known to be positive semidefinite.
(By stabilizing solutions we mean the unique solutions for which A − BBTWo

and A−WcC
TC are stable. For further details on AREs and their solutions, con-

sult [9].) Therefore, Wc and Wo can be factored as Wc = STS and Wo = RTR.
A possibility here are the Cholesky factors, but in our algorithm we will rather
employ low-rank factors; see below.

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [U1 U2 ]
[
Σ1

Σ2

]
[V1 V2 ]T , (6)

where U and V are orthogonal matrices, and Σ = diag (γ1, γ2, . . . , γn) is a di-
agonal matrix containing the singular values γ1, γ2, . . . , γn of SRT , which are
called the LQG characteristic values of the system.

In complete analogy to classical balanced truncation, LQG BT now determines
the reduced-order model of order r as (Â, B̂, Ĉ, D̂) = (TLATR, TLB,CTR, D)
with the truncation operators TL and TR given by

TL = Σ
−1/2
1 V T

1 R and TR = STU1Σ
−1/2
1 . (7)

This method provides a realization Ĝ which satisfies

‖∆lqg‖∞ = ‖G− Ĝ‖∞ ≤ 2
n∑

j=r+1

γj√
1 + γ2

j

, (8)

where ‖ .‖ denotes the L∞-norm of transfer functions without poles on the imag-
inary axis.

3 Newton’s Method for the ARE

In this section we review a variant of Newton’s method, described in [13], which
delivers a full-rank approximation of the solution of large-scale sparse AREs.
Starting from an initial solution X0, Newton’s method for the ARE (5) proceeds
as follows:

Newton’s method
repeat with j := 0, 1, 2, . . .

1) Kj := BTXj

2) C̄j :=
[

C
Kj

]
3) Solve for Xj+1:

(A−BKj)TXj+1 + Xj+1(A−BKj) + C̄T
j C̄j = 0

until ‖Xj+1 −Xj‖ < τ‖Xj‖

with the tolerance threshold τ defined by the user.
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Provided A−BBTX0 is stable (i.e., all its eigenvalues lie on the open left half
plane), this iteration converges quadratically to the desired symmetric positive
semidefinite solution of the ARE [8], Wo = limj→∞ Xj . A line search procedure
in [5] can be used to accelerate initial convergence.

In real large-scale applications, m, p % n, and A is sparse, but the solution
matrix Wo is in general dense and, therefore, impossible to construct explicitly.
However, Wo is often of low-numerical rank and thus can be approximated by
a full-rank factor R̄ ∈ IRn×l̄, with l̄ % n, such that R̄R̄T ≈ Wo. The method
described next aims at computing this “narrow” factor R̄.

Let us review how to modify Newton’s method in order to avoid explicit
references to Xj. Assume for the moment that, at the beginning of iteration j,
we maintain R̄j ∈ IRn×l̄j such that R̄jR̄

T
j = Xj. Then, in the first step of the

iteration, we can compute Kj := BTXj = (BT R̄j)R̄T
j , which initially requires

a (dense) matrix product, M := BT R̄j , at a cost of 2l̄jmn flops (floating-point
arithmetic operations); and then a (dense) matrix product, MR̄T

j , with the same
cost. Even for large-scale problems, as m is usually a small order constant, this
represents at most a quadratic cost. In practice, l̄j usually remains a small value
during the iteration so that this cost becomes as low as linear.

The key of this approach lies in solving the Lyapunov equation in the third
step for a full-rank factor R̄j+1, such that R̄j+1R̄

T
j+1 = Xj+1. We describe how

to do so in the next section.

4 Low Rank Solution of Lyapunov Equations

In this section we introduce a generalization of the Lyapunov solver proposed
in [10,12], based on the cyclic low-rank alternating direction implicit (LR-ADI)
iteration. In particular, consider the Lyapunov equation to be solved at each
iteration of Newton’s method

(A−BK)TX + X(A−BK) + C̄T C̄ = 0, (9)

where, for simplicity, we drop all subindices in the expression. Here, A ∈ IRn×n,
B ∈ IRn×m, K ∈ IRm×n, and C̄ ∈ IR(p+m)×n. Recall that we are interested in
finding a full-rank factor R ∈ IRn×l̄, with l̄ % n, such that RRT ≈ X . Then, in
iteration j of Newton’s method, R̄j+1 := R and l̄j+1 := l̄.

The LR-ADI iteration, tailored for equation (9), can be formulated as follows:

LR-ADI iteration
1) V0 := ((A −BK)T + σ1In)−1C̄T

2) R0 :=
√
−2 α1 V0

repeat with j := 0, 1, 2, . . .
3) Vj+1 := Vj − δj((A −BK)T + σj+1In)−1Vj

4) Rj+1 := [Rj , ηjVj+1]
until ‖ηjVj+1‖ < τ‖Rj+1‖

In the iteration, {σ1, σ2, . . .}, σj = αj + βj j, is a cyclic set of (possibly com-
plex) shift parameters (that is, σj = σj+ts for a given period ts), ηj =

√
αj+1/αj ,



Parallel Implementation of LQG Balanced Truncation 231

and δj = σj+1 + σj , with σj the conjugate of σj . The convergence rate of the
LR-ADI iteration strongly depends on the selection of the shift parameters and
is super-linear at best [10,12,14].

At each iteration the column dimension of Rj+1 is increased by (p + m)
columns with respect to that of Rj so that, after j̄ iterations, Rj̄ ∈ IRn×j̄(p+m).
For details on a practical criterion to stop the iteration, see [2,12]. Note that the
LR-ADI iteration does not guarantee a full colum rank for Rj .

From the computational view point, the iteration only requires the solution
of linear systems of the form

((A−BK)T + σIn)V = W ⇔ ((A + σIn)−BK)TV = W, (10)

for V . Now, even if A is sparse (and therefore, so is Ā := A+σIn), the coefficient
matrix of this linear system is not necessarily sparse. Nevertheless, we can still
exploit the sparsity of A by relying on the Sherman-Morrison-Woodbury (SMW)
formula

(Ā−BK)−1 = Ā−1 + Ā−1B(Im −KĀ−1B)−1KĀ−1.

Specifically, the solution V of (10) can be obtained following the next five steps:

SMW formula
1) V := Ā−TW 4) T := TF−1

2) T := Ā−TKT 5) V := V + T (BTV )
3) F := Im −BTT

Steps 1 and 2 require the solution of two linear systems with sparse coefficient
matrix Ā. The use of direct solvers is recommended here as iterations j and
j + t of the LR-ADI method share the same coefficient matrices for the linear
system. The remaining three steps operate with dense matrices of small-order;
specifically, F ∈ IRm×m, T ∈ IRn×m so that Steps 3, 4, and 5 only require 2m2n,
2m3/3 + m2n, and 4mn(m + p) flops, respectively.

5 Parallel Implementation

The major part of the cost of the LQG BT model reduction method lies with
the Lyapunov equations that need to be solved during Newton’s iteration for the
ARE. We next describe the parallelization of this stage.

The two main operations involved in the LR-ADI iteration for the Lyapunov
equation are the factorization of Ā −BK and the subsequent solution of linear
systems with the corresponding triangular factors. Let Fj (factorization) and
Sj (triangular solves) denote these two operations. Figure 1 (left) illustrates
the data dependencies existing in the LR-ADI iteration. Note the dependency
between the j-th factorization and the solutions of the triangular linear systems
in iterations j, j + ts, j + 2ts, . . . .

Now, as all factorizations are independent, we can compute them in parallel
using np processors (P1, P2,. . . ); on the other hand, the triangular solves need to
be computed sequentially, as the result of iteration j is needed during iteration
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Fig. 1. Left: Data dependencies graph among factorizations (F1,F2,. . . ) and triangular
solves (S1, S2, . . .); ts=5 shifts and lc=7 iterations. Right: Mapping of the operations
(F1,F2,. . . for the factorizations, and S1, S2, . . . for the triangular solves) to np=4 pro-
cesses in the coarse-grain parallel algorithm; ts=5 shifts and lc=7 iterations.

j + 1; see Figure 1 (right). Therefore, we can overlap factorizations (F1–F4 in
the figure), factorizations and triangular solves (F5 with both S2 and S3 in the
figure), but not triangular solves.

The organization of the coarse-grain parallel scheme only requires efficient
serial routines for the factorization of (sparse) linear systems and the solution of
the corresponding triangular linear systems. The only communication is between
“neighbour” processes, which need to transfer the solution of the current itera-
tion step. A detailed description of the parallelization of the LR-ADI iteration
can be found in [4].

6 Numerical Examples

All the experiments presented in this section were performed on a ccNUMA SGI
Altix 350 platform with np=16 processors using ieee double-precision floating-
point arithmetic (ε ≈ 2.2204e−16). In order to solve the sparse linear systems,
we employed the multifrontal massively parallel sparse direct solver in package
MUMPS 4.6.2 (http://graal.ens-lyon.fr/MUMPS/). For dense linear algebra
operations, we employed LAPACK and the MKL 8.1 implementation of BLAS.

In the evaluation of the parallel LQG BT method, we employ two examples:

heat1D: This problem models the variation of the temperature in a 1D thin
rod with a single source of heat.

heat2D: This model corresponds to a linear 2D heat equation with homoge-
neous Dirichlet boundary and point control/observation, resulting from a
FD discretization on a uniform g × g grid.

We first evaluate the numerical quality of the reduced order models obtained via
the LQG BT method. For that purpose, in Figure 2 we compare the frequency
response of the original systems with that of the reduced-order realizations for
the heat1D example (with n=400, m=p=1) and the heat2D example (with a
grid dimension g=20, resulting in a system of order n=400, and m=p=1). For
both examples, the order of the reduced model was set to r=30, and ts=10 shifts
were selected. A good approximation is achieved at most frequencies with a quite

http://graal.ens-lyon.fr/MUMPS/
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Fig. 2. Frequency responses obtained with the original system and reduced-order re-
alization (of order r=30) computed with the parallel LQG BT model for the heat1D
(left) and heat2D (right) examples

Table 1. Execution times of the parallel LR-ADI solver for the Lyapunov equation
associated with the the heat1D (left) and heat2D (right) examples

Example np=1 np=2 np=3 np=4 np=5 np=10

heat1D 113.21 75.27 – 61.34 58.61 –

heat2D 109.12 72.72 59.87 51.37 47.94 40.42

reduced-order model in both cases. Only for the heat1D, there is a deviation from
frequencies starting at 103; however, by then the deviation is below the machine
precision (ε ≈ 2.2e-16).

Table 1 reports the execution time (in seconds) of the parallel LR-ADI solver
for the (first) Lyapunov equations arising in the heat1D and heat2D examples of
order n=200,000 and 160,000, respectively. The number of shifts ts was set to 20,
lc=50 iterations were allowed, and the number of processes/processors employed
in the evaluation was varied from np=1 to 10. The parallel results report a mild
reduction the execution time of the LR-ADI solver. We note that this reduction
is highly dependent on several factors. First, the sparsity pattern of the state
matrix A and the efficiency of the sparse solver, as that determines the costs of
the factorization and triangular solve stages. A high ratio of factorization time to
triangular solve time benefits the parallelism of the parallel LQG BT algorithm.
Second, the number of iterations required for convergence compared with the
number of shifts employed during the iterations. A high value of ts and a small
number of iterations benefit the parallelism of our approach.

7 Concluding Remarks

We have provided evidence in support of the benefits of the LQG BT method
for model reduction of large-scale systems. However, further experiments are
due before general conclusions can be extracted for the numerical accuracy and
parallelism of this approach.
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Abstract. Optimal design, parameter estimation, and inverse problems
arising in the modeling of semiconductor devices lead to optimization
problems constrained by systems of PDEs. We study the impact of dif-
ferent state equation discretizations on optimization problems whose ob-
jective functionals involve flux terms. Galerkin methods, in which the
flux is a derived quantity, are compared with mixed Galerkin discretiza-
tions where the flux is approximated directly. Our results show that the
latter approach leads to more robust and accurate solutions of the op-
timization problem, especially for highly heterogeneous materials with
large jumps in material properties.

1 Introduction

Common objectives in the modeling of semiconductor devices are, e.g., to control
the current flow over a contact by changing the so called doping profile of the
device (optimal design problem), or to characterize an unknown doping profile
based on measurements of the current flow (inverse problem).

In either case, the resulting PDE constrained optimization problems call for
objective functionals that involve flux terms in their definition. Depending on
whether the state equation is discretized by a Galerkin or a mixed Galerkin
method, flux terms can have fundamentally different representations. For in-
stance, the Galerkin method approximates the scalar concentration variables by
finite element subspaces of H1(Ω), and the flux is a derived quantity, while in
the mixed method the flux is approximated directly by subspaces of H(div, Ω).

While numerical solution of optimization problems arising in semiconductor
device modeling has been previously addressed in the literature [6,8], there are
virtually no studies on how discretization choices impact the accuracy and the
robustness of the numerical approximation. To a degree, our work is motivated by
earlier studies [7,1] of optimization problems governed by advection-dominated
PDEs, which showed that stabilization of the state equations and stabilization
of the optimality system yield different solutions of the optimization problem.
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-

heed Martin Company, for the United States Department of Energy under contract
DE-AC04-94-AL85000.
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However, in contrast to these papers, our main focus is on how different discrete
formulations of the state equation may affect the optimization problem.

Our report is organized as follows. The model optimization problem is de-
scribed in Section 2. Section 3 states the Galerkin and mixed Galerkin dis-
cretizations of the optimization problem (1). Numerical results contrasting these
methods, and a discussion of the results, are presented in Section 4.

2 Model Optimization Problem

A common objective in the design of semiconductor devices is to match the
current J measured at a portion Γo of the Dirichlet boundary (see Fig. 1) to
a prescribed value Ĵ , while allowing for “small” (controlled) deviations of the
doping profile u from a reference doping profile û. For a complete formulation
of such optimization problems, constrained by the drift-diffusion semiconductor
equations, we refer to [6,8,9].

The primary goal of this work is to study how different discretizations of the
state equations impact the solution of the optimization problem. This question
can be investigated on a much simpler model, and so, we restrict our attention
to the following linear–quadratic elliptic optimization1 problem,

minimize
1
2
‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω (1a)

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω (1b)
y(x) = yD(x) on ΓD (1c)

(k(x)∇y(x)) · ν = g(x) on ΓN , (1d)

where α, k(x) > 0, Ω ⊂ Rd, d = 1, 2, 3 is a bounded domain, and ΓD, ΓN are the
Dirichlet and Neumann parts of ∂Ω. We assume that ΓD �= ∅ and ΓN = ∂Ω/ΓD.
Model (1) follows from the full problem considered in [9] by assuming that the
electron and hole densities are given functions.

3 Discretization of the Optimization Problem

We consider two discretizations of (1) that differ by their choice of finite element
methods for the state equation. In each case we discuss computation of the flux
terms in the objective functional, necessary to complete the discretization of the
optimization problem.

For more details regarding the solution of the discrete optimization problem,
or the existence and uniqueness of optimal solutions of (1) we refer to [9,6,8].
1 As it is customary in the optimal control context, we refer to the variables y(x) in

(1) as the state variables, whereas the doping profile u(x) will play the role of the
control variables. Equation (1b) is known as the state equation. Additionally, we will
often abbreviate y(x), u(x), etc., by y, u, etc.
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3.1 Galerkin Discretization

We define the state and control spaces Y =
{
y ∈ H1(Ω) : y = yD on ΓD

}
, U =

L2(Ω), and the space of test functions V0 =
{
v ∈ H1(Ω) : v = 0 on ΓD

}
. The

weak form of (1) is to find y ∈ Y, u ∈ U , which solve the problem

minimize
1
2
‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω (2a)

subject to
a(y, v) + b(u, v) = (f, v) + 〈g, v〉ΓN , ∀v ∈ V0 (2b)

where 〈·, ·〉� denotes the duality pairing between H−1/2(") and H1/2("), and

a(y, v) =
∫

Ω

k∇y · ∇v dx, b(u, v) = −
∫

Ω

uv dx, (f, v) =
∫

Ω

fv dx .

The finite element discretization of the state equation is obtained in the usual
manner by restricting (2b) to finite element subspaces Yh ⊂ Y , V0,h ⊂ V0 and
Uh ⊂ U of the state, test, and control spaces, respectively.

When using a Galerkin method for the state equation, discretization of the
objective functional (2a) requires additional attention, because the flux ∇y · ν
appearing in (2a) is not approximated directly by the method. A standard ap-
proach to discretizing the flux term ‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

would be to restrict
it to the finite element space Yh for the states, and then use a weighted L2 norm
to approximate the norm on H−1/2(Γo):

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖∇yh · ν −∇ŷh · ν‖20,Γo

. (3)

While this discretization of the flux term is consistent, in the sense that every
instance of the state y in the optimization problem is approximated by the same
finite element basis, it may not be the best possible choice for this term. This
is certainly true if the state equation is solved separately and ∇yh is used to
approximate the flux.

It is well-known that a more accurate flux approximation can be obtained by
postprocessing the finite element solution, instead of simply taking its derivative.
One such technique is the variational flux approximation (VFA) [2,5,10,11]. It is
based on the Green’s formula and has been applied to optimization problems by
Berggren et. al. in [3]. In the VFA approach, the standard flux ∇yh ·ν is replaced
by a more accurate, C0 approximation λh, obtained by solving the equation∫

Γ0

λhvh dl = k−1

(
a(yh, vh) + b(uh, vh)− (f, vh)−

∫
Γ\Γo

k∇yh · νvh dl

)
. (4)

Using VFA we approximate the flux term as follows:

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖λh − λ̂h‖20,Γo

. (5)

For implementation details of VFA we refer to the above papers.
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Remark 1. The use of VFA in our optimization problem differs substantially
from its use as a postprocessing technique and in the optimization problem of
[3]. When (4) is used to postprocess a given finite element solution (yh, uh), the
right hand side in (4) involves only known quantities. In [3], VFA is used in an
already defined optimality system to improve the accuracy of the solution. In
contrast, in our case, the VFA approximation changes the optimization problem,
because the discretization of ‖∇y · ν −∇ŷ · ν‖2−1/2,Γo

by (5) makes this term a
function of both the unknown state yh and the unknown control uh.

3.2 Mixed Galerkin Discretization

A mixed Galerkin method for the state equation is defined by using its equivalent
first-order system form{

∇ · p + u = −f in Ω

k−1 p−∇y = 0 in Ω
and

y = yD on ΓD

(k∇y) · ν = g on ΓN .
(6)

For the variational formulation of the optimization problem, we introduce2 the
state spaces Y = L2(Ω) and P = Hg,N (div, Ω), the control space U = L2(Ω),
and the trial spaces V = L2(Ω) and Q0 = H0,N (div, Ω). To simplify the notation
we write p̂ = k ∇ŷ. The weak form of (1), using the mixed Galerkin discretization
of (6), is to find y ∈ Y, p ∈ P, u ∈ U , which solve the problem

minimize
1
2
‖k−2(p · ν − p̂ · ν)‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω, (7a)

subject to
a(p, q) + b(q, y) = 〈yd, q · ν〉ΓD

∀q ∈ Q0

b(p, v) + c(u, v) = − (f, v) ∀v ∈ V,
(7b)

where (·, ·), and 〈·, ·〉� were defined in Sec. 3.1, and

a(p, q) =
∫

Ω

k−1 p · q dx, b(q, y) =
∫

Ω

(∇ · q)y dx, c(u, v) =
∫

Ω

uv dx.

The mixed finite element discretization of the state equation follows by re-
stricting (7b) to finite element subspaces Yh ⊂ Y , Ph ⊂ P , Uh ⊂ U , Vh ⊂ V , and
Q0,h ⊂ Q0, for the states, controls, and the respective test functions in (7b). We
recall that the pairs (Yh, Ph) and (Q0,h, Vh) are subject to an inf-sup stability
condition [4].

In contrast to the Galerkin approach in Sec. 3.1, in the mixed method the
flux is approximated directly by ph. As a result, the flux term in the objective
functional can be discretized as follows:

‖k−2(p · ν − p̂ · ν)‖2−1/2,Γo
≈ h‖k−2(ph · ν − p̂h · ν‖20,Γo

. (8)

2 We recall that H(div, Ω) =
{

q ∈
[
L2(Ω)

]2
: ∇ · q ∈ L2(Ω)

}
; H0,N(div, Ω) is the

subspace of all fields in H(div, Ω) whose normal component vanishes on ΓN , and
Hg,N(div, Ω) are the fields in H(div, Ω) whose normal component on ΓN equals g.
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Γo ΓDΓD

Fig. 1. Computational domain (left) and its partition into finite elements (right plot)

Table 1. JF , Ju and J denote the values of the flux term, the control term and their
sum (the total value of the objective functional)

Example 1 Example 2

GM Mixed GM-VFA GM Mixed GM-VFA

JF 1.99e-06 1.88e-06 1.95e-04 6.42e-09 2.51e-09 2.70e-09

Ju 1.10e-08 1.10e-08 3.81e-07 1.12e-03 1.08e-03 1.11e-03

J 2.00e-06 1.89e-06 1.95e-04 1.12e-03 1.08e-03 1.11e-03

Example 3 Example 4

GM Mixed GM-VFA GM Mixed GM-VFA

JF 6.07e-05 8.10e-10 2.83e-07 1.06e+01 2.56e-07 6.29e-07

Ju 7.17e-05 4.62e-05 4.50e-03 3.63e+00 4.57e-03 7.19e-03

J 1.32e-04 4.62e-05 4.50e-03 1.42e+01 4.57e-03 7.19e-03

4 Numerical Results

The computational domain Ω = [−1, 1]2, its finite element partition, and the
boundary part Γo are shown in Fig. 1. All numerical results were obtained on
a 32 × 32 mesh with 2048 triangles, 1082 vertices, and 3136 edges. For the
Galerkin method in Sec. 3.1, we use standard C0, piecewise linear approximation
spaces. The mixed Galerkin method for the state equation was implemented
using the lowest order Raviart-Thomas element for ph and piecewise constant
finite elements for yh.

In the examples below we compare finite element solutions of the optimization
problem using the standard Galerkin method, the Galerkin method with VFA,
and the mixed method. The most distinguishing characteristic of the examples
used in our study are the differences in the corresponding diffusivity (i.e. per-
mittivity, in the case of semiconductors) profiles k(x). For all examples we use
f(x) = 0, yD = 0, û = 1, and α = 6.25 · 10−4. The Neumann data g is set to 0
on the left and right sides of Ω and to −k(x) on the bottom.

Example 1. The desired flux is ∇ŷ · ν = 1 and k(x) = 102 in Ω.
Example 2. The desired flux is ∇ŷ · ν = 1 and k(x) = 10−2 in Ω.
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Fig. 2. Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row) and
optimal controls (bottom row) for Ex. 3

Example 3. The desired flux is ∇ŷ · ν = 1 and

k(x) =

⎧⎪⎨⎪⎩
10 in [−1,−0.25]× [−1, 1]
10−2 in [−0.25, 0.25]× [−1, 1]
10 in [0.25, 1]× [−1, 1],

Example 4. The desired flux is ∇ŷ · ν = 100 and k(x) is as in Ex. 3.

Objective functional values for the four examples are summarized in Table 1. The
data for Ex. 1-2 shows that for constant k(x) all three discretizations perform at
a comparable level. Nevertheless, the mixed Galerkin method does consistently
outperform the other two discretizations, albeit by a small margin. We also
observe that the VFA approach gives better results (i.e., closer to the mixed
Galerkin results) for k(x) % 1, while the standard flux approximation does
better for k(x)� 1.

The data for Ex. 3-4 shows a completely different situation, as far as the
standard flux approximation is concerned. For these two examples the mixed
Galerkin method clearly outperforms the standard Galerkin discretization of
the optimization problem, especially when the desired flux value is large, as in
Ex. 4.

Using the VFA approach, the Galerkin discretization fares better, however,
the objective functional values remain less accurate than those computed with
the mixed method. These observations are also confirmed by the plots in Fig.
2-3. We see that for Example 4 the states and controls computed by the stan-
dard Galerkin method are grossly inaccurate. We also note that among all three
methods the controls computed by the mixed method exhibit the most robust
behavior. An interesting feature of the controls for the VFA approach is their
oscillatory nature. This could be a problem in some specific applications where
the controls have to be implemented in real materials.
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Fig. 3. Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row) and
optimal controls (bottom row) for Ex. 4

Based on the numerical data, we can conclude that for problems with hetero-
geneous material properties the mixed Galerkin method offers the most robust
performance and the most accurate results. The worst performer is the stan-
dard Galerkin method, which may yield state and control approximations that
are many orders of magnitude less accurate than those computed by the mixed
method. Thus, we cannot recommend the standard Galerkin discretization as a
reliable approach to solving optimization problems whose objective functionals
involve flux terms. Instead, for such problems, one should use the mixed Galerkin
discretization whenever possible. If, for whatever reason, the use of the mixed
method is not feasible, then the Galerkin discretization of the state equations
should be combined with the VFA approach in order to improve robustness and
accuracy.
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Abstract. The representation or order reduction of a rational trans-
fer function by a linear combination of orthogonal rational functions
offers several advantages, among which the possibility to work with pre-
scribed poles and hence the guarantee of system stability. Also for mul-
tidimensional linear shift-invariant systems with infinite-extent impulse
response, stability can be guaranteed a priori by the use of a multivariate
Padé-type approximation technique, which is again a rational approxi-
mation technique. In both the one- and multidimensional case the choice
of the moment functional with respect to which the orthogonality of the
functions in use is imposed, plays a crucial role.

1 Introduction

Let {ci}i∈N be a sequence of complex numbers and let c be a linear functional
defined on the space of polynomials C[t] with complex coefficients c(ti) = ci,
i = 0, 1, . . . Then c is called the moment functional determined by the moment
sequence {ci}i∈N. By means of c a formal series development of h(z) with co-
efficients ci (for instance a transfer function h(z) with impulse response ci for
i = 0, 1, 2, . . .) can be viewed as

h(z) =
∞∑

i=0

ciz
i = c(1) + c(t)z + c(t2)z2 + . . . = c

(
1

1− tz

)
. (1)

Let Ln = span{1, . . . , tn} denote the space of polynomials of degree n and let
∂V denote the exact degree of a polynomial V (t) ∈ C[t]. A sequence of polyno-
mials {Vm(z)}m∈N is called orthogonal with respect to the moment functional c
provided that Vm ∈ Lm \ Lm−1 and

c
(
tiVm(t)

)
= 0, i = 0, . . . ,m− 1, c

(
V 2

m(t)
)
�= 0. (2)

For an arbitrary polynomial Vm(z) ∈ Lm with coefficients bi, we can also con-
struct the associated polynomial Wm−1(z) by

Wm−1(z) = c

(
Vm(t)− Vm(z)

t− z

)
. (3)

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 243–250, 2008.
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Then Wm−1 ∈ Lm−1 with coefficients ai =
∑m−1−i

j=0 cjbi+j+1 [3, p. 10]. It can
be proven [3, p. 11] that the polynomials W̃m−1(z) = zm−1Wm−1(1/z) and
Ṽm(z) = zmVm(1/z) satisfy [3, p. 11](

h− W̃m−1/Ṽm

)
(z) =

∞∑
i=q

diz
i (4)

with q = m. In this way it is easy to obtain rational approximants W̃m−1/Ṽm

for a given transfer function h(z). Choosing Vm(z) in (4) allows to control the
poles of the rational approximant. If however Vm(z) is fixed by the orthogonality
conditions (2), then q = 2m in (4) and many more moments are matched, but
the control over the poles is lost.

We recall that a system is called bounded-input bounded-output (BIBO) sta-
ble if the output signal is bounded whenever the input signal is bounded. Since
stability is guaranteed when the rational approximant has all its poles inside the
unit disk or polydisk, respectively, the aim is to obtain a rational function either
in one or in more variables, that has this property.

Rational approximants of higher numerator degree can be obtained in the
following way. If we define a linear functional c(k)(ti) = ck+i and set

h(z) =
k∑

i=0

ciz
i + zk+1hk(z), (5)

W
(k+1)
m−1 (z) = c(k+1)

(
Vm(t)− Vm(z)

t− z

)
(6)

W̃m+k(z)/Ṽm(z) =
k∑

i=0

ciz
i + zk+1W̃

(k+1)
m−1 (z)/Ṽm−1(z) (7)

then (4) generalizes to (
h− W̃m+k/Ṽm

)
(z) =

∞∑
i=q

diz
i (8)

with q = m + k + 1 for arbitrary polynomials Vm(z) and q = 2m + k + 1 when
Vm(z) satisfies the orthogonality conditions (2).

In (1)–(4), a linear functional is defined in terms of the impulse response, and
the rational function that approximates the transfer function matches as many
of the initial impulse response coefficients, also called Markov parameters, as
possible. This corresponds to a good approximation of the transient behaviour
of the system for small time. In this paper we discuss the generalization of the
steps (1)–(4), namely

– defining a linear functional c using information collected from the transfer
function h as in (1),

– computing a numerator polynomial W̃m−1(z) as in (3), possibly in combina-
tion with (2) for the denominator polynomial Ṽm(z),

– setting up a sequence of rational approximants to the transfer function h(z)
as in (4) or (8),

in two ways.
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The approximation of h(z) in (4) may be improved when also the steady
state of the system is approximated. This means that the transfer function is
not only approximated in the neighborhood of z = 0, but also near z =∞. The
coefficients of the series expansion at infinity are called time moments. Matching
some of the Markov parameters and some of the time moments corresponds to
rational approximation in two points. This idea can be generalized as follows.
Instead of approximating in just two points, one can find a rational approximant
interpolating in several points, some of which may coincide [5].

Instead of considering one variable z, one can also study multidimensional
systems and transfer functions, which arise in problems like computer-aided
tomography, image processing, image deblurring, seismology, sonar and radar
applications, and many other problems. As an illustration we consider the fil-
tering of signals, which is concerned with the extraction and/or enhancement of
information contained in either a one-dimensional or multidimensional sequence
of measurements. Noises can be filtered from spoken messages as well as from
picture images.

The former generalization is dealt with in Section 2 while the latter is in-
troduced in Section 3. In both sections the aim is to provide an a priori stable
rational approximant since for model reduction techniques the issue of stability
of the reduced rational system is an important one. In Section 2 the rational
approximants are obtained by combining generalizations of (3) and (2), while in
Section 3 the approximants are constructed for appropriately chosen denomina-
tor polynomials in combination with (3) for the numerator.

2 Orthogonal Rational Functions Analytic Outside the
Unit Disk

In frequency domain methods, it is assumed that the information about the
system transfer function is not given by moments defined in 0 and infinity or
at arbitrary points in the complex plane, but they are given in the frequency
domain, which for a discrete time system is the complex unit circle T. So what
can be measured are not the samples of the transfer function h, but samples
of its power spectrum |h(z)|2 for many values of z ∈ T. Using autocorrelation
techniques, one actually knows the coefficients of the Fourier series |h(z)|2 =∑

k∈Z
ckz

k where z = eiω. We can now define a moment functional for the
Laurent polynomials by setting c(ti) = c−i for all i ∈ Z. Since we are working
on T we reformulate the orthogonality conditions (2) as follows. A sequence of
polynomials {Vm(z)}m∈N is orthogonal with respect to the moment functional c
provided that Vm(z) ∈ Lm \ Lm−1 and

c
(
tiVm∗(t)

)
= 0, i = 0, . . . ,m− 1, c (Vm(t)Vm∗(t)) �= 0, (9)

where for any function f we define f∗(z) = f(1/z).1

1 Observe that for t ∈ T, f∗(t) = f(t).
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Knowing c, the problem is still to approximate h. The original approach [9,8] is
to construct an autoregressive (AR) approximant, i.e., one of the form Rm(z) =
Kzm/Ṽm(z) with K a constant and Vm the orthogonal polynomial with respect
to c. A relation similar to (4) can be derived, not for the transfer function h but
for “half the Fourier series” Ω(z) = c0 + 2

∑
k>0 ckz

k.
We now give a generalization that results in an approximant Rm with a non-

constant numerator (ARMA model). Consider a sequence αk with |αk| < 1 for
all k. The classical AR case will pop up as the special situation where all αk = 0.
The αk will turn out to play a multiple role (i) as the zeros of the approximant
Rm, (ii) as the reciprocals of the poles of the orthogonal rational functions (which
generalize the orthogonal polynomials) and (iii) as the interpolation points for
the multipoint version of the approximation (4) to Ω.

Consider the kernel D(t, z) = (t+z)
(t−z) with formal expansion [4, p. 240]

D(t, z) = 1 + 2
∞∑

k=1

ak(t)zπk−1(z), ak(t) =
1

πk(t)
, πk(z) =

k∏
i=1

(z − αi). (10)

Then, assuming for simplicity of notation but without loss of generality, that∫ π

−π
|h(eiθ)|2dθ = 1, we get, at least formally,

Ω(z) =
∫ π

−π

D(eiθ, z)|h(eiθ)|2dθ = c0 + 2
∞∑

k=1

ckzπk−1(z),

c0 = 1, ck =
∫ π

−π

ak(eiθ)|h(eiθ)|2dθ, k = 1, 2, . . . .

(11)

Observe that if all αk = 0, then πk(z) = zk, and the ck are the trigonometric
moments, in other words the Fourier coefficients of |h(z)|2 for z ∈ T. Since the
definition of Ω does not depend on the choice of the αk, we can see that Ω(z) is
the same as introduced above. It is an analytic function in |z| < 1.

For general prefixed αk, let ak(t) be given by (10) and ck be given by (11).
One can define a linear functional c on the space L = span{1, a1(t), a2(t), . . .}
via c(ak) = ck, k = 0, 1, 2, . . .. For negative k, we set a−k = ak∗, so that c−k =
ck, and using partial fraction expansion, we may even assume that the linear
functional c is defined on L · L∗ = L + L∗ where L∗ = {f : f∗ ∈ L} by the
relation c(ak) = ck, k ∈ Z.

The sequence of orthogonal polynomials becomes a sequence of orthogonal
rational functions with polynomials as a special case. A sequence of rational
functions Vm(z) ∈ Lm = span{1, a1(z), . . . , am(z)} is called orthogonal with
respect to the moment functional c defined on L·L∗ as outlined above, provided
that Vm ∈ Lm \ Lm−1 and that the rational functions Vm satisfy the relations
(9) with ti replaced by the rational basis ai(t) = 1/πi(t) from (10). It turns out
that for m ≥ 1, the associated functions Wm defined by

Wm(z) = c
(
D(t, z)(Vm(t)− Vm(z))

)
also belong to Lm [4, Eq. (4.21)].
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Moreover one has interpolation properties of the following type [4, Theo-
rem 6.1.4]

Ω(z)− Wm(z)
Vm(z)

= zπm(z)g+(z), g+ analytic in |z| < 1

Ω(z)− Wm∗(z)
Vm∗(z)

= (zπm(z))∗g−(z), g− analytic in |z| > 1, including ∞.

The ratios are well defined because the linear functional is positive definite,
which implies that the zeros of Vm are all in |z| > 1 and hence, the zeros
of Vm∗ are all in |z| < 1. In case all αk = 0 (the polynomial or AR case),
we match the first m coefficients of the series expansion of Ω in z = 0 and
in z = ∞ respectively. In general, as the above interpolation properties show,
the AR interpolation conditions in z = 0 are replaced by ARMA interpolation
conditions in z = 0, α1, . . . , αm and the AR interpolation conditions in z = ∞
are distributed over the points z = ∞, 1/α1, . . . , 1/αm taking multiplicity into
account. This is multipoint moment matching.

To come to the original problem of approximating h itself, one makes use of
the determinant formula [4, Theorem 4.2.6]

1
2

(Wm(z)Vm∗(z) + Wm∗(z)Vm(z)) =
1− |αm|2

(1/z − αm)(z − αm)
.

Recall that for z ∈ T, Ω(z) is the real part of |h(z)|2, in other words |h(eiω)|2 =
1
2 (Ω(eiω) + Ω∗(eiω)). It then follows, after dividing the previous relation for
z = eiω by Vm(z)Vm∗(z) = |Vm(z)|2, that

|h(eiω)|2 ≈
∣∣∣∣ K

(eiω − αm)Vm(eiω)

∣∣∣∣2 =
∣∣∣∣Kπm−1(eiω)

Pm(eiω)

∣∣∣∣2 , Vm(eiω) =
Pm(eiω)
πm(eiω)

,

with K =
√

1− |αm|2. Knowing that h is analytic in |z| > 1 if the system
is stable, we can approximate it by Kπm−1/Pm as described above. Note that
the αk which are chosen as the poles of space Lm of rational functions are
interpolation points when approximating Ω and that they now show up as the
zeros of the approximating transfer function.

3 Homogeneous Padé-Type Approximants Analytic
Outside the Unit Polydisk

To deal with multivariate polynomials and functions we switch between the
cartesian and the spherical coordinate system. The cartesian coordinates X =
(x1, . . . , xn) ∈ Cn are then replaced by X = (ξ1z, . . . , ξnz) with ξk ∈ C, z ∈ R
where the directional vector ξ = (ξ1, . . . , ξn) belongs to the unit sphere Sn =
{ξ : ||ξ||p = 1}. Here || · ||p denotes one of the usual Minkowski norms. While ξ
contains the directional information of X , the variable z contains the (possibly
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signed) distance information. With the multi-index κ = (κ1, . . . , κn) ∈ Nn the
notations Xκ, κ! and |κ| respectively denote

Xκ = xκ1
1 . . . xκn

n ,

κ! = κ1! . . . κn!,
|κ| = κ1 + . . . + κn,

and with X , we associate its signed distance

sd(X) = sgn(x1)||X ||p.

Note that it is always possible to choose ξ such that z = sd(X). For the sequel of

the discussion we need some more notation. We denote by C[ξ] := C[ξ1, . . . , ξn]
the linear space of n-variate polynomials in ξk with complex coefficients, by
C(ξ) := C(ξ1, . . . , ξn) the commutative field of rational functions in ξk with
complex coefficients, by C(ξ)[z] the linear space of polynomials in the variable z
with coefficients from C(ξ) and by C[ξ][z] the linear space of polynomials in the
variable z with coefficients from C[ξ].

Let us introduce the linear functional C acting on the signed distance variable
z as C(zi) = ci(ξ), where ci(ξ) is a homogeneous expression of degree i in the
ξk : ci(ξ) =

∑
|κ|=i cκξ

κ. Then C is a multivariate moment functional with mul-
tidimensional moments cκ. Multivariate orthogonality with respect to the linear
functional C can be defined [6]. The n-variate polynomials under investigation
here, are of the form

Vm(X) = Vm(z) =
m∑

i=0

Bm−i(ξ)zi, Bm−i(ξ) =
∑

|κ|=m−i

bκξ
κ.

The function Vm(X) is a polynomial of degree m in z with polynomial coefficients
from C[ξ]. The coefficients B0(ξ), . . . , Bm(ξ) are homogeneous polynomials in the
parameters ξk. The function Vm(X) does itself not belong to C[X ], but as Vm(X)
can be viewed as Vm(z), it belongs to C[ξ][z]. Therefore the function Vm(X) can
be coined a spherical polynomial: for every ξ ∈ Sn we can identify the function
Vm(X) with the polynomial Vm(z) of degree m in the variable z = sd(X).

With an arbitrarily chosen Vm(X) we can associate the function Wm−1(X)
defined by

Wm−1(X) =Wm−1(z) = C

(
Vm(t)− Vm(z)

t− z

)
.

One can show [2] that Wm−1(X) is a polynomial of degree m− 1 in z, but not
that it is a polynomial in X . Instead it belongs to C[ξ][z] and has the form

Wm−1(X) =Wm−1(z) =
m−1∑
i=0

Am−1−i(ξ)zi.
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For the polynomials Ṽm(X) and W̃m−1(X) defined by

Ṽm(X) = Ṽm(z) = zmVm(z−1) =
m∑

k=0

B̃k(ξ)zk =
m∑

k=0

⎛⎝∑
|κ|=k

b̃κX
κ

⎞⎠ ,

W̃m−1(X) = W̃m−1(z)=zm−1Wm−1(z−1)=
m−1∑
k=0

Ãk(ξ)zk =
m−1∑
k=0

⎛⎝∑
|κ|=k

ãκX
κ

⎞⎠ ,

and belonging to C[X ], it can be proved that [2]

(
fṼm − W̃m−1

)
(X) =

(
f Ṽm − W̃m−1

)
(z) =

∞∑
i=m

di(ξ)zi =
∞∑

i=m

⎛⎝∑
|κ|=i

dκX
κ

⎞⎠ .

As in (5)–(8), the linear functional C and the rational function W̃m−1/Ṽm(X)
can be generalized to C(k) and W̃m+k/Ṽm(X).

Now let us consider a multidimensional LSI system with IIR [7] and transfer
function H(X) = F (Y )/G(Y ) where F (Y ) and G(Y ) are polynomials in the
variables yi = x−1

i and Y = (y1, . . . , yn). In terms of the impulse response cκ

(without loss of generality we restrict ourselves to support on the first quadrant),
we have:

H(X) =
∞∑

|κ|=0

cκY
κ.

The system is stable if G(Y ) has all its zeroes strictly inside the unit poly-
disc. A stable identification or model order reduction of H(X) can be given by
W̃m+k(Y )/Ṽm(Y ) provided Ṽm(Y ) has all its zeroes inside the unit polydisc [1].

Let us illustrate the above in the context of IIR filter design (n = 2). An ideal
lowpass filter can be specified by the frequency response (x1 = exp(it1), x2 =
exp(it2))

H
(
eit1 , eit2

)
=
{

1 (t1, t2) ∈ T ⊂ [−π, π]× [−π, π]
0 (t1, t2) �∈ T

where T is usually a symmetric domain. For T = [−π/8, π/8]× [−π/8, π/8] we
have for instance

cκ1,κ2 =
sin
(

π
8κ1

)
πκ1

sin
(

π
8κ2

)
πκ2

.

Let us in addition impose the quadrant symmetry conditions

W̃m+k

Ṽm

(
eit1 , eit2

)
=

W̃m+k

Ṽm

(
e−it1 , eit2

)
=

W̃m+k

Ṽm

(
eit1 , e−it2

)
=

W̃m+k

Ṽm

(
e−it1 , e−it2

)
.

Then with the choice

V2(Y ) = 1.94145z2− 1.30911(ξ1 + ξ2)z + 0.340194(ξ2
1 + ξ2

2) + 0.000033ξ1ξ2
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which guarantees a stable filter, we find

W̃2(Y )

Ṽ2(Y )
=

303.351 + 91.0655(ξ1 + ξ2)z
−1 + 126.936(ξ2

1 + ξ2
2)z−2 − 110.584ξ1ξ2z

−2

358.005 (1.94145 − 1.30911(ξ1 + ξ2)z−1 + 0.340194(ξ2
1 + ξ2

2)z
−2 + 0.000033ξ1ξ2z−2)

The frequency response W̃2(eit1 , eit2)/Ṽ2(eit1 , eit2) is shown in Figure 1. The
contour lines |(W̃2/Ṽ2)(eit1 , eit2)| = 0.1 and |(W̃2/Ṽ2)(eit1 , eit2)| = 0.5 are shown
in Figure 2.
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Abstract. The paper reports on DNS and LES of plane channel flow at
Reτ = 180 and compares these to a DNS with a higher order convection
scheme. For LES different subgrid-scale models like the Smagorinsky, the
Dynamic Smagorinsky and the Dynamic Mixed Model were used with
the grid being locally refined in the near-wall region. The mixing of a
passive scalar has been simulated with two convection schemes, central
differencing and HLPA. The latter exhibits numerical diffusion and the
results with the central scheme are clearly superior. LES with this scheme
reproduced the budget of the scalar variance equation reasonably well.

1 Introduction

Turbulent mixing of scalar quantities is a phenomenon observed in environmental
flows as well as in abundant engineering applications of chemical, nuclear power,
pharmaceutical or food industries. Their simulation requires reliable models for
turbulent mixing processes. After discretization, however, the physical and the
numerical model interact in a complex way, which is not fully understood so far.
To address these issues, this paper presents results from both, Direct Numerical
Simulations (DNS) and Large Eddy Simulations (LES) of fully developed plane
channel flow at a friction Reynolds number of Reτ = 180. This is a prototypical
flow frequently used to study physical and numerical modelling of wall-bounded
flows. The first DNS of this configuration was performed by Kim et al. [4].

In an earlier paper by the present authors [2] the impact of local grid refine-
ment near the walls on the LES modelling of the flow field was investigated.
In the present paper we extend this approach and focus on the modelling of a
transported scalar.

2 Numerical Methods and Simulation Details

The turbulent channel flow between two parallel plates is simulated for a nominal
friction Reynolds number Reτ = 180, defined by the friction velocity Uτ and the

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 251–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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channel half-width h. In the computation, the corresponding bulk Reynolds num-
ber Reb = 2817 was imposed by instantaneously adjusting a spatially constant
volume force in each time step, so that in fact Uτ and hence Reτ is a result of the
simulation. The computational domain in streamwise, wall-normal and spanwise
direction extends over Lx = 6.4h, Ly = 2.0h and Lz = 3.2h, respectively. Pe-
riodic boundary conditions were imposed for the streamwise and the spanwise
direction. At the walls, a no-slip condition was applied for both LES and DNS,
together with Van Driest damping for the Smagorinsky model. Dirichlet bound-
ary conditions at the walls were imposed for the scalar, i.e. C(x, 0, z) = 1.0 and
C(x, 2h, z) = −1.0.

Two different numerical codes have been applied for the present work. Both
utilize a finite volume method for incompressible fluid on block-structured grids
together with a Runge-Kutta (RK) scheme in time. A Poisson equation is solved
for the pressure-correction. The code MGLET has been developed at the TU
Munich and uses staggered Cartesian grids with a 6th order central discretization
scheme (CDS) in space and a 3rd order RK scheme [5,8]. The code LESOCC2,
developed at the University of Karlsruhe, can handle curvilinear collocated grids
and employs discretizations of second order in space and time [3]. In the present
study, DNS results from this code were first compared to those obtained with the
higher-order discretization of MGLET . Subsequently, LES were carried out with
different subgrid-scale (SGS) models as described, e.g., in [6]. These comprise the
Smagorinsky Model (SM) with constant CS = 0.1, the Dynamic Smagorinsky
Model (DSM), and the Dynamic Mixed Model (DMM), see Table 1. The first
case in Table 1, denoted DNS− 6O (sixth order discretization in space for both
convection and diffusion), has been calculated with MGLET , all others with
LESOCC2. The LES filter is not accounted for in the present notation.

An equation governing the transport of a scalar quantity with Schmidt number
Sc = 1 is also considered in the present study. The concentration C, is regarded
as passive, i.e. it does not influence the fluid flow. The unresolved turbulent
transport of C is modelled by an eddy diffusivity Dt = νt/Sct, where νt is the
SGS eddy viscosity and Sct the turbulent Schmidt number, here set equal to
0.6. This also holds for the mixed model.

With the present equations and Dirichlet boundary conditions the concentra-
tion fulfils a maximum condition. The extrema are attained on the boundaries,
so that the scalar is restricted to the interval C ∈ [−1; 1] for physical reasons
(the lower bound -1 was chosen here instead of 0 for technical reasons). This
boundedness does not neccessarily carry over to the discretized solution. In nu-
merous studies bounded convection schemes are therefore applied to guarantee
the boundedness of the numerical solution which is not guaranteed with a central
scheme. In [3] and related work the HLPA scheme developed in [9] was used
for this purpose. HLPA determines the convective flux by a blending between
second-order upwinding and first-order upwinding as

Fi+ 1
2

=
{
UCi + U(Ci+1−Ci)Θi+ 1

2
, 0<Θi+ 1

2
<1

UCi , else
, Θi+ 1

2
=

Ci − Ci−1

Ci+1−Ci−1
, (1)
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Table 1. Overview over the runs discussed. The nomenclaure is defined in the text.

Case CVtot ∆+
x y+

1 ∆+
z SGS SCS tav Uτ Cτ

DNS

DNS-6O 1,407,120 9.1 0.68 7.2 - CDS-6O 544 0.064018 -0.041478
DNS 1,407,120 9.1 0.68 7.2 - HLPA 638 0.062237 -0.039232
DNS-F 10,866,960 4.5 0.34 3.6 - HLPA 537 0.061821 -0.041106
DNS-CDS 1,407,120 9.1 0.68 7.2 - CDS 745 0.062487 -0.042083

LES
HLPA-SM 258,688 29.8 0.37 14.9 SM HLPA 615 0.067434 -0.038431

CDS-SM 258,688 29.8 0.37 14.9 SM CDS 643 0.066032 -0.047632

CDS-DSM 258,688 29.8 0.37 14.9 DSM CDS 650 0.060801 -0.042553

CDS-DMM 258,688 29.8 0.37 14.9 DMM CDS 646 0.070095 -0.043067

where U is the velocity at the cell boundary i+ 1/2. This scheme was employed
for the present study for the convection term of the concentration equation in
cases DNS and DNS−F , while still using second order CDS in the momentum
equation (see the column for the scalar convection scheme (SCS) in Table 1).

A special feature of the code LESOOC2 is the possibility of block-wise local
grid refinement (LGR). This allows to use a fine grid close to the walls without
excessively refining in the center of the channel, so that CPU time and storage are
not overly increased. LGR is utilized near the walls up to a distance yref = h/8
equal to y+

ref = 22.5 from the wall with a refinement ratio of 2 in both, x−
and z−direction. In y−direction the grid is stretched uniformly by a factor 1.03
throughout the channel. As observed in a previous study [2] the turbulent char-
acteristics of the flow exhibit some visible changes at the block-interface, and
this issue will also be addressed later in this paper. Table 1 presents information
on the numerical grids, i.e. the total number of control volumes of the entire grid,
CVtot, and the dimensionless size of the control volumes in x− and z−direction,
respectively. In case of LGR, which is used with all LES cases, this is the unre-
fined spacing used in the core of the flow. Furthermore, y+

1 indicates the distance
of the wall-adjacent point from the wall.

3 Results from DNS

Statistical data for all computations in the present work have been collected over
averaging times tav larger than 540 dimensionless time units tb = h/Ub, where
Ub is the bulk velocity of the flow. Table 1 shows the results obtained for the
friction velocity and the reference concentration defined as

Uτ =
√

τw

ρ
, Cτ =

D

Uτ

(
∂〈C〉
∂y

)
y=0

, (2)

respectively, with D being the laminar diffusion coefficient (the turbulent dif-
fusion coefficient vanishes at the wall). In the present section four DNS cases
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Fig. 1. Comparison of the results from cases DNS − 6O and DNS − F : a) normal
turbulent stresses 〈u′u′〉, 〈v′v′〉 and 〈w′w′〉; b) turbulent scalar fluxes 〈u′c′〉 and 〈v′c′〉;
c) mean scalar 〈C〉; d) scalar variance 〈c′c′〉

are compared, which allows to identify the role of the numerical discretization
scheme and the grid resolution. Case DNS − 6O is chosen as a reference case.
In [7] these data were compared with the classical ones of [4] showing excellent
agreement. The run DNS was performed with LESOCC2 on the collocated
equivalent of this grid with the second order method. Due to the lower order
these results (not reproduced here) were unsatisfactory showing deviations of
up to 18% from the reference data. Therefore, the grid was refined by a fac-
tor of 2 in each direction (case DNS − F ) to compensate for the lower-order
discretization. The comparison with DNS − 6O is presented in Figure 1. The
turbulent stresses and the time-averaged scalar match very well. The turbulent
scalar flux 〈u′c′〉 and the scalar variance 〈c′c′〉 exhibit differences, which for the
latter mainly appear in the middle of the channel.

In order to further elucidate the role of the numerical scheme, case DNS
has been repeated employing the CDS scheme of second order instead of the
HLPA scheme. These results (not depicted here for lack of space) show a clear
improvement for the scalar variance 〈c′c′〉 compared to case DNS, and also when
compared to case DNS−F , as the difference with respect to the reference data
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in the middle of the channel decreases. The scalar flux 〈v′c′〉 for DNS − CDS
matches perfectly well with DNS−6O and the agreement of 〈u′c′〉 is practically
as good as for DNS − F in Figure 1. It should also be noticed that the value
for the reference scalar Cτ for this case is closer to the value of DNS− 6O than
that of DNS. This considerable improvement from case DNS to DNS − CDS
shows that for the flow considered the central differencing scheme appears clearly
superior compared to the HLPA scheme.

4 Results from LES

The results of the previous section were obtained with DNS, i.e. on fine grids
and without any turbulence model. Now we turn to LES for which numerical
and modelling errors interact in a complex way. The grid used for these LES is
much coarser in the core region of the flow (see ∆x+ and ∆z+ in Table 1), while
in the vicinity of the wall (y < 1/8h) it is of similar cell size as in the DNS cases
(195,000 control volumes in the region of refinement).

The results obtained with the CDS for the convective terms of the scalar
transport equation confirm the findings of a previous paper by the authors [2],
in which a higher Reynolds number was considered, and where the Smagorinsky
model performed better than the other two models. In the present investigation,
CDS −DMM shows slightly better results than CDS −DSM . This assertion
is mainly based on the behaviour of the averaged scalar and the scalar variance
near the wall. CDS − DSM on the other hand shows the most accurate LES
value for Cτ .

To address the impact of the convection scheme, results for the cases CDS −
SM and HLPA−SM are presented together with the reference case DNS−6O
in Figure 2. These results again show the superiority of the CDS, which is
more pronounced in the proximity of the wall. The results also demonstrate
the diffusive characteristics of the HLPA scheme. The presence of additional
diffusion is noticed in the averaged scalar distribution by an increased value and
an almost linear distribution for the region away from the wall. Furthermore,
the turbulence quantities such as the scalar fluxes and the scalar variance are
underestimated near the wall, i.e. damped by the numerical diffusion.

5 Transport Equation of the Scalar Variance

Finally, an evaluation of the terms in the budget of the scalar variance was
carried out. In the case of the Smagorinsky model the equation for the resolved
scalar variance reads

0=−2〈c′v′〉∂〈C〉
∂y︸ ︷︷ ︸

PC

−2

〈
(D+Dt)

(
∂c′

∂xk

)2
〉

︸ ︷︷ ︸
EC

+
∂

∂y

(
〈D+Dt〉

∂〈c′〉2
∂y

)
︸ ︷︷ ︸

DC

− ∂

∂y
(
〈
c′2v′〉

)
︸ ︷︷ ︸

TC

Here, Pc denotes the production by the mean concentration gradients, Ec the
scalar dissipation, Dc the diffusion transport term (comprises molecular and,
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Fig. 2. Computations performed with LES and different numerical schemes for the
scalar: cases CDS−SM and HLPA−SM compared with the reference case DNS−6O.
a),b),c) and d) as in the previous figure.

in the case of LES, eddy-diffusion) and Tc turbulent transport by the normal
velocity fluctuation. In the case of dynamic LES-models, additional terms appear
in the balance due to the fluctuation of the model parameter. These are however
negligible compared to the other terms of the equation [1]. In the case of DNS
the tubulent diffusivity is omitted.

Figure 3 shows the comparison of the different terms, constituting the budget
of the scalar variance for DNS − 6O, DNS − CDS and CDS − SM . While
for the first two cases the match is very good, the case CDS − SM shows
some differences. As expected, the magnitude of the terms in the middle of the
channel is underestimated, which is due to the fact that only part of the turbulent
spectrum is resolved with LES. The values at the wall on the other hand are
quite accurately reproduced for all terms of the above equation due to the fine
grid near the walls. For CDS − SM the Figure 3b shows some artefacts at the
block boundary separating the refined and the coarse grid. They are present only
in those terms containing a derivative of a correlation term normal to the wall,
i.e. in Ec, Dc and Tc. The reason is that the abrupt changes in the subgrid-filter
size and the numerical resolution cause inevitable irregularities in the turbulent
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Fig. 3. Terms in the budget of the scalar variance 〈c′c′〉. All terms are normalized by
D/(C2

τ U2
τ ) and explained in the text. a) Case DNS − CDS (symbols) compared to

reference case DNS − 6O (lines). b) LES with CDS − SM (symbols) compared to
DNS − 6O (lines).

quantities at the two sides of the block boundary which modify the derivative
operator applied normal to the wall. Apart from this, the agreement between the
CDS − SM and the DNS cases is reasonably good. It can hence be concluded
that in the present case LES (case CDS − SM) is capable of qualitatively, and
to some extent also quantitatively, reproducing the terms in the budget for the
scalar variance.

6 Conclusions

Different numerical and modeling issues have been studied when calculating
fluid flow and passive scalar distribution in a plane turbulent channel flow. DNS
with CDS of sixth and second order accuracy have been compared. It has been
shown, that the second-odrer scheme achieved the desired accuracy (shown by
the sixth-order CDS) only after the numerical grid has been refined twice in
each spatial direction.

Comparison of two schemes for the scalar, unbounded CDS and non-linear,
monotonous upstream-weighted HLPA showed superiority of the CDS scheme,
while the results with HLPA were found to suffer from numerical diffusion.
This is in line with the general attitude when modelling the SGS terms in the
LES-momentum equation. Usually, a non-dissipative scheme is preferred and
dissipation entirely introduced by the laminar viscous terms and the SGS model.
Additional numerical dissipation without modifying the SGS model is avoided.
The same is observed here for the scalar transport. It should however not be
concluded that the CDS is best for any LES involving a passive scalar. In other
simulations of the present authors concerned with a jet in crossflow this scheme
led to numerical instability. More appropriate schemes to maintain boundedness
of the scalar are needed.
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The present study shows that LES with tangential grid refinement near the
walls delivers reasonable accuracy at low computational costs. This conclusion
is also supported by the results obtained for the budget of the scalar variance
which is reproduced reasonably well with the present LES.
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2. Fröhlich, J., et al.: On the impact of tangential grid refinement on subgrid-scale
modeling in large eddy simulation. In: Boyanov, T., et al. (eds.) NMA 2006. LNCS,
vol. 4310, pp. 550–557. Springer, Heidelberg (2007)

3. Hinterberger, C.: Dreidimensionale und tiefengemittelte Large–Eddy–Simulation
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Abstract. We are concerned with structural optimization problems in
CFD where the state variables are supposed to satisfy a linear or non-
linear Stokes system and the design variables are subject to bilateral
pointwise constraints. Within a primal-dual setting, we suggest an all-
at-once approach based on interior-point methods. The discretization is
taken care of by Taylor-Hood elements with respect to a simplicial trian-
gulation of the computational domain. The efficient numerical solution
of the discretized problem relies on adaptive path-following techniques
featuring a predictor-corrector scheme with inexact Newton solves of the
KKT system by means of an iterative null-space approach. The perfor-
mance of the suggested method is documented by several illustrative
numerical examples.

1 Introduction

Simplified problems in shape optimization have already been addressed by
Bernoulli, Euler, Lagrange and Saint-Venant. However, it became its own disci-
pline during the second half of the last century when the rapidly growing per-
formance of computing platforms and the simultaneously achieved significant
improvement of algorithmic tools enabled the appropriate treatment of complex
problems (cf. [1,3,6,9,13,14,15] and the references therein). The design criteria
in shape optimization are determined by a goal oriented operational behavior of
the devices and systems under consideration and typically occur as nonlinear,
often non convex, objective functionals which depend on the state variables de-
scribing the operational mode and the design variables determining the shape.
The state variables often satisfy partial differential equations or systems thereof
representing the underlying physical laws. Technological aspects are taken into
account by constraints on the state and/or design variables which may occur
both as equality and inequality constraints in the model.

Shape optimization problems associated with fluid flow problems play an im-
portant role in a wide variety of engineering applications [13]. A typical setting
is the design of the geometry of the container of the fluid, e.g., a channel, a
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reservoir, or a network of channels and reservoirs such that a desired flow veloc-
ity and/or pressure profile is achieved. The solution of the problem amounts to
the minimization of an objective functional that depends on the state variables
(velocity, pressure) and on the design variables which determine the geometry
of the fluid filled domain. The state variables are supposed to satisfy the un-
derlying fluid mechanical equations, and there are typically constraints on the
design variables which restrict the shape of the fluid filled domain to that what
is technologically feasible.

The typical approach to shape optimization problems relies on a separate
treatment of the design issue and the underlying state equation what is called
alternate approximation in [1]: For a given initial design the state equation is
solved, followed by a sensitivity analysis that leads to an update of the design
variables. This process is iteratively repeated until convergence. Moreover, many
methods, e.g., those based on the concept of shape derivatives [6,15], only use
first order information by employing gradient type techniques. In this paper, we
focus on a so-called all-at-once approach where the numerical solution of the
discretized state equation is an integral part of the optimization routine (cf, e.g.,
[4,5,10,12]). Moreover, we use second order information by means of primal-dual
interior-point methods. In particular, we consider an adaptive path-following
technique for the shape optimization of stationary flow problems as described
by a linear or nonlinear Stokes system in channels where the objective is to
design the lateral walls such that a desired velocity and/or pressure profile is
obtained. The design variables are chosen as the control points of a Bézier curve
representation of the lateral walls.

The paper is organized as follows: Section 2 is devoted to the setup of the shape
optimization problem including its finite element discretization by Taylor-Hood
elements. In section 3, we focus on the primal-dual interior-point approach and
a path-following predictor-corrector type continuation method with an adaptive
choice of the continuation parameter. Finally, in section 4 we illustrate the appli-
cation of the algorithm for the design of a channel with a backward facing step
assuming a linear Stokes regime and for the shape optimization of the inlet and
outlet boundaries of the ducts of an electrorheological shock absorber, where the
states satisfy a nonlinear Stokes equation.

2 Shape Optimization of Stationary Stokes Flow

We consider Stokes flow in a bounded domain Ω(α) ⊂ R2 with boundary
Γ (α) = Γin(α) + Γout(α) + Γlat(α) consisting of the inflow, the outflow and
the lateral boundaries with n and t denoting the outward unit normal and unit
tangential vector, respectively. Here, α = (α1, · · · , αm)T ∈ Rm is the vector
of design variables which are chosen as the Bézier control points of a Bézier
curve representation of Γ (α) and which are subject to upper and lower bounds
αmin

i , αmax
i , 1 ≤ i ≤ m. The state variables are the velocity u and the pressure

p. Given desired velocity and pressure profiles ud and pd, an inflow uin at the
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inflow boundary Γin(α) and weighting factors κi ≥ 0, 1 ≤ i ≤ 2, κ1 +κ2 > 0, the
shape optimization problem can be stated as follows:

minimize J(u, p, α) =
κ1

2

∫
Ω(α)

|u− ud|2dx +
κ2

2

∫
Ω(α)

|p− pd|2dx, (1a)

subject to −∇ · σ(u) = 0 in Ω(α), (1b)
∇ · u = 0 in Ω(α),
σ(u) = −pI + g(u,D(u))D(u), (1c)
n · u = uin on Γin(α),
n · u = 0 on Γlat(α),
t · u = 0 on Γ (α),

αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m. (1d)

We note that in the constitutive equation (1c) the tensor D(u) stands for the
rate of deformation tensor D(u) := (∇u+(∇u)T )/2 and g(u,D(u)) denotes the
viscosity function which is given by g(u,D(u)) = ν for linear Stokes flow and
depends nonlinearly on u,D(u) in the nonlinear regime.
We choose α̂ ∈ K as a reference design and refer to Ω̂ := Ω(α̂) as the associ-
ated reference domain. Then, the actual domain Ω(α) can be obtained from the
reference domain Ω̂ by means of an isomorphism

Ω(α) = Φ(Ω̂;α) , (2)
Φ(x̂;α) = (Φ1(x̂;α), Φ2(x̂;α))T , x̂ = (x̂1, x̂2)T

with continuous components Φi, 1 ≤ i ≤ 2. Due to the reference domain, finite
element approximations of (1) can be performed with respect to Ω̂ without be-
ing forced to remesh any time the design parameters are changed.
We introduce (Th(Ω̂))N as a shape regular family of simplicial triangulations of
Ω̂. In view of (2), these triangulations induce an associated family (Th(Ω(α)))N

of simplicial triangulations of the actual physical domains Ω(α). For the dis-
cretization of the velocity u and the pressure p we use Taylor-Hood P2/P1
elements. We refer to ud

h ∈ Rn1 and pd
h ∈ Rn2 as the vectors representing the

L2-projections of ud, p onto the respective finite element spaces giving rise to
the discrete objective functional

Jh(yh, α) :=
κ1

2
(uh − ud

h)T I1,h(α)(uh − ud
h) +

κ2

2
pT

h I2,h(α)ph,

where yh := (uh, ph)T and Ii,h(α), 1 ≤ i ≤ 2, are the associated mass matrices.
Further, denoting by

Sh(yh, α) :=
(

Ah(uh, α) BT
h (α)

Bh(α) 0

)(
uh

ph

)
=
(

g1,h

g2,h

)
=: gh, (3)



262 R.H.W. Hoppe, C. Linsenmann, and H. Antil

the Taylor-Hood approximation of the Stokes system (1a), the discretized shape
optimization problem can be stated as

minimize Jh(yh, α), (4a)
subject to Sh(yh, α) = gh, (4b)

αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m. (4c)

For notational convenience, in the sequel we will drop the discretization sub-
index h.

3 Path-Following Primal-Dual Interior-Point Method

We use a primal-dual interior-point method where the inequality constraints
(4c) are coupled by logarithmic barrier functions with a barrier parameter β =
1/µ > 0, µ→∞, resulting in the following parameterized family of minimization
subproblems

inf
y,α

B(y, α, µ) := J(y, α) − 1
µ

m∑
i=1

[ln(αi − αmin
i ) + ln(αmax

i − αi)] (5)

subject to (4b). Coupling (4b) by a Lagrange multiplier λ = (λu, λp)T , we are
led to the saddle point problem

inf
y,α

sup
λ

L(µ)(y,λ, α) = B(µ)(y, α) + 〈S(y, α) − g,λ〉. (6)

The central path µ &−→ x(µ) := (y(µ),λ(µ), α(µ))T is given as the solution of
the nonlinear system

F (x(µ), µ) =

⎛⎜⎝L
(µ)
y (y,λ, α)

L
(µ)

λ
(y,λ, α)

L
(µ)
α (y,λ, α)

⎞⎟⎠ = 0 , (7)

which represents the first order necessary optimality conditions for (5).
For the solution of (7) we use an adaptive path-following predictor-corrector
strategy following strategies developed in [7].

Predictor Step: The predictor step relies on tangent continuation along the
trajectory of the Davidenko equation

Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) . (8)

Given some approximation x̃(µk) at µk > 0, compute x̃(0)(µk+1), where µk+1 =
µk + ∆µ

(0)
k , according to

Fx(x̃(µk), µk) δx(µk) = − Fµ(x̃(µk), µk) , (9a)

x̃(0)(µk+1) = x̃(µk) + ∆µ
(0)
k δx(µk) . (9b)
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We use ∆µ
(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k ≥ 1 the

predicted step size ∆µ
(0)
k is chosen by

∆µ
(0)
k :=

( ‖∆x(0)(µk)‖
‖x̃(µk)− x̃(0)(µk)‖

√
2− 1

2Θ(µk)

)1/2

∆µk−1 , (10)

where ∆µk−1 is the computed continuation step size, ∆x(0)(µk) is the first New-
ton correction (see below), and Θ(µk) < 1 is the contraction factor associated
with a successful previous continuation step.

Corrector step. As a corrector, we use Newton’s method applied to

F (x(µk+1), µk+1) = 0

with x̃(0)(µk+1) from (9) as a start vector. In particular, for � ≥ 0 and j� ≥ 0 we
compute ∆x(j�)(µk+1) according to

F ′(x̃(j�)(µk+1), µk+1) ∆x(j�)(µk+1) = − F (x̃(j�)(µk+1), µk+1)

and ∆x
(j�)(µk+1) as the associated simplified Newton correction

F ′(x̃(j�)(µk+1), µk+1) ∆x
(j�)(µk+1) = − F (x̃(j�)(µk+1) + ∆x(j�)(µk+1), µk+1) .

We monitor convergence of Newton’s method by means of

Θ(j�)(µk+1) := ‖∆x
(j�)(µk+1)‖/‖∆x(j�)(µk+1)‖ .

In case of successful convergence, we accept the current step size and proceed
with the next continuation step. However, if the monotonicity test

Θ(j�)(µk+1) < 1 (11)

fails for some j� ≥ 0, the continuation step has to be repeated with the reduced
step size

∆µ
(�+1)
k :=

( √2− 1
g(Θ(j�))

)1/2

∆µ
(�)
k , g(Θ) :=

√
Θ + 1− 1 (12)

until we either achieve convergence or for some prespecified lower bound ∆µmin

observe
∆µ

(�+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.
The Newton steps are realized by an inexact Newton method featuring right-

transforming iterations (cf., e.g., [10,12]). The derivatives occurring in the KKT
conditions and the Hessians are computed by automatic differentiation [8].
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Fig. 1. Backward facing step with final shape and computed velocity field

Table 1. Backward facing step: Convergence history of the continuation method

k µ ∆µ corr. �k ‖∆α‖2 ‖α − α∗‖∞ J Θ

0 100.0 (300.0) – – – 9.0e-01 2.6e+00 –

1 100.0 (300.0) yes 1 1.2e+00 1.7e-01 9.6e-01 0.58

2 8.8e-01 1.7e-01 1.3e-01 618.42

1 100.0 425.5 no 1 2.1e-01 3.3e-02 4.3e-04 0.11

2 525.5 417.1 no 1 1.2e-01 3.3e-02 2.3e-03 0.41

2 3.3e-02 2.5e-02 2.3e-03 0.58

3 1.6e-02 2.4e-02 2.0e-03 0.92

4 2.0e-02 2.9e-03 1.6e-05 0.43

5 5.7e-04 3.2e-03 2.5e-05 –

3 942.6 323.5 no 1 2.9e-03 3.6e-03 5.1e-05 0.34

4 1266.1 283.7 no 1 1.4e-03 3.5e-03 4.9e-05 0.27

5 1549.8 593.1 no 1 1.7e-04 2.9e-03 3.3e-05 0.05

6 2142.9 2265.3 no 1 1.3e-04 2.1e-03 1.7e-05 0.01

7 4408.2 – – – – 2.0e-04 1.9e-07 –

4 Numerical Simulation Results

As a first example, we consider linear Stokes flow with viscosity ν = 1 and given
inflow uin in a channel with a backward facing step. The initial shape corresponds
to a 90o step, whereas the desired velocity profile ud has been chosen according
to the final shape as shown in Fig. 1. We have used a total of six Bézier control
points with given lower and upper bounds.

Table 1 contains the convergence history. Here, k counts the continuation
steps, µ and ∆µ stand for the values of the continuation parameter and conti-
nuation steplength, respectively. The following column ’corr.’ indicates whether
a correction was necessary, �k counts the inner iterations, ‖∆α‖2 refers to the
�2-norm of the increments in the design variables, ‖α − α∗‖∞ stands for the
maximal distance to the optimal design, and J denotes the value of the objective
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Fig. 2. Electrorheological shock absorber (left), Bézier curve representation of the inlet
and outlet boundary of the right part of the fluid chamber (middle), and optimal design
of the outlet boundary in rebound mode (right)

functional. Finally, Θ is the quantity used in the monotonicity test to check
contractivity. For further details we refer to [2].

As an example for a shape optimization problem associated with nonlinear
Stokes flow, we consider the optimization of the inlet and outlet boundaries of
the ducts in an electrorheological shock absorber (cf. Fig. 2 (left). Such shock
absorbers are based on an electrorheological fluids (ERF). An ERF is a suspen-
sion of small electrically polarizable particles dissolved in nonconducting liquids
which under the influence of an outer electric field changes its viscosity within
a few milliseconds in a reversible way. The viscosity function in (1c) is of the
form g(I(u), |E|), where I(u) is the second invariant of the rate of strain ten-
sor and |E| stands for the electric field strength (for details see [11]). The issue
is to avoid too large pressure fluctuations at the boundaries of the duct both
in the compression and the rebound mode. We have chosen a desired pressure
profile pd and used Bézier curve representations of the inlet and outlet bound-
aries as illustrated in Fig. 2 (middle). A computed optimal shape of the outlet
boundary in the rebound mode is shown in Fig. 2 (right). For details we refer
to [10].
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Abstract. We present an analytical form for the effective coefficient to
linear diffusion equations such that the heterogeneous coefficients are
periodic and rapidly oscillating and can be defined as step functions de-
scribing inclusions in a main matrix. The new contribution comes from
using an analytical approximation for the solution of the well known
periodic cell-problem. By defining a correction to the given approxima-
tion, the analytical effective coefficient, the zeroth-order approximation
in H1

0 (Ømega) and the first-order in L2(Ω) are readily obtained. The
known results for effective coefficient are obtained as particular cases,
including the geometric average for the checkerboard structure of the
medium. We demonstrate numerically that our proposed approximation
agrees with the classical theoretical results in homogenization theory.
This is done by applying it to problems of interest in flow in porous
media, for cases where the contrast ratio between the inclusion and the
main matrix are 10:1, 100:1, 1000:1, and 1:10, respectively.

1 Introduction

Many problems of fundamental and practical importance needs a multiple-scale
approach. For example, a major problem in modeling natural porous media is
to obtain an accurate description of flow and transport behavior, in spite of
the intrinsic heterogeneity of geological formations. For composite materials,
the heterogeneous distribution of particles or fibers gives rise to fluctuations in
the thermal or electrical conductivity. Accurate numerical solution of these mod-
els requires a very finely divided computational mesh, something that is fre-
quently infeasible to consider. However, if one is interested in analyzing the
system from a macrostructure point of view, it is possible to simplify the mod-
els in such a way that the phenomena of interest remain adequately described.
The simplified equations are called homogenized equations, and the procedure of
replacing the original system is called homogenization. The effective coefficient
plays a crucial role in the process as it represents the heterogeneous medium in
a simplified way. Many homogenization procedures have been proposed — see
for example, Renard and De Marsily [9] and Milton [8].

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 267–274, 2008.
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The homogenization approach, that is the subject of this paper, considers
the separation of scales and performs a two-scale asymptotic expansion into the
original equation, following works by Tartar [14], Bensoussan, et. al [2], Sanchez-
Palencia [10] and Keller [7] (among others). The robustness of this approach may
be limited, as one needs to solve numerically the cell-problem of the auxiliary
variable [9]. However, our proposed procedure simplifies a typical numerical com-
putation by avoiding computing the solution of the cell-problem and by adding
an analytical version of the basis functions to get the first-order approximation.
It also provides an accurate upper bound estimate for the error (UPE) implied
by using the zeroth-order solution. It can be considered as the analytical version
of MsFEM, from Hou and Wu [4], when this is applied to the particular case of
scale separation, since we introduce explicit analytical basis functions to obtain
the fine scale approximation. The basis functions are defined on the whole do-
main, and it can be used to simplify the MsFEM method by avoiding the need
for the oversampling, as it is a local-global upscaling procedure. This method has
the advantage of portability as it can be used with any existing elliptic solvers.

We study, without loss of generality, the limit as ε → 0, of the two-scale
asymptotic approximation:

uε (x) = u0 (x, y) + εu1 (x, y) + ε2u2 (x, y) + .... (1)

of the solution of the linear boundary value problem (BVP):{
∇ · (Kε (x)∇uε (x)) = 1 x ∈ Ω

uε (x) = 0 x ∈ ∂Ω
(2)

where the flux density qε(x) is from Darcy’s law:

qε(x) = −Kε(x)∇uε(x) (3)

where Kε (x), defined over Ω = ∪εΩ
ε, at each Ωε, is the step function:

Kε (x) =
{

ξ1 if x ∈ Ωε
c

ξ2 if x ∈ Ωε\Ωε
c

(4)

with ξ1 being the value on the inclusion Ωε
c , centered symmetrically on each Ωε

and ξ1 : ξ2 is the inclusion ratio.
This paper achieves four goals:

– It presents an analytical way of obtaining the homogenized coefficient K0.
– It presents an upscaled version of (3), if Kε

s (x) is given as (4), by incorpo-
rating heterogeneity features into the gradient and flux sequences.

– It presents an analytical form for the first-order approximation, in L2(Ω),
for (2) and (3).

– It demonstrates numerically the convergence results for the proposed ap-
proximations, as it had been theoretically proved in the homogenization
literature, ([14,2,10,7]).
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The approach uses an analytical approximation belonging to L2(Ω), proposed
in Sviercoski et. al [11], for the well known periodic cell-problem [2,10,7]:

∇ · (Kε (x)∇wε
i (x)) = −∇ · (Kε (x) ei) (5)

with ei the coordinate direction. In Sviercoski et. al [13], we presented a corrector
and obtained the effective coefficient and the first-order approximation for the
linear case.

The paper is organized as follows: In section 2, we briefly review homogeniza-
tion theory and the contributions regarding this analytical approach. In section
3, we present the comparison with other known results for the effective coefficient
and the algorithm’s convergence properties by applying the results to the BVP
(2) with oscillating coefficient given by square inclusions (in 2-D) in a primary
matrix.

2 Diffusion in Periodic Media

The procedure described in homogenization literature to obtain the upscaled
limit of equation (2), is based on the substitution of the expansion (1) into (2)
and equating ε− like powers. By doing so, the first subproblem that needs to be
solved, in H1(Y ), for the local variable y = ε−1x, is the periodic cell-problem
(5) . By averaging procedures, one obtains the effective coefficient:

K0 =
∫

Y

K (y)

(
δij +

n∑
i=1

∇ywi (y)

)
dY (6)

where δi,j is the Kronecker delta. The homogenized equation that approximates
(2) is then found to be:

n∑
i,j=1

K0
ij∂xixju

0 (x)− 1 = 0 (7)

This limiting equation is possible by choosing a weakly converging sequence
(oscillating test functions) and using the compensated compactness theory pre-
sented in Tartar [14]. Then one has the following theorem:

Theorem 1. The sequence uε(x) of solutions of (2) converges weakly in H1(Ω)
to a limit u0(x) which is the unique solution of the homogenized problem (7).

Proof. See, for example, Bensoussan, et. al [2] and Sanchez-Palencia, [10]. ��

2.1 Analytical Approach

There are known cases, in the literature, when the solution to (5) can be obtained
(see [13]). The one of special interest we review here is when the geometry
describes checkerboard structures, then K0 is the diagonal tensor with entries
given by the geometric average of the eigenvalues (see [6], p.37).
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When Kε(x) assumes the form of (4) then it has been shown in [11] that:

w̃i (y) =

[∫ yi

0

dyi

K (y)

(∫ 1

0

dyi

K (y)

)−1

− yi

]
(8)

is an approximation in L2(Ω) to the solution wi (y) ∈ H1(Y ). In [13], we pro-
posed a corrector to this approximation, leading to define K0, as the diagonal
matrix:

K0 = diag

(
c1

∫
Y

R1dY, c2

∫
Y

R2dY, ..., cn

∫
Y

RndY

)
(9)

where
∫

Y
Ri(y)dY = K̃0 is the arithmetic average of the harmonic average at

each i−component, and:

ci = ||Ci(y)||2 =
∣∣∣∣∣∣∣∣1 +

∂w̃i

∂yi

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣K(y)

(∫ 1

0

dyi

K (y)

)−1
∣∣∣∣∣
∣∣∣∣∣
2

(10)

where ci measures the lack of smoothness, incurred by computing K0 using the
approximation (8). The diagonal form of (9) is a consequence of the fact that
Kε(x) has its center of mass at half of the period, as presented in Sviercoski et.
al ([11,12,13]). However, in [12], it has been shown that simply using the effective
coefficient in the gradient and flux sequences does give the averaging behavior
but does not get a bounded sequence in L2(Ω). In order to ensure a bounded
sequence, we need to incorporate the heterogeneity features into the gradient
and flux sequences. To obtain that, we define in [13], the following correction:

∇uε(x) = [δij − Cii + CiiC
ε
ii(x)]∇u0(x) +

∑n
i=1 w̃i(y)∇

(
∂u0

∂xi

)
+ ....

= P ε(x)∇u0(x) +
∑n

i=1 w̃i(y)∇
(

∂u0

∂xi

)
+ ....

(11)

where C = diag(c1, .., cn) and the flux. With the flux (3), being approximated as:

Kε(x)∇uε(x) ≈ K0(x)P ε(x)∇u0(x) (12)

Furthermore, the first-order approximation to uε(x), is then:

uε (x) ≈ u0 (x, y) + εu1 (x, y) = u0 (x, y) +
n∑

i=1

Ciiw̃i(y)
∂2

∂x2
i

u0 = ufo(x) (13)

which allows us to get the upper bound estimate for the error implied in using
u0(x):

Error =
∣∣∣∣uε(x) − u0(x)

∣∣∣∣
2
≤
∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Ciiw̃i
∂u0(x)
∂xi

∣∣∣∣∣
∣∣∣∣∣
2

= UPE (14)

and the first-order approximation for the flux and gradient:

∇uε ≈ P ε(x)∇u0 +
n∑

i=1

Ciiw̃i
∂2

∂x2
i

u0 = ∇ufo(x) (15)

Kε∇uε ≈ K0

(
P ε(x)∇u0 +

n∑
i=1

Ciiw̃i
∂2

∂x2
i

u0

)
(16)
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Table 1. K0 from (9) and the geometric average, Kg , for the checkerboard structure

ξ1 : ξ2 Kg C × K̃0 = K0

5:20 10 1.0725×9.31=9.98
1:10 3.16 1.1732×2.60=3.05
2:8 4 1.0725×3.722=3.99
4:16 8 1.0725×7.4451=7.985

Table 2. K0 from (9), Knum from [3], and Kbb from [5] with various shapes of inclusion

Shape Knum Kbb C × K̃0 = K0

square (ratio 10:1) 1.548 1.598 1.0937×1.4091=1.5411
circle (ratio 10:1) 1.516 1.563 1.0785×1.403=1.5131

lozenge (ratio 10:1) 1.573 1.608 1.069× 1.417=1.5148

Table 3. K0 from (9) and K#, obtained from numerical solution of eq. (5) [1]. Kh

and Ka are the harmonic and arithmetic averages.

Test Kh Ka K# C × K̃0 = K0

Test 1 (ratio 1:10) 3.09 8.5 6.52 1.093×5.91=6.459
Test 3 (ratio 1:100) 3.89 76.0 59.2 1.1378×51=58.03

3 Numerical Results

3.1 Comparing K0 with Published Numerical Results

Tables 1–3 show how C plays an important role in obtaining a more accurate
value for K0.

3.2 Zeroth-Order Approximation for the Linear Case

We now demonstrate numerically the convergence properties of the approxima-
tions for coefficient functions defined in (4) with ratios as 10:1, 100:1, 1000:1 and
1:10. Table 4 shows the comparison between the heterogeneous solution, uε (x)
of the BVP (2) and its zeroth-order approximation, given by solution of the BVP
(7), with u0(x) = 0 on ∂Ω. The procedure for obtaining the table is outlined:
(a) Compute numerically uε(x), ∇uε(x) and Kε∇uε(x) on a given mesh. (b)
Compute K0 using (9), then u0(x) from (7) and ∇u0(x) on the same mesh as
in the heterogeneous. (c) Compute analytically w̃ε

i (x) and Cε(x) at the same
mesh as uε(x), in order to obtain UPB (14). (d) Compute the gradient error
from (11) and the flux error from (12).

3.3 First-Order Approximation

We use zeroth−order approximation of BVP (2) from Table 4 to obtain the first-
order approximation to BVP (2) from (13), (15), and (16). The summary of the
approximations is on Table 5 and an illustration is in Fig. 1.
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Table 4. Zeroth order approximation from (7) using (9) and and ratios (a)
10:1, (b) 100:1, (c) 1000:1 and (d) 1:10 on [0, 1]2 with K0 = 1.0937 × 1.4091 =
1.5411, K0 = 1.139 × 1.4901 = 1.6972, K0 = 1.1441 × 1.5 = 1.7161, and K0 =
1.093 × 5.91 = 6.459, respectively. Note how the error is decaying linearly on the
first column and also that UPE is a reliable upper bound. The errors do not increase
significantly as the ratio increases.

ε
∣∣∣∣uε − u0

∣∣∣∣
2

UPE
∣∣∣∣∇uε − P ε∇u0

∣∣∣∣
2

∣∣∣∣Kε∇uε − P εK0∇u0
∣∣∣∣

2
grid

(0.5)1 1.10e-2 1.61e-2 4.67e-2 1.87e-1 130X130
(0.5)2 4.92e-3 7.48e-3 4.31e-2 1.61e-1 130X130
(0.5)3 2.13e-3 3.74e-3 3.62e-2 1.58e-1 130X130
(0.5)4 9.48e-4 1.80e-3 3.11e-2 1.57e-1 130X130
(0.5)5 5.13e-4 9.33e-4 3.31e-2 1.57e-1 402X402

(0.5)1 1.293e-2 1.82e-2 5.86e-2 2.53e-1 130X130
(0.5)2 5.736e-3 8.47e-3 5.45e-2 2.18e-1 130X130
(0.5)3 2.441e-3 4.23e-3 4.41e-2 2.16e-1 130X130
(0.5)4 1.223e-3 2.05e-3 3.68e-2 2.14e-1 130X130
(0.5)5 6.995e-4 1.06e-3 3.90e-2 2.14e-1 402X402

(0.5)1 1.32e-2 1.85e-2 6.00e-2 2.62e-1 182X182
(0.5)2 5.84e-3 8.65e-3 5.61e-2 2.26e-1 182X182
(0.5)3 2.51e-3 4.36e-3 4.73e-2 2.25e-1 230X230
(0.5)4 1.14-3 2.16e-3 4.16e-2 2.23e-1 230X230
(0.5)5 6.90e-4 1.09e-3 4.07e-2 2.26e-1 230X230

(0.5)1 3.35e-3 3.83e-3 6.69e-2 3.00e-1 130X130
(0.5)2 8.81e-4 1.78e-3 4.37e-2 2.80e-1 130X130
(0.5)3 3.16e-4 8.9e-4 3.85e-2 2.78e-1 130X130
(0.5)4 1.69e-4 4.31e-4 3.75e-3 2.79e-1 130X130
(0.5)5 9.06e-5 2.22e-4 3.75e-3 2.78e-1 402X402

Fig. 1. Quarter zone of the fine scale (solid) and first-order (dashed), ufo(x), obtained
by (13) for ε = (0.5)3, (0.5)4, (0.5)5, respectively, from Table 5 (a). Observe how the
dashed lines capture the oscillations of the solid line.
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Table 5. First-Order Approximation from (13), on [0, 1]2, for the and ratios
(a) 10:1, (b) 100:1, (c) 1000:1 and (d) 1:10, respectively. Note how the first
column is going linearly to zero and it is about half of the UPE from Table 4. Also,
the gradient and flux sequences are bounded implying the weak convergence.

ε
∣∣∣∣uε − ufo

∣∣∣∣
2

∣∣∣∣∇uε − ∇ufo
∣∣∣∣

2

∣∣∣∣Kε∇uε − K0∇ufo
∣∣∣∣

2 grid

(0.5)1 4.43e-3 3.62e-2 1.80e-1 130X130
(0.5)2 2.31e-3 4.12e-2 1.60e-1 130X130
(0.5)3 1.05e-3 3.59e-2 1.58e-1 130X130
(0.5)4 4.80e-4 3.11e-2 1.57e-1 180X180
(0.5)5 2.54e-4 3.20e-2 2.57e-1 180X180

(0.5)1 5.13e-3 5.30e-2 2.42e-1 130X130
(0.5)2 2.75e-3 5.33e-2 2.17e-1 130X130
(0.5)3 1.24e-3 4.38e-2 2.16e-1 130X130
(0.5)4 6.61e-3 3.68e-2 2.14e-1 182X182
(0.5)5 3.98e-3 3.90e-2 2.14e-1 182X182

(0.5)1 5.18e-3 5.98e-2 2.50e-1 182X182
(0.5)2 2.80e-3 5.40e-2 2.25e-1 182X182
(0.5)3 1.28e-3 4.68e-2 2.25e-1 230X230
(0.5)4 5.86e-4 4.15e-2 2.23e-1 230X230
(0.5)5 3.77e-4 4.07e-2 2.26e-1 230X230

(0.5)1 3.48e-3 6.41e-2 2.94e-1 130X130
(0.5)2 7.80e-4 4.32e-2 2.78e-1 130X130
(0.5)3 1.81e-4 3.84e-2 2.78e-1 130X130
(0.5)4 1.01e-4 3.75e-3 2.79e-1 130X130
(0.5)5 5.47e-5 3.75e-3 2.78e-1 402X402

4 Conclusion and Future Work

This work represents one step towards obtaining the effective coefficient and the
first-order approximation, by analytical means, for more general geometries and
random media. A continuation of these results applied for particular cases of
nonlinear equations is in progress as well as a comparison of this formulation
with experimental results. Future work includes applying these results to ran-
dom media. Another future application is to use the zeroth order approximation
as an initial guess for iterative methods for solving linear and nonlinear systems,
obtained by discretizing heterogeneous coefficient equations, therefore improv-
ing accuracy and convergence rates for these and more general geometries. The
ultimate goal is to apply the method to multi-phase systems where diffusion is
the driving process.

Acknowledgments. The authors are thankful to Peter A. Popov for providing
the numerical code FEM-O-MATIC. This work is part of the Chevron/LANL
Cooperative Research and Development Agreement (CRADA).
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Abstract. Of concern is an ecosystem consisting of a herbivorous spe-
cies and a carnivorous one. A hunter population is introduced in the
ecosystem. Suppose that it acts only on the carnivorous species and
that the number of the hunted individuals is proportional to the number
of the existing individuals in the carnivorous population. We find the
optimal control in order to maximize the total number of individuals
(prey and predators) at the end of a given time interval. Some numerical
experiments are also presented.

1 Introduction

Consider the prey-predator system of differential equations{
y′1 = y1 (a1 − b1y2)
y′2 = y2 (−a2 + b2y1) ,

where a1, a2, b1, b2 are positive constants. It describes the dynamics of an ecosys-
tem composed by two populations which coexist: a prey population and a preda-
tor one [5,7,10]. We denoted by y1 (t) and y2 (t) the number of the individuals
of the two populations, the prey and the predators, respectively.

Suppose now that a hunter population is introduced in the ecosystem and it
acts only on the predators. At each moment t, the number of the hunted individ-
uals is assumed to be proportional to the total number of the existing predators.
Let u (t) be the proportionality factor, 0 ≤ u (t) ≤ 1. Thus the dynamics of the
new ecosystem is described by the system of ordinary differential equations{

y′1 = y1 (a1 − b1y2)
y′2 = y2 (−a2 − u + b2y1) .

(1)

We study this system on a finite time interval [0, T ] and interpret u : [0, T ] →
[0, 1] as a control function. One associates some initial conditions:

y1 (0) = y0
1 > 0, y2 (0) = y0

2 > 0 . (2)

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 277–284, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Problem (1)− (2) has a unique solution (y1, y2), which is positive [7].
Our goal is to find the optimal control u and the corresponding state (y1, y2)

such that the total number of individuals in the end of the time interval [0, T ] is
maximal. In other words, we have to maximize y1 (T ) + y2 (T ), i.e. to solve the
following optimal control problem:

inf {−y1 (T )− y2 (T )} , (3)

where 0 ≤ u (t) ≤ 1, t ∈ [0, T ] and (y1, y2) verifies (1)− (2).
Other similar control problems for systems of ODE were treated in [2,5,6,10].

In [1], an optimal control problem is analyzed in connection with a partial dif-
ferential system. The densities of the populations depend not only on the time
moment, but also on the position in the habitat. Some basic concepts and meth-
ods of the optimal control theory can be read in [3]. Mathematical models in
population dynamics are presented and studied in [4,7]. About the number of
switching points of the optimal control, the reader may refer to [8,9].

In Section 2, we apply Pontrjagin’s maximum principle to write the optimality
system and to find thus the form of the optimal control u. One proves that it is
pointwise continuous and takes on only the values 0 and 1. A discussion of the
number of the commutation points of u is presented.

Section 3 is devoted to some numerical experiments. There are analyzed sev-
eral cases corresponding to different values of the parameters (the initial condi-
tions of the ecosystem (y0

1 , y
0
2), and the positive constants a1, a2, b1 and b2).

2 Necessary Optimality Conditions

Denote by y the pair (y1,y2) and by p the adjoint variable, with its components
p1 and p2. Therefore we have

y =
(

y1

y2

)
, p =

(
p1

p2

)
, f (y, u) =

(
y1 (a1 − b1y2)
y2 (−a2 − u + b2y1)

)
and the cost functional

l (y (T )) = −y1 (T )− y2 (T ) .

The adjoint system in our case is p′ = −f∗
y · p, the transversality condition

is p (T ) = −∇l (y (T )), and the last optimality condition is f∗
u · p ∈ N[0,1] (u).

Here N[0,1] (u) denotes the normal cone to the closed convex set [0, 1] at point u,
while f∗

y , f
∗
u are the adjoint matrices of the Jacobian matrices fy, fu. In detail,

this can be written as⎧⎨⎩
p′1 = −a1p1 + y2 (b1p1 − b2p2)
p′2 = (a2 + u) p2 + y1 (b1p1 − b2p2)
p1 (T ) = p2 (T ) = 1

(4)

and since

N[0,1] (u) =

⎧⎨⎩
0, 0 < u < 1
IR−, u = 0
IR+, u = 1 ,
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by the last optimality condition, it follows that the optimal control u has the
form

u (t) =
{

0, if y2p2 > 0
1, if y2p2 < 0 .

(5)

Put z1 = y1p1, z2 = y2p2. Taking into account the adjoint system and the
transversality conditions, we obtain{

z′1 = −b2y1z2, t ∈ [0, T ]
z′2 = b1y2z1, t ∈ [0, T ] ,

{
z1 (T ) = y1 (T ) > 0
z2 (T ) = y2 (T ) > 0 .

(6)

Therefore, we can write

u (t) =
{

0, if z2 > 0
1, if z2 < 0 .

(7)

We now analyze the number of the commutation points for u, that is the
number of the points in (0, T ), where z2 changes its sign.

By [8,9], we conclude that the number of switching points is finite; more
exactly the system satisfies the so-called bang-bang property with bounds on
the number of switchings.

Since z2 (T ) = y2 (T ) > 0 and z′2 (T ) = b1y1 (T ) y2 (T ) > 0, observe that in
a left neighborhood of the final point T , the function z2 is positive and strictly
increasing. Analogously, we find that z1 > 0 and z1 is strictly decreasing in a
left neighborhood of T . Moreover, z1 > 0 if and only if z′2 > 0, while z2 > 0 if
and only if z′1 < 0.

The system in (z1, z2) has the coefficients continuous on subintervals of [0, T ].
This implies that z2 has a finite number of zeros in (0, T ), say τn < τn−1 < ... <
τ2 < τ1.

We have the following cases.
If z2 does not change its sign on [0, T ], then it is positive and thus u (t) = 0,

for all t ∈ [0, T ] .
If z2 changes its sign on [0, T ] , then let τ1 be the closest to T from all its

zeros. This means that z2 (t) > 0 on (τ1, T ], z2 (τ1) = 0, and z2 (t) < 0 at least
on a left neighborhood (τ1 − ε1, τ1) of τ1. Then z1 is decreasing on (τ1, T ] and
increasing on (τ1 − ε1, τ1).

If z1 does not change its sign at the left side of τ1, then z1 (t) > 0 and
z′2 (t) > 0, t ∈ [0, τ1), and consequently z2 < 0 on [0, τ1) and z2 > 0 on (τ1, T ].
We have u (t) = 0 on (τ1, T ] and u (t) = 1 on [0, τ1).

If z1 changes its sign, then let θ1 be the closest to T from all its switching
points: z1 (t) > 0 on (θ1, τ1], z1 (θ1) = 0, and z1 (t) < 0 at least in a left neigh-
borhood (θ1 − ξ1, θ1) of θ1. Then, z2 is monotonically increasing on (θ1, τ1] (so
z2 < 0) and monotonically decreasing on (θ1 − ξ1, θ1). Hence z1 cannot change
its sign on (θ1, τ1).

If z2 < 0 on [0, θ1), then u (t) = 1 on [0, τ1) and u (t) = 0 on (τ1, T ]. If this
is not the case, then let τ2 be the next switching point of z2 (τ2 < θ1 < τ1), i.e.
z2 < 0 on (τ2, θ1) , z2 (τ2) = 0, and z2 > 0 on (τ2 − ε2, τ2).
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If z1 < 0 on [0, τ2), then u (t) = 0 on [0, τ2) ∪ (τ1, T ]. If z1 still has some
switching points at the left side of τ2, then let θ2 be the closest to τ2. So,
θ2 < τ2 < θ1 < τ1.

Continuing this reasoning, let τ2k+1 be the switching points of z2 such that
z2 < 0 at the left side and z2 > 0 at the right side, and let τ2k be the switching
points of z2 such that z2 > 0 at the left side and z2 < 0 at the right side of τ2k.

If n = 2m, then the optimal control u has the form

u (t) =
{

0, t ∈ [0, τ2m) ∪ (τ2m−1, τ2m−2) ∪ ... ∪ (τ1, T ]
1, t ∈ (τ2m, τ2m−1) ∪ ... ∪ (τ2, τ1) .

(8)

If n = 2m + 1, then

u (t) =
{

0, t ∈ (τ2m+1, τ2m) ∪ ... ∪ (τ1, T ]
1, t ∈ [0, τ2m+1) ∪ (τ2m, τ2m−1) ∪ ... ∪ (τ2, τ1) .

(9)

The optimal state (y1, y2) is the solution of system (1)− (2) corresponding to
u = 0 and u = 1, respectively.

Our conclusion can be expressed in the following result.

Theorem 1. If a1, a2, b1, b2 > 0 are given constants, then the optimal control
u is piecewise continuous and takes on only the values 0 and 1.

If p1 and p2 are the adjoint variables and τn < τn−1 < . . . < τ2 < τ1 are the
zeros in (0, T ) of function p2, then u has the form (8) (if n = 2m) or (9) (if
n = 2m + 1).

3 Computational Issue

This section presents numerical results of the optimal control problem (3) asso-
ciated to the prey-predator system (1)-(2) and gives some interpretations. We
set in our numerical approach T = 1, and used 100 discretization points in time
interval [0, T ].

Both systems (the ecosystem (1)-(2) and its adjoint (4) corresponding to the
optimal control problem (3)) were solved by finite differences using Matlab rou-
tines. Five cases have been analyzed corresponding to different sets of the pa-
rameters a1, a2, b1, b2 and of the initial conditions (y0

1 , y
0
2). These values are

indicated in each figure included in this section.
In the first two cases (Case I and II) there is no switching point of the control

u(t) between 0 and 1. According to the theoretical result stated in the previous
section, this situation appears when the variable z2 does not change its sign on
[0, T ] (see Figures 1 and 2).

The following two cases (Case III and IV) present situations in which the
control variable u has one and two switching points, respectively. Again, we
remark in the plots (see Figures 3 and 4) that the variable z2 changes its sign
once (see Figure 3) and twice (see Figure 4).

The last case (Case V) illustrates the situation when the variable z2 modifies
its sign five times (see the lower subplot in Figure 5). Therefore, the control u
indicates the same number of switching points, which again is in agreement with
the theoretical reasoning.
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Fig. 1. The control u and the time behavior for (y1, y2) and the variable z2 (Case I)
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Fig. 2. The control u and the time behavior for the variables y2 and z2 (Case II)
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Fig. 3. The control u and the time behavior for the variables y2 and z2 (Case III)
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Fig. 5. The control u and the time behavior for the variables y2 and z2 (Case V)

4 Conclusions

In this paper we analyzed an ecosystem by means of an optimal control prob-
lem. In order to maximize the total number of individuals (prey and predators)
from the ecosystem at the final moment T , the hunter should act on the preda-
tors, alternatively. Periods of time when the hunter population acts continuously
(u = 1) should alternate with periods when the hunter does not hunt predators
at all (u = 0). We say that the optimal control u is bang-bang. At least in a
neighbourhood of the final time T , the hunter should be inactive (u = 0). Nu-
merical experiments show that the optimal control u can be zero on the whole
interval [0, T ], or it can admit several points of commutation. Unfortunately, we
could not establish yet any connection between the number of switching points
for the control variable u and certain values of the parameters a1, a2, b1, and b2.
The numerical estimates show that we can have different number of switching
points for the optimal control.
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Abstract. There is empirical evidence that drug prices have significant
impact on demand. For instance, emergency department mentions of
various drugs vary in proportion to price raised to a (negative) exponent,
which in economists’ terms is a constant price elasticity model. This
relationship holds even for abrupt spikes in price induced by sudden
shortages such as the recent Australian heroin drought. It seems natural
to ask how, if at all, drug policy should be varied to take advantage
of the opportunity offered by such supply disruptions. We address this
question by analyzing a two-stage optimal control model parameterized
with data on the current U.S. cocaine epidemic. The number of users and
drug control spending are the state and control variables, respectively.
The aim is to minimize the discounted stream of the social costs arising
from drug consumption plus the control costs. We focus on scenarios with
multiple steady states and DNSS-thresholds separating different basins
of attraction.

1 Introduction

Optimal control models have been applied to problems of illicit drug consump-
tion for more than a decade (see, e.g., [1], [14], [2]). This paper emerged from
the observations that from time to time supply shocks create sharp spikes in
the purity-adjusted prices of illicit drugs, and economists have demonstrated
empirically that drug use varies inversely with price ([8]). Use responds to price
even in the short-run. For instance, the recent Australian heroin drought caused
an almost eightfold increase in price within a few months, with prices dropping
part-way back again afterwards. Over this period there is a strong correlation
between the number of times ambulances responded to a heroin overdose and

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 285–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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purity-adjusted heroin prices raised to a power (known as a constant-elasticity
price relation) [10]. The corresponding price elasticity in this case is estimated
to be -1.12, implying that a 1% increase in price per pure gram was associated
with a 1.12% decrease in ambulance call-outs. In a parallel study with U.S. data,
price changes explained 97.5% of the variation in emergency department men-
tions for cocaine and 95% of the variation for heroin, with the price elasticities
of demand being estimated at -1.30 and -0.84, respectively [4]. Crane et al. ([5])
documented similar correlations with other indicators, including proportions of
people testing positive for cocaine among both arrestees and workers subject to
workplace drug-testing.

Assuming now that a country with a drug problem will at some point have its
supply significantly disrupted, the natural question to ask is, what should the
dynamic response of its drug policy be to that disruption?

2 The Model

We address this question by analyzing a one-state one-control model parameter-
ized with data from the current U.S. cocaine epidemic, where the number of users
(A(t)) and treatment spending (u(t)) provide the state and control variables at
time t, respectively. The aim is to minimize the discounted sum of the social costs
arising from drug consumption plus the control costs, over an infinite planning
horizon, where the control (called treatment) increases outflow from the drug
use state. Retail price is modeled as a parameter, influencing current demand as
well as initiation into and desistance from drug use.

Supply disruptions are modeled as temporary shifts in price. That is, we
assume that the retail price takes an abnormally high or low value ps from the
beginning of the time horizon (t = 0) up to some given time t = T < ∞.
(Supply shortages with corresponding increases in price are the more common
and interesting case from a policy perspective, but the analysis is similar for
so-called gluts that temporarily depress prices.) At time t = T the retail price
switches back to its base level pb (pb �= ps). In other words, we decompose the
infinite horizon problem into a (first) finite stage of duration T with the retail
price equal to ps and a (second) stage of infinite horizon with the retail price
equal to pb.

Expressed in mathematical terms, we consider the following two-stage optimal
control model

min
u(t)≥0

∫ T

0

e−rt
(
κp−ω

s A(t) + u(t)
)
dt +

∫ ∞

T

e−rt
(
κp−ω

b A(t) + u(t)
)
dt

subject to

Ȧ(t) = k̄p−a
s A(t)

(
Ā−A(t)

)
− cu(t)zA(t)1−z − µpb

sA(t) 0 ≤ t < T,

Ȧ(t) = k̄p−a
b A(t)

(
Ā−A(t)

)
− cu(t)zA(t)1−z − µpb

bA(t) T < t <∞,
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where r is the time discount rate; κ is the social cost per unit of consumption;
ω is the absolute value of the short run price elasticity of demand; k̄ is a con-
stant governing the rate of initiation; Ā is the maximum number of users; a is
the absolute value of the elasticity of initiation with respect to price; c is the
treatment efficiency proportionality constant; z is a parameter reflecting dimin-
ishing returns of treatment; µ is the baseline rate at which users quit without
treatment; and b is the elasticity of desistance with respect to price.

3 Analysis

To analyze our model we consider both stages separately. The shock period (i.e.,
the first stage of our model) is described as a finite horizon optimal control model
with objective functional

JT =
∫ T

0

e−rt
(
κp−ω

s A(t) + u(t)
)
dt + e−rTS(A(T )) &→ min,

where the salvage value function S(A(T )) describes the costs of having A(T )
users at time T . According to the maximum principle the following transversality
condition must hold at time T :

λ(T ) = SA(A∗(T )), (1)

where A∗(T ) denotes the optimal value of A at time T and SA(.) denotes the
derivative of S(.) with respect to A.

The second stage, which describes what happens after the shock has ended, is
modeled as an optimal control problem with infinite time horizon. We connect
the two stages using the transversality condition (1). As a reasonable choice
for the salvage function S(A(T )) we take the optimal objective functional value
of the second stage (value function). The derivative of the value function with
respect to the state variable A exists everywhere except for at most one point
(i.e., the DNSS-threshold, which will be defined a few lines later) and is given
by the costate variable λ, so condition (1) reduces to

λ(ps)(T−) = λ(pb)(T+), (2)

where the superscripts (ps) and (pb) refer to the first and second stage, respec-
tively, and

T− = lim
t↑T

t and T+ = lim
t↓T

t.

A note is appropriate here. One may argue that the problem considered here
is not really a two-stage problem because the discontinuity that occurs at time
T is only with respect to the time. For such systems the classical maximum prin-
ciple applies and the co-state variable is absolutely continuous, so that (2) holds
automatically. However, for the numerical analysis described in what follows
we prefer to consider the problem as a two-stage problem, which also ensures
time-invariance in the second stage.



288 R. Bultmann et al.

The problem is now solved using Pontryagin’s maximum principle (see, e.g.,
[7]), where the usual necessary optimality conditions must hold. For the special
case z = 0.5, it is possible to derive all possible steady states of the canonical
system analytically, which are given by

Â1 = 0,

Â2/3 =
1

3k̄p−a
b

[
2∆− r ±

√
(∆ + r)2 − 3c2κp−ω

b

]
with the corresponding values of the costates

λ̂1 =
2
c2

(
r −∆−

√
(r −∆)2 + c2κp−ω

b

)
,

λ̂2/3 =
2

3c2

[
− (∆ + r)±

√
(∆ + r)2 − 3c2κp−ω

b

]
,

where ∆ := k̄p−a
b Ā− µpb

b. A complete stability analysis of these steady states is
also possible, but omitted here for brevity.

Varying a parameter such as κ (the social cost per unit of consumption), we
find that either there is a unique long-run optimal steady state or there are
two optimal steady states, with their basins of attraction being separated by
a so-called DNSS-threshold. (For their contributions in pointing to, promoting,
and proving the existence of these thresholds, they are named after Dechert and
Nishimura [6], Skiba [13], and Sethi [11,12].)

For the remainder of this paper, we fix the parameter values as summarized in
Table 1. These values are reasonable for the current U.S. cocaine epidemic (for
further details see [3]), and they are in a range such that a DNSS-threshold exists,
separating the basins of attraction of a low-level and a high-level equilibrium.
We will focus on droughts (ps > pb) and note that gluts (ps < pb) yield fairly
symmetric results.

As in the long run it is optimal to approach one of the two saddle points of the
canonical system of the second phase (cf. [7]), we compute the stable manifolds
associated with them. To obtain the solution to the first phase problem we have
to solve a boundary value problem (BVP) consisting of the system dynamics of
the first phase with the boundary conditions A(0) = A0 and (2).

In other words, we look for trajectories that satisfy A(0) = A0 and cross
one of the stable manifolds of the second stage problem at time T . Compound
solutions consisting of a solution of the BVP continuously connected with a stable
manifold of the second phase problem are candidates for the optimal solution

Table 1. Parameter values derived from data for the current U.S. cocaine epidemic

r = 0.04 κ = 3.396819914 pb = 0.12454 ω = 0.5
k̄ = 0.00000001581272 Ā = 16,250,000 a = 0.25 c = 0.043229
z = 0.5 µ = 0.181282758 b = 0.25
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Fig. 1. Optimal paths starting at A0 = 6,000,000 with shock (ps = 10 ·pb, T = 2; black
curve) and without shock (T = 0; dark gray curve)

of the two-stage problem. Comparison of the utility functional values yields the
optimal solution.

Figure 1 shows the optimal trajectories in state-costate space for both the
“drought” and “no drought” cases. In the absence of a drought, the best strategy
is simply to accommodate an increase in drug use up to the high-level equilib-
rium. Driving down drug use, while possible, is too expensive to be worthwhile.
However, with a drought helping to suppress use, it is optimal to push drug
use down to its low-level equilibrium. Note that in the drought case use does
not only decline because of the drought. Rather, the optimal policy response
to the drought starting at 2.5 million users is to greatly increase drug control
spending, in effect following a strategy of attacking the market when it is weak.
If the drought were created by a supply control intervention and the control is
interpreted as treatment, this shows that in certain circumstances supply- and
demand-control efforts can be complements, not substitutes, as is often implic-
itly assumed in debates about the relative merits of supply- vs. demand-side
interventions.

Results of this sort pertain as long as the drought is large enough. If the
price (ps) or duration (T ) of the drought are small enough, the optimal policy
is to moderate the drug problem. If they are large enough the optimal policy
is essentially to eradicate the drug epidemic. In either case the drought helps
improve the optimal utility functional value.

What sort of shock is of the greatest value to policy makers, a short but intense
one or a smaller one that is sustained longer? Figure 2 shows combinations
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Fig. 2. Level curves of the value function for varying values of the shock length T
(abscissa) and the price ps (ordinate). The values of these level curves are divided by
2 · 109 for ease of exposition. The initial state A0 = 6, 000, 000 is such that below the
dotted curve, convergence is to the high-level steady state, while above the dotted curve,
convergence is to the low-level steady state. Minimal costs decrease from lower-left to
upper-right.

of drought durations (abscissa) and intensities (ordinate) that yield the same
objective functional value. Long and intense droughts (upper-right) are best.
Short and mild droughts (lower-left) are the worst, and those to the lower left
of the dotted-line are not large enough to make it worth pushing drug use down
to the low-level equilibrium.

The figure suggests that duration and intensity are complements. If the
drought is very sharp and short, the policy maker would prefer a drought half as
intense but twice as long. Conversely, if the drought is very mild but long, the
policy maker would prefer one that is twice as intense and half as long. More
generally, the area under the price spike curve (height times duration) is not a
sufficient statistic for the value of the drought.

4 Extensions

There are multiple avenues for further work of this sort. Some would preserve
the basic two-stage structure but elaborate on the underlying model by adding
additional drug use states (e.g., to differentiate between light and heavy users)
and/or controls (e.g., prevention programs, domestic enforcement that can
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further drive up prices, etc.). Others would preserve the drug model but elaborate
on the modeling of the supply shocks.

The price-spikes induced by supply shocks look more like skewed triangles or
decaying exponentials than rectangles. Considering more than two stages would
allow more realistic approximations to the actual price variations.

Sometimes it may be sensible to presume policy makers know the duration of
a shortage (e.g., when yields for an annual crop such as opium poppies is reduced
by a literal drought), but other times the duration of the drought will not be
known until it is over. In those cases, there would be a probability distribution
governing the length of the shock T .

Sometimes the shock is created not by poor growing conditions or by happen-
stance but rather is the result of deliberate policy action (arguably that pertains
for the 1989/1990 shock to cocaine markets). So in some cases T could be a
control variable. However, even when market disruptions are caused by source
or transit zone interventions, policy makers do not have complete control over
their duration, so T could also be modeled as being stochastic but with the
probability distribution affected by drug control spending.

Another intriguing possibility would consider the case of multiple drugs, only
one of which is subject to a price shock, in a model that recognizes that many
users consume multiple drugs and have some willingness to substitute one drug
for another. Such a model would allow one to address questions such as how
heroin treatment spending should respond to a cocaine supply shock?

Hence, this model only scratches the surface of multi-stage modeling of illegal
markets. It seems to us that the necessary optimality conditions presented in [9]
will be helpful for many of these extensions.
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Abstract. In this paper we investigate a multicriteria optimal control
problem associated to a preference relation based on the lexicographic
order. We extend different notions of non-smooth analysis and control
and show that the vector Value function is the unique vector lower semi-
continuous solution to a suitable system of Hamilton-Jacobi equations in
the sense of contingent solution or equivalently in the sense of extended
viscosity solution.

1 Introduction

We consider a decision maker who has to optimize several objectives. This prob-
lem can be described in terms of an optimization problem for a vector valued
function associated to a preference relation of the decision maker based on the
lexicographic order of Rn. We write (x1, · · ·, xn) � (y1, · · ·, yn) if x = y or for
some j ≤ n and all i ≤ j, xi = yi and xj < yj . In this context the graph of the
preference relation is not necessarily closed, contrary to what is usually assumed
in this kind of problem (see for instance [8,9,10]) and scalarization plays no rules.

We underline that our problem is different from those studied in [10] where
it was noticed that the preference determinated by the lexicographical order
of the vector is not continuous. Furthermore, the results proved there assume
that the graph of the preference relation is closed, while those pertaining to the
lexicographic order are proved under an hypothesis which does not hold for the
lexicographic order. As a matter of fact little is known on this type of problem.

More precisely we consider the following control system where x ∈ Rd is a
solution of {

x′(t) = f(t, x(t), u(t)), u(t) ∈ U
x(t0) = x0

(1)

and the following optimal control problem

minimize
(
Φi(x(T ))

)
i={1,···,n} over the solution set to (1),

where T > 0, I = {1, · · ·, n}, f maps [0, T ]× Rd × U to Rd and each Φi maps
Rd to R.
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The lexicographic order is total but the infimum of an unbounded set is not
well-defined. The good notion in this case will be an extension of the Painlevé-
Kuratowski upper limit of a set. The notions of vector upper and lower limit of a
set will be defined in the next section. We extend different notions of nonsmooth
analysis and control to vector valued functions. The value function associated
with this problem, which we call the vector Value function, is defined as follows:
for all (t0, x0) ∈ [0, T ]× Rd

V (t0, x0) =
(
Vi(t0, x0)

)
i∈I

= −−−−→lim infx∈S[t0,T ](x0)

(
Φi(x(T ))

)
i∈I

. (2)

where S[t0,T ](x0) = {x solution to (1)}.
We extend the notions of viscosity subsolutions and supersolutions and show

that the vector Value function is the only extended vector valued lower semicon-
tinuous function satisfying a system of Hamilton-Jacobi equations.

−∂V

∂t
(t, x) + H

(
t, x,−∂V

∂x
(t, x)

)
= 0, V (T, ·) = Φ(·)

where the Hamiltonian H is defined by

H(t, x, p) = −−−−→lim sup
u∈U

(
〈pi, f(t, x, u)〉

)
i∈I

.

The outline of paper is as follows. Section 2 is devoted to definitions and
extensions of notions of non-smooth analysis to the vectorial case and in section 3
we prove that the vector Value function is the unique solution to a system
of Hamilton-Jacobi equations in the sense of contingent solution and viscosity
solution.

2 Vector Lower Semicontinuity

Definition 1. Let C be a subset of Rn. Consider for i ∈ I the functions Πi and
pi defined on Rn with values, respectively, in Ri and R, given by
Πi(x1, · · ·, xn) = (x1, · · ·, xi) and pi(x1, · · ·, xn) = xi.

We define −→inf C = (ci)i∈I as follows :

let C0 = C and c1 = inf
x∈C0

x1

for 1 ≤ i ≤ n− 1 let

Ci =

{
Ci−1

⋂
p−1

i (ci) if ∃ x ∈ Ci−1 such that pi(x) = ci

Ci−1 otherwise

and
ci+1 = lim inf

x∈Ci
Πi(x)−→(c1,···,ci)

pi+1(x).
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Similarly, −→sup C = (ci)i∈I is defined by

ci+1 = lim sup
x∈Ci

Πi(x)−→(c1,···,ci)

pi+1(x)

where Ci is defined as above.
By convention we say that−→inf C = −∞ if there exists i ∈ I such that ci = −∞, −→inf ∅ = +∞, −→sup C = +∞

if there exists i ∈ I such that ci = +∞ and −→sup ∅ = −∞.

Remark 1. This definition is a generalization of the notion of infimum for sets,
when n = 1 it reduces to the usual infimum.

Let X be a metric space.

Definition 2. Let Φ = (Φi)i∈I : X &→ Rn ∪ {+∞} be a vector valued extended
function. We define

−−−−→lim inf
x−→x0

Φ(x) = (ci)i∈I as follows :⎧⎪⎨⎪⎩
c1 = lim inf

x−→x0
Φ1(x)

and for all i > 1 ci = lim inf
x−→x0, x∈Ci−1

Πi−1(Φ(x))−→(c1,···,ci−1)

Φi(x)

where C0 = {Φ(x) | x ∈ X} and for i ≥ 1, Ci is defined as in the previous
definition and with the same convention.

Proposition 1

1. If A ⊂ B ⊂ Rn then −→inf B � −→inf A.
2. Let F, Φ : X &→ Rn ∪ {+∞} such that ∀x ∈ X, F (x) � Φ(x) then

−−−−→lim inf
y−→x

F (x) � −−−−→lim inf
y−→x

Φ(x).

3. If F, Φ : X &→ Rn ∪ {+∞} then
−−−−→lim inf
y−→x

F (x) +−−−−→lim inf
y−→x

Φ(x) � −−−−→lim inf
y−→x

(F + Φ)(x).

Remark 2. Let Φ : R &→ R2 ∪ {+∞} be defined by Φ(x) = (x,−1) and let
(xn) = ( 1

n ) ∈ RN then 0 � Φ(xn), but −−−−→lim infn−→+∞Φ(xn) = (0,−1) � 0.

Definition 3. Let Φ : X &→ Rn ∪ {+∞} be a vector valued extended function.
We define the domain of Φ by

Dom(Φ) = {x ∈ X | Φ(x) �= +∞}

Definition 4. Let Φ : X &→ Rn ∪ {+∞} be a vector valued extended function.
Then Φ is vector lower semicontinuous if for all x0 ∈ Dom(Φ)

Φ(x0) � −−−−→lim inf
x−→x0

Φ(x).
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Remark 3. 1. If for all i ∈ I, Φi : X &→ R is lower semicontinuous, then (Φi)i∈I

is vector lower semicontinuous.
2. Conversely if Φ : X &→ Rn is vector lower semicontinuous, then V1 is lower

semicontinuous but, for i > 1, Vi is not necessary lower semicontinuous. For
example, consider Φ : R &→ R2 defined by

Φ(x) =
{

(1, 0) if x �= 0
(0, 1) if x = 0 .

Definition 5. The lexicographical epigraph of Φ : X &→ Rn ∪ {+∞} is defined
by

Epi (Φ) = {(x, y) ∈ X × Rn : Φ(x) � y} .

Remark 4. Let Φ : X &→ Rn ∪ {+∞} be a vector valued extended lower semi-
continuous. Then the lexicographical epigraph and the set {x ∈ Rd | Φ(x) � λ}
are not necessarily closed, as one can see from the previous example.

Proposition 2. Let Φ : X &→ Rn ∪ {+∞} be a vector valued lower semicon-
tinuous function defined on a compact set X. Then there exists x such that
Φ(x) = −→inf{Φ(x) | x ∈ X}.

Definition 6. Let Φ = (Φi) : X &→ Rn ∪ {+∞} be a vector valued extended
function, v ∈ X and x0 ∈ X be such that Φ(x0) �= +∞. We define the contingent
vector epiderivative of Φ at x0 in the direction v by

Dn
↑Φ(x0) (v) = −−−−→lim inf

h−→0+
v′−→v

(
Φ(x0 + hv′)− Φ(x0)

h

)
and the contingent vector hypoderivative of Φ at x0 in the direction v by

Dn
↓Φ(x0) (v) = −−−−→lim sup

h−→0+
v′−→v

(
Φ(x0 + hv′)− Φ(x0)

h

)
.

Definition 7. Let Φ = (Φi)i∈I : X &→ Rn ∪ {+∞} be a vector valued extended
function, v ∈ X and x0 ∈ X be such that Φ(x0) �= +∞. The vector subdifferential
of Φ at x0 is the set defined by

∂n
−Φ(x0) =

{
(pi)i∈I ∈ Xn|−−−−→lim inf

x−→x0

(
Φi(x)− Φi(x0)− 〈pi, x− x0〉

‖x− x0‖

)
i∈I

� 0
}

and the vector superdifferential of Φ at x0 is the set defined by

∂n
+Φ(x0) =

{
(pi)i∈I ∈ Xn|−−−−→lim sup

x−→x0

(
Φi(x)− Φi(x0)− 〈pi, x− x0〉

‖x− x0‖

)
i∈I

� 0
}

.

Theorem 1. Let Φ : X &→ Rn ∪ {+∞} be a vector valued extended function.
Then

∂n
−Φ(x0) =

{
(pi)i∈I ∈ Xn| ∀v ∈ X Dn

↑Φ(x0) (v) �
(
〈pi, v〉

)
i∈I

}
.
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Proposition 3. Let Φ : X &→ Rn ∪ {+∞} be a vector valued extended function.
Then

∀ x ∈ Dom(Φ), Epi(Dn
↑Φ(x)) = TEpi(Φ)(x, Φ(x)) and

Hypo(Dn
↑Φ(x)) ⊂ THypo(Φ)(x, Φ(x)).

3 Contingent Solutions and Viscosity Solutions of
Vectorial Hamilton-Jacobi Equation

We impose the following assumptions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i) f is continuous and for all R > 0, ∃ cR ∈ L1(0, T ) such that
for almost all t, ∀ u ∈ U, f(t, ·, u) is cR(t) - Lipschitz on BR(0).

ii) ∃ k ∈ L1(0, T ) such that for almost all t ∈ [0, T ],
∀ x ∈ Rd, sup

u∈U
‖f(t, x, u)‖ ≤ k(t)(1 + ‖x‖).

iii) ∀ (t, x) ∈ [0, T ]× R, f(t, x, U) is convex, compact.

(3)

Φ : Rd &→ Rn ∪ {+∞} is vector lower semicontinuous. (4)

where BR(0) denotes the ball of radius R.
With these assumptions the control system (1) may be replaced by the differ-

ential inclusion
x′(t) ∈ F (t, x(t)) almost everywhere

where F (t, x) = {f(t, x, u) | u ∈ U} satisfies the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i) F is continuous and has nonempty convex compact images.

ii) ∃ k ∈ L1(0, T ) such that for almost all t ∈ [0, T ]
∀ x ∈ Rd, supv∈F (t,x) ‖v‖ ≤ k(t)(1 + ‖x‖).

iii) ∀ R > 0, ∃ cR ∈ L1(0, T ) such that for a.e t ∈ [0, T ]
F (t, ·) is cR(t)-Lipschitz on BR(0).

(5)

Proposition 4. Assume (3) and (4), let V be defined by (2). Then V is vec-
tor valued lower semicontinuous with values in Rn ∪ {+∞}. Moreover for any
(t0, x0) ∈ [0, T ]× Rd there exists a control-pair (x, u) solution of (1) such that
V (t0, x0) = Φ(x(T )).

The two following lemmas will be needed in the proof of theorem (2)

Lemma 1. Let V : [0, T ] × Rd &→ Rn ∪ {+∞) be a vector valued extended
lower semicontinuous function. Assume that : (1) F is upper semicontinuous,
(2) F (t, x) is nonempty convex and compact for all (t, x) ∈ Dom(V ), and (3)
for some k ∈ L1(0, T ) and for all (t, x) ∈ Dom(V )

sup
v∈F (t,x)

‖v‖ ≤ k(t)(1 + ‖x‖).
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Then the two following statements are equivalent

i) ∀ (t, x) ∈ Dom(V ) with t < T,
−−−−→inf
v∈F (t,x)

Dn
↑ V (t, x)(1, v) � 0.

ii) For all (t0, x0) ∈ [0, T ]× Rd, there exists x ∈ S[t0,T ](x0) such that,

for all t ∈ [t0, T ] V (t, x(t)) � V (t0, x0).

Lemma 2. Let V : [0, T ]×Rd &→ Rn ∪ {+∞} be a vector valued extended lower
semicontinuous function. If F satisfies (5), then the two statements below are
equivalent

i) ∀ (t, x) ∈ Dom(V ) with t > 0, −−−−→sup
v∈F (t,x)

Dn
↑V (t, x)(−1,−v) � 0.

ii) For all x ∈ S[t0,T ](x0) and all t ∈ [t0, T ], V (t0, x0) � V (t, x(t)).

Theorem 2. Assume (3). Then the vector valued function V defined by (2) is
the unique vector valued lower semicontinuous function from [0, T ] × Rd into
Rn ∪ {+∞} such that V (T, ·) = Φ(·) and for all (t, x) ∈ Dom(V ) the following
holds ⎧⎨⎩

for 0 ≤ t < T
−−−−→inf
v∈F (t,x)

Dn
↑V (t, x)(1, v) � 0.

for 0 < t ≤ T −−−−→sup
v∈F (t,x)

Dn
↑V (t, x)(−1,−v) � 0.

Definition 8. The Hamiltonian associated to problem (1), (2) is the vector val-
ued function H : [0, T ]× Rd × (Rd)n −→ Rn given by

H(t, x, p) = −−→sup
u∈U

(
〈pi, f(t, x, u)〉

)
i∈I

.

Next consider the vectorial Hamilton-Jacobi equation

−∂V

∂t
(t, x) + H

(
t, x,

∂V

∂x
(t, x)

)
= 0, V (T, ·) = Φ(·). (6)

We now extend the notions of viscosity solutions to this vectorial problem but
the notion of subsolution replaced by undersolution. In the vectorial case the
notion of viscosity solution is too strong since a vector extended lower and upper
continuous solution V = (Vi)i∈I would have to be continuous, but when there
exist several optimal trajectories, it is obvious that generally even V2 is not
continuous but it is only lower semicontinuous.

Definition 9. A vector valued extended lower semicontinuous function V :
[0, T ] × Rd &→ Rn ∪ {+∞} is called a vector viscosity supersolution to (6) if
for all t ∈]0, T [ and x ∈ Rd such that (t, x) ∈ Dom(V ) we have

∀(pt, px) ∈ ∂n
−V (t, x), −pt + H(t, x,−px) � 0.

A vector valued extended lower semicontinuous function V : [0, T ]×Rd &→ Rn ∪
{+∞} is called a vector viscosity undersolution to (6) if for all t ∈]0, T [ and
x ∈ Rd such that (t, x) ∈ Dom(V ) we have

∀(pt, px) ∈ ∂n
−V (t, x), −pt + H(t, x,−px) � 0.
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A vector valued extended lower semicontinuous function V : [0, T ]×Rd &→ Rn ∪
{+∞} is called a vector viscosity solution to (6) if it is a vector viscosity super
and under solution.

We now caracterize the solution to a system of Hamilton-Jacobi equations in the
sense of viscosity and contingent solution

Theorem 3. Assume (5) and consider a vector extended lower semicontinuous
function V : [0, T ] × Rd &→ Rn ∪ {+∞}. Then the following statements are
equivalent

i) V is the vector Value function given by (2).

ii)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀(t, x) ∈ [0, T ]× Rd, ∀(pt, px) ∈ ∂n
−V (t, x) − pt + H(t, x,−px) = 0.

∀x ∈ Rd, V (0, x) = −−−−→lim inf
t−→0+
x′−→x

V (t, x′).

∀x ∈ Rd, V (T, x) = −−−−→lim inf
t−→T−
x′−→x

V (t, x′).

iii)

⎧⎪⎨⎪⎩
for 0 ≤ t < T

−−−−→inf
v∈F (t,x)

Dn
↑Φ(t, x)(1, v) � 0.

for 0 < t ≤ T −−−−→sup
v∈F (t,x)

Dn
↑ (Φ)(t, x)(−1,−v) � 0.
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Abstract. An optimal control problem is considered, described by a
second order elliptic partial differential equation, jointly nonlinear in the
state and control variables, with high monotone nonlinearity in the state,
and with control and state constraints. Since no convexity assumptions
are made, the problem may have no classical solutions, and so it is re-
formulated in the relaxed form. The relaxed problem is discretized by a
Galerkin finite element method for state approximation, while the con-
trols are approximated by elementwise constant relaxed ones. The first
result is that relaxed accumulation points of sequences of admissible and
extremal discrete controls are admissible and extremal for the continuous
relaxed problem. We then propose a mixed conditional descent-penalty
method, applied to a fixed discrete relaxed problem, and also a progres-
sively refining version of this method that reduces computing time and
memory. We show that accumulation points of sequences generated by
the fixed discretization (resp. progressively refining) method are admis-
sible and extremal for the discrete (resp. continuous) relaxed problem.
Numerical examples are given. This paper proposes relaxed discretization
and optimization methods instead of the corresponding classical meth-
ods presented in [5]. Considered here problems are with not necessarily
convex control constraint sets, and with state constraints and cost func-
tionals depending also on the state gradient. Also, the results of Sections
1 and 2 generalize those of [8] w.r.t. the assumptions made.

1 The Continuous Optimal Control Problems

Let Ω be a bounded domain in Rd, with Lipschitz boundary Γ . Consider the
nonlinear elliptic state equation
Ay + f(x, y(x), w(x)) = 0 in Ω, y(x) = 0 on Γ ,
where A is the second order elliptic differential operator

Ay := −
d∑

j=1

d∑
i=1

(∂/∂xi)[aij(x)∂y/∂xj ].

The state equation will be interpreted in the following weak form
y ∈ V := H1

0 (Ω) and a(y, v) +
∫

Ω f(x, y(x), w(x))v(x)dx = 0, ∀v ∈ V,

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 300–308, 2008.
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where a(·, ·) is the usual bilinear form on V × V associated with A

a(y, v) :=
d∑

i,j=1

∫
Ω
aij(x)(∂y/∂xi)(∂v/∂xj)dx.

Define the set of classical controls W := {w : Ω → U |w measurable} , where U
is a compact (not necessarily convex) subset of Rν , and the functionals
Gm(w) :=

∫
Ω gm(x, y(x),∇y(x), w(x))dx, m = 0, ..., q.

The continuous classical optimal control problem P is to minimize G0(w) subject
to the constraints w ∈ W , Gm(w) = 0, m = 1, ..., p, Gm(w) � 0, m = p+1, ..., q.

Next, define the set of relaxed controls (or Young measures, see [13,12])
R :={r :Ω→M1(U) | rweakly measurable}⊂L∞

w (Ω,M(U))≡ L1(Ω,C(U))∗,
where M(U) (resp. M1(U)) is the set of Radon (resp. probability) measures
on U . The set R is endowed with the relative weak star topology, and R is
convex, metrizable and compact. If each classical control w(·) is identified with
its associated Dirac relaxed control r(·) := δw(·), then W may also be regarded
as a subset of R, and W is thus dense in R. For a given φ ∈ L1(Ω;C(U)) ≡
B(Ω̄, U ; R), where B(Ω̄, U ; R) denotes the set of Caratheodory functions in the
sense of Warga [13], and r ∈ R, we shall write, for simplicity

φ(x, r(x)) :=
∫

U

φ(x, u)r(x)(du).

The continuous relaxed optimal control Problem P̄ is then defined by replacing
w by r, with the above notation, and W by R in the continuous classical problem.

We suppose that the coefficients aij satisfy the ellipticity condition
d∑

i,j=1

aij(x)zizj � α0

d∑
i=1

z2
i , ∀zi, zj ∈ R, x ∈ Ω,

with α0 > 0, aij ∈ L∞(Ω), and that the functions f, fy (resp gm, gmy, gmy′) are
defined on Ω ×R× U (resp. on Ω ×Rd+1 ×U), measurable for fixed y, u (resp.
y, y′, u), continuous for fixed x, and satisfy
|f(x, y, u)| � c1(1 + |y|ρ−1), 0 � fy(x, y, u) � c2(1 + |y|ρ−2), in Ω × R× U ,
|gm(x, y, y′, u)| � c3(1 + |y|ρ + |y′|2),
|gmy(x, y, y′, u)| � c4(1 + |y|ρ−1 + |y′|

2(ρ−1)
ρ ),

|gmy′(x, y, y′, u)| � c5(1 + |y|
ρ
2 + |y′|), in Ω × Rd+1 × U,

with ci � 0, 2 � ρ < +∞ if d = 1 or 2, 2 � ρ < 2d
d−2 if d � 3.

For every r ∈ R, the state equation has a unique solution y := yr ∈ V (see [2]).
The results of this section can be proved by using the techniques of [8,13].

Theorem 1. If the continuous relaxed problem is feasible, then it has a solution.

Lemma 1. Dropping m in Gm, gm, the directional derivative of G is given by
DG(r, r̄ − r) = lim

α→0+
{[G(r + α(r̄ − r)) −G(r)]/α}

=
∫

Ω H(x, y(x), z(x), r′(x)− r(x))dx, for r, r̄ ∈ R,
where the Hamiltonian H is defined by
H(x, y, y′, z, u) := −z f(x, y, u) + g(x, y, y′, u),
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and the adjoint state z := zr ∈ V (resp. z := zw) satisfies the linear adjoint
equation
a(v, z)+(fy(y, r)z, v)=(gy(y,∇y, r), v)+(gy′(y,∇y, r),∇v), ∀v∈V, with y :=yr.

Theorem 2. (Necessary Conditions for Optimality) If r ∈ R is optimal for
Problem P̄ , then r is extremal, i.e. there exist multipliers λm ∈ R, m = 0, ..., q,

with λ0 � 0, λm � 0, m = p + 1, ..., q,
q∑

m=0
|λm| = 1, such that

q∑
m=0

λmDGm(r, r̄ − r) � 0, ∀r̄ ∈ R,

λmGm(r) = 0, m = p + 1, ..., q (transversality conditions).

The above inequalities are equivalent to the relaxed pointwise minimum principle

H(x, y(x),∇y(x), z(x), r(x)) = min
u∈U

H(x, y(x),∇y(x), z(x), u), a.e. in Ω,

where the complete Hamiltonian H and adjoint z are defined with g :=
q∑

m=0

λmgm.

2 Discretization

We suppose in what follows that Ω is a polyhedron, for simplicity. For each
integer n � 0, let {En

i }N
n

i=1 be an admissible regular partition of Ω̄ into elements
(e.g. d-simplices), with hn = maxi[diam(En

i )] → 0 as n → ∞. Let V n ⊂ V be
the subspace of functions that are continuous on Ω̄ and multilinear (or linear
for d-simplices) on each element En

i . The set of discrete relaxed (resp. classical)
controls Rn ⊂ R (resp. Wn ⊂ W ) is defined as the subset of relaxed (resp.

classical) controls that are equal, on each element
o

En
i , to a constant probability

measure on U (resp. constant value in U). Clearly, Wn ⊂ Rn. We endow Rn

with the weak star topology of M1(U)N . For a given discrete control rn ∈ Rn,
the discrete state yn := yn

rn ∈ V n is the solution of the discrete state equation
a(yn, vn) + (f(yn, rn), vn) = 0, ∀vn ∈ V n.
For every rn ∈ Rn, the discrete state equation (a nonlinear system) has a unique
solution yn ∈ V n (see [9]), and can be solved by iterative methods. The discrete
functionals are defined by
Gn

m(rn) =
∫

Ω gm(x, yn,∇yn, rn)dx, m = 0, ..., q.
The discrete control constraint is rn ∈ Rn and the discrete state constraints are
Gn

m(rn) = εn
m, m = 1, ..., p, and Gn

m(rn) � εn
m, εn

m � 0, m = p + 1, ..., q,
where the feasibility perturbations εn

m are chosen numbers converging to zero, to
be defined later. The discrete relaxed optimal control Problem P̄n is to minimize
Gn

0 (rn) subject to rn ∈ Rn and to the above state constraints. The results of
this section can be proved by using the techniques of [8].

Theorem 3. The operator rn &→ yn, from Rn to V n, and the functionals rn &→
Gn

m(rn) on Rn, are continuous. For every n, if Problem P̄n is feasible, then it
has a solution.
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Lemma 2. Dropping the index m, the directional derivative of Gn is given by
DGn(rn, r̄n − rn) =

∫
Ω
H(x, yn,∇yn, zn, r̄n − rn)dx,

where the discrete adjoint state zn := zn
rn ∈ V n satisfies the discrete adjoint

equation
a(zn, vn) + (znfy(yn, rn), vn) = (gy(yn,∇yn, rn), vn) + (gy′(yn,∇yn, rn),∇vn),
∀vn ∈ V n, with yn := yn

rn.
Moreover, the operator rn &→ zn

rn, from Rn to V n, and the functional (rn, r̄n) &→
DGn(rn, r̄n − rn) on Rn ×Rn, are continuous.

Theorem 4. (Discrete Necessary Conditions for Optimality) If rn ∈ Rn is op-
timal for Problem P̄n, then rn is discrete extremal, i.e. there exist multipliers

λn
m ∈ R, m = 0, ..., q, with λn

0 � 0, λn
m � 0, m = p + 1, ..., q,

q∑
m=0
|λn

m| = 1, such

that
q∑

m=0
λn

mDGn
m(rn, r̄n − rn) =

∫
Ω
Hn(x, yn,∇yn, zn, r̄n − rn)dx � 0, ∀r̄n ∈ Rn,

λn
m[Gm(rn)− εn

m] = 0, m = p + 1, ..., q,

where Hn and zn are defined with g :=
q∑

m=0
λn

mgm. The above inequalities are

equivalent to the discrete relaxed elementwise minimum principle∫
En

i
Hn(x, yn,∇yn, zn, rn)dx = min

u∈U

∫
En

i
Hn(x, yn,∇yn, zn, u)dx, i = 1, ..., Nn.

Proposition 1. For every r ∈ R, there exists a sequence (wn ∈ Wn ⊂ Rn) of
discrete classical controls, regarded as relaxed ones, that converges to r in R.

Lemma 3. (Consistency) (i) If the sequence (rn ∈ Rn) converges to r ∈ R in
R, then yn → yr in V strongly, Gn(rn)→ G(r), and zn → zr in Lρ(Ω) strongly
(and in V strongly, if the functionals do not depend on ∇y).
(ii) If the sequences (rn ∈ Rn), (r̄n ∈ Rn) converge to r, r̄ in R, then
DGn(rn, r̄n − rn)→ DG(r, r̄ − r).

We suppose in what follows that Problem P̄ is feasible. We now examine the
behavior in the limit of extremal discrete controls. We shall construct sequences
of perturbations (εn

m) that converge to zero and such that the discrete problem
P̄n is feasible for every n. Let r′n ∈ Rn be any solution of the following auxiliary
minimization problem without state constraints

cn := min
rn∈Rn

{
p∑

m=1
[Gn

m(rn)]2 +
q∑

m=p+1
[max(0, Gn

m(rn))]2},

and set εn
m := Gn

m(r′n), m = 1, ..., p, εn
m := max(0, Gn

m(r′n)), m = p+ 1, ..., q. It
can be easily shown that cn → 0, hence εn

m → 0. Then clearly P̄n is feasible for
every n, for these εn

m. We suppose in what follows that the εn
m are chosen as in

the above minimum feasibility procedure.

Theorem 5. For each n, let rn be admissible and extremal for Problem P̄n.
Then every accumulation point of the sequence (rn) is admissible and extremal
for Problem P̄ .
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3 Discrete Relaxed Descent-Penalty Methods

Let (M l
m), m = 1, ..., q, be positive increasing sequences such that M l

m →∞ as
l→∞, and define the penalized discrete functionals

Gnl(rn) := Gn
0 (rn) + {

p∑
m=1

M l
m[Gn

m(rn)]2 +
q∑

m=p+1
M l

m[max(0, Gn
m(rn))]2}/2.

Let b, c ∈ (0, 1), and let (βl), (ζk) be positive sequences, with (βl) decreasing
and converging to zero, and ζk � 1. The algorithm described below contains two
options. In the case of the progressively refining version, we suppose in addition
that each element En+1

i′ is a subset of some En
i , in which case Wn ⊂Wn+1.

Algorithm

Step 1. Set k := 0, l := 1, choose a value of n and an initial control rn1
0 ∈ Rn.

Step 2. Find r̄nl
k ∈ Rn such that

dk := DGnl(rnl
k , r̄nl

k − rnl
k ) = min

r′n∈Rn
DGnl(rnl

k , r′n − rnl
k ).

Step 3. If |dk| > βl, go to Step 4. Else, set rnl := rnl
k , r̄nl := r̄nl

k , dl := dk, then:
In Version A: Set rn,l+1

k := rnl
k . In Version B: Set rn+1,l+1

k := rnl
k , n := n + 1.

In both versions, set l := l + 1 and go to Step 2.

Step 4. (Modified Armijo Step Search) Find the lowest integer value s ∈ Z, say
s̄, such that α(s) = csζk ∈ (0, 1] and α(s) satisfies the inequality
Gnl(rnl

k + α(s)(r̄nl
k − rnl

k ))−Gnl(rnl
k ) � α(s)bdk,

and then set αk := α(s̄).

Step 5. Choose any rnl
k+1 ∈ Rn such that

Gnl(rnl
k+1) � Gnl(rnl

k + αk(r̄nl
k − rnl

k )),
set k := k + 1, and go to Step 2.

This Algorithm contains two versions:
Version A: n is a constant integer chosen in Step 1, i.e. a fixed discretization
is chosen, and the Gn

m, m = 1, ..., q, are replaced by the perturbed ones G̃n
m =

Gn
m − εn

m.
Version B: This is a progressively refining method, i.e. n → ∞, in which case
we can take n = 1 in Step 1, hence n = l in the Algorithm. This version has
the advantage of reducing computing time and memory, and also of avoiding
the computation of minimum feasibility perturbations εn

m (see Section 2). It is
justified by the fact that finer discretizations become progressively more essential
as the iterate gets closer to an extremal control.

One can easily see that a classical control r̄nl
k in Step 2 can be found for every

k by minimizing w.r.t. u ∈ U the integral
∫

En
i
H(x, yn,∇yn, zn, u)dx on the ele-

ment En
i (practically by using some numerical integration rule), independently

for each i = 1, ...,M . On the other hand, by the definition of the directional
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derivative and since b, c ∈ (0, 1) and dk �= 0, the Armijo step αk in Step 4 can
be found for every k.

With rnl defined in Step 3, define the sequences of multipliers
λnl

m = M l
mGn

m(rnl), m = 1, ..., p, λnl
m = M l

m max(0, Gn
m(rnl)), m = p + 1, ..., q.

Theorem 6. i) In Version B, let (rnl) be a subsequence of the sequence gener-
ated by the Algorithm in Step 3 that converges to some r ∈ R, as l→∞ (hence
n → ∞). If the sequences of multipliers (λnl

m) are bounded, then r is admissible
and extremal for Problem P̄ .
(ii) In Version A, let (rnl), n fixed, be a subsequence of the sequence gener-
ated by the Algorithm in Step 3 that converges to some rn ∈ Rn as l → ∞. If
the sequences (λnl

m) are bounded, then rn is admissible and discrete extremal for
Problem P̄n.

Proof. It can first be shown by contradiction, similarly to Theorem 5.1 in [7],
that l → ∞ in the Algorithm, hence dl → 0, el → 0, in Step 3, and n → ∞ in
Version B.
(i) Let (rnl) be a subsequence (same notation) of the sequence generated by the
Algorithm in Step 3 that converges to some r ∈ R as l, n → ∞. Suppose that
the sequences (λnl

m) are bounded and (up to subsequences) that λnl
m → λm. By

Lemma 3, we have
0 = lim

l→∞
λnl

m

Ml
m

= lim
l→∞

Gn
m(rnl) = Gm(r), m = 1, ..., p,

0 = lim
l→∞

λnl
m

Ml
m

= lim
l→∞

[max(0, Gn
m(rnl))] = max(0, Gm(r)), m = p + 1, ..., q,

which show that r is admissible. Now let any r̃ ∈ R and, by Proposition 1, let
(r̃n ∈ Rn) be a sequence of discrete controls that converges to r̃. By Step 2, we
have

q∑
m=0

λnl
mDGn

m(rnl, r̃n − rnl) � dl,

where λnl
0 := 1. Since

∣∣dl
∣∣ � βl by Step 3, we have dl → 0. By Lemma 3, we

can pass to the limit as l, n → ∞ in the above inequality and obtain the first
optimality condition

q∑
m=0

λmDGm(r, r̃ − r) � 0, ∀r̃ ∈ R.

By construction of the λnl
m , we clearly have λ0 = 1, λm � 0, m = p + 1, ..., q,

q∑
m=0
|λm| := c � 1, and we can suppose that

q∑
m=0
|λm| = 1, by dividing the above

inequality by c. On the other hand, if Gm(r) < 0, for some index m ∈ [p + 1, q],
then for sufficiently large l we have Gnl

m(rnl) < 0 and λl
m = 0, hence λm = 0, i.e.

the transversality conditions hold. Therefore, r is also extremal.
(ii) The admissibility of the limit control rn is proved as in (i). Passing here to
the limit in the inequality resulting from Step 2, as l→∞, for n fixed, and using
Theorem 3 and Lemma 2, we obtain, similarly to (i)

q∑
m=0

λmDG̃n
m(rn, r̃n − rn) =

q∑
m=0

λmDGn
m(rn, r̃n − rn) � 0, ∀r′n ∈ Rn,

and the discrete transversality conditions
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λn
mG̃n

m(rn) = λn
m[Gn

m(rn)− εn
m] = 0, m = p + 1, ..., q,

with multipliers λn
m as in the discrete optimality conditions.

The Algorithm can be practically implemented as follows. Suppose that the
integrals involving f and gm, m = 0, ..., q, are calculated with sufficient accuracy
by some numerical integration rule, involving (usually a small number) µ nodes
xn

ji, j = 1, ..., µ, on each element En
i , of the form∫

En
i
φ(x)dx ≈ meas(En

i )
µ∑

j=1

Cjφ(xn
ji).

We first choose the initial discrete control in Step 1 to be of Gamkrelidze type,
i.e. equal on each En

i to a convex combination of (µ+ q + 1)+ 1 Dirac measures
on U concentrated at (µ + q + 1) + 1 points of U . Suppose, by induction, that
the control rnl

k computed in the Algorithm is of Gamkrelidze type. Since the
control r̄nl

k in Step 2 is chosen to be classical (see above), i.e. elementwise Dirac,
the resulting control r̃nl

k := (1 − αk)rnl
k + αk r̄

nl
k in Step 5 is elementwise equal

to a convex combination of (µ + q + 1) + 2 Dirac measures. Using now a known
property of convex hulls of finite vector sets, we can construct a Gamkrelidze
control rnl

k+1 equivalent to r̃nl
k , i.e. such that the following µ + q + 1 equalities

(equality in Rµ+q+1) hold for each i = 1, ...,M
f(xn

ji, ỹ
nl(xn

ji), r
nl
k+1,i) = f(xn

ji, ỹ
nl(xn

ji), r̃
nl
ki), j = 1, ..., µ,

meas(En
i )

µ∑
j=1

Cjgm(xn
ji, ỹ

nl(xn
ji),∇ỹnl(xn

ji), r
nl
k+1,i)

= meas(En
i )

µ∑
j=1

Cjgm(xn
ji, ỹ

nl(xn
ji),∇ỹnl(xn

ji), r̃
nl
ki), m = 0, ..., q,

where ỹnl corresponds to r̃nl
k , by selecting only (µ + q + 1) + 1 appropriate

points in U among the (µ + q + 1) + 2 ones defining r̃nl
k , for each i. Then the

control rnl
k+1 clearly yields the same discrete state and functionals as r̃nl

k . There-
fore, the constructed control rnl

k is of Gamkrelidze type for every k. Finally,
discrete Gamkrelidze controls computed as above can then be approximated by
piecewise constant classical controls using a standard procedure (see [6]), by
subdividing here the elements in appropriate subsets (e.g. subelements) whose
measures are proportional to the Gamkrelidze coefficients. For various approxi-
mation and optimization methods applied to relaxed optimal control problems,
see [1,3,4,6,7,8,10,11,14] and the references therein.

4 Numerical Examples

Example 1. Let Ω = (0, 1)2. Define the reference classical control and state
w̄(x) := min(1,−1 + 1.5(x1 + x2)), ȳ(x) := 8x1x2(1− x1)(1− x2),
and consider the optimal control problem with state equation
−∆y + y3/3 + (2 + w− w̄)y − ȳ3/3− 2ȳ− 16[x1(1− x1) + x2(1− x2)] = 0 in Ω,
y(x) = 0 on Γ ,
nonconvex control constraint set U := {−1} ∪ [0, 1], and nonconvex cost
G0(w) :=

∫
Ω
{0.5 [(y− ȳ)2 + |∇y −∇ȳ|2]− w2 + 1}dx.

One can easily verify that the unique optimal relaxed control r is given by
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r(x){1} = [w̄(x) − (−1)]/2 =
{

1, if − 1 + 1.5(x1 + x2) � 1
< 1, if − 1 + 1.5(x1 + x2) < 1

r(x){−1} = 1− r(x){1},
for x ∈ Ω, with optimal state ȳ and cost 0. Note also that the optimal cost value
0 can be approximated as closely as desired by using a classical control, as W is
dense in R, but cannot be attained for such a control because the control values
u ∈ (−1, 0) of w̄ do not belong to U . The Algorithm, without penalties, was
applied to this problem using triangular elements (half-squares of fixed edge size
h = 1/80), the second order three edge-midpoints rule for numerical integration,
and with Armijo parameters b=c=0.5. After 90 iterations in k, we obtained the
following results:
Gn

0 (rn
k ) = 2.966 · 10−4, dk = −6.733 · 10−7, εk = 3.331 · 10−4,

where εk is the discrete max state error at the vertices of the triangles.

Example 2. Introducing here the state constraint
G1(u) :=

∫
Ω (y − 0.22)dx = 0,

in Example 1 and applying the penalized Algorithm, we obtained, after 210
iterations in k, the results:
Gn

0 (rnl
k )=3.736895449878 · 10−4, Gn

1 (rnl
k )=1.102 · 10−6, dk =−4.361 · 10−6.

The progressively refining version of the algorithm was also applied to the above
problems, with successive step sizes h = 1/20, 1/40, 1/80, in three equal itera-
tion periods, and yielded results of similar accuracy, but required here less than
half the computing time.

Finally, we remark that the relaxed methods proposed here usually exhibit
slower convergence than the classical methods presented in [5], where a gradient
projection method was used, but have the advantage of being applicable to
problems with non-convex control constraint sets.
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Abstract. We investigate discrete approximation of the solution set
of an impulsive differential inclusions with not fixed time of impulses
(jumps) in finite dimensional Euclidean space. The right-hand side is
assumed to be almost upper semi continuous and one sided Lipschitz.
The fact that the impulsive times are not fixed posses problems and in
the paper we study several variants of the Euler method in case of au-
tonomous and not autonomous systems. The accuracy (in appropriate
metric) of all considered variants is O(

√
h). The results can be applied

to impulsive optimal control problems.

1 Preliminaries

We study discrete approximations of the following impulsive differential inclusion:

ẋ(t) ∈ F (t, x(t)), x(0) = x0 a.e. t ∈ I = [0, 1], t �= τi(x(t)),
∆x|t=τi(x) = Si(x), i = 1, . . . , p, (1)

where F : I × Rn ⇒ Rn is a multifunction with nonempty compact and convex
values. Here Si : Rn → Rn are impulse functions and τi : Rn → R are functions
which determine the times of impulses. The piecewise continuous function x(·)
is said to be solution of (1) if:

1) it is absolutely continuous on (τi(x), τi+1(x)) (i = 1, . . . , p) and satisfies (1)
for almost all t ∈ I,

2) it has (possible) jumps on t = τi(x(t)) (x(t) is the value of the solution
before the jump), defined by: ∆x|t=τi(x(t)) = x(t + 0)− x(t) = Si(x(t)).

We refer to [1,2,9,13,14] for the theory of impulsive systems.
There are also a lot of papers devoted to approximation of the solution and

of the reachable set of systems without impulses. We mention only [6,8], survey
papers [7,10] and the references therein. This paper is one of the first (to our
knowledge), where numerical approximations of the solution set of differential
inclusions with non-fixed time of impulses is studied, although approximation
of the solution set has been studied (see [11], where measure-driven systems are
considered and the references therein).

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 309–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper is a natural continuation of [4] (in case of finite dimensional state
space).

The multifunction G : Rn ⇒ Rn with nonempty compact values is said to be
upper semi continuous (USC) at x0 when for every ε > 0 there exists δ > 0 such
that F (x0+δB) ⊂ F (x0)+εB, where B is the closed unit ball. The multifunction
F : I × Rn ⇒ Rn is said to be almost USC when for every ε > 0 there exists a
compact Iε ⊂ I with meas (I \ Iε) < ε) such that F (·, ·) is USC on Iε ×Rn. For
the compact set A we let σ(l, A) = max

a∈A
〈l, a〉 – the support function.

Standing hypotheses
We suppose that F (·, ·) is almost USC with nonempty convex and compact values
and moreover:

A1. τi(·) are Lipschitz with a constant N and moreover, τi(x) ≥ τi(x+Si(x)).

A2. τi(x) < τi+1(x) for every x ∈ Rn.

A3. There exists a constant C such that ‖F (t, x)‖ ≤ C for every x ∈ Rn a.e.
t ∈ I and NC < 1.

A4. The functions Si : Rn → Rn are Lipschitz with constant µ such that
Cµ < 1.

Notice that without loss of generality one can assume that µ = N .
We refer to [3] for every concepts used here but not explicitly defined.
Given ε > 0 we study:

ẋ(t) ∈ F (t, x(t) + εB), x(0) = x0 a.e. t ∈ I = [0, 1], t �= τi(x(t)),
∆x|t=τi(x(t)) = Si(x), i = 1, . . . , p. (2)

Lemma 1. Given ε > 0. Under A1 – A3 every solution of (2) intersects every
surface t = τi(x(t)) at most once.

The proof is contained in [4] (where follows essentially [12]).

Corollary 1. Under the conditions of Lemma 1 there exists a constant λ >
0 such that for every solution y(·) of (1) τi+1(y(t)) − τi(y(t)) ≥ λ for i =
1, 2, . . . , p− 1.

Proof. Suppose the contrary. Let there exist a sequence {yk(·)}∞k=1 such that

min
i

(
τi+1(yk(t))− τi(yk(t))

)
→ 0 as k →∞. (3)

Denote by τk
i the i–th impulse of yk(·). Passing to subsequences if necessary

we may assume that lim
k→∞

τk
i = τi. Since yk(·) are C Lipschitz on every [τk

i , τk
i+1]

there exists a subsequence converging to a solution y(·) of (1) with impulsive
points τi for i = 1, 2, . . . , p. Due to (3) either τi(x(τi)+Si(x(τi)) = τi+1 for some
i – contradiction to A1, or τi = τi+1 – contradiction to A2.
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The following theorem is proved in [4] in more general form:

Theorem 1. Under the standing hypotheses the problem (1) has a nonempty
solution set and every solution exists on the whole interval I.

Further we assume that

σ(x − y, F (t, x))− σ(x− y, F (t, y)) ≤ L|x− y|2

for every x, y ∈ Rn, which is called one sided Lipschitz (OSL) condition.
When the right-hand side is OSL the approximation of the solution set (in

C(I,Rn)) in case without impulses is studied in [5].

Let ∆k =
{
tj =

j

k

}
, j = 0, 1, . . . , k be a uniform grid of Jυ := [0, 1 + υ]. To

(1) we juxtapose the following discrete system:
For j = 0, 1, . . . , k − 1 we let xk

j = lim
t↑tj

xk(t) and for t ∈ [tj , tj+1):

ẋk(t) ∈ F (t, xk
j ), xk(tj) = xk

j . (4)

If ∃ t ∈ [tj , tj+1), with t = τi(x(t)), then we consider on [ti+1, 1] the problem
(1) with initial condition xk

j+1 = xk(tj+1) + Si(x). And for it we juxtapose the
discrete system (4). Of course xk(0) = x0.

2 Approximation of the Solution Set

First we study C(I,Rn) approximation of the solution set of (1) with discrete
trajectories (the solution set of (4)).

We will use the following known lemma (Lemma 2 of [12]).

Lemma 2. Let a1, a2, b, d ≥ 0 and let δ+
0 = δ−0 = δ0. If for i = 1, 2, . . . , p

δ+
i ≤ a1δ

−
i + d, δ−i ≤ a2δ

+
i−1 + b

then δ−i ≤ (ad + b)
i−1∑
j=0

(a1a2)j + δ0a1a2, where δ+
0 ≥ 0.

Theorem 2. (Lemma of Filippov–Plis) Under the standing hypotheses and
OSL condition there exists a constant C such that if ε > 0 is sufficiently small,
then for any solution x(·) of (2) there exists a solution y(·) of (1) with |x(t) −

y(t)| ≤ C
√
ε on I \

p⋃
i=1

[τ−i , τ+
i ], τ+

i < τ−i+1 and
p∑

i=1

(τ+
i − τ−i ) ≤ C

√
ε. Here

τ−i = min{τi(x(·)), τi(y(·))}, τ+
i = max{τi(x(·)), τi(y(·))}.

Proof. Let y(·) be a solution of (2). It is easy to see that ẏ(t) ∈ F (t, ȳ(t)), where
|y(t)− ȳ(t)| < ε. We are looking for a solution x(·) of (1), satisfying the condition
of the theorem. First we assume that x(·) and y(·) intersect the impulse surfaces
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successively, i.e. x(·) do not intersect the i+ 1-th surface before y(·) to intersect
i-th and vice versa. Let L > 0. On the interval [0, τ−1 ) define

Γ (t, z) :=
{
u ∈ F (t, x) : 〈ȳ(t)− x, ẏ(t)− u〉 ≤ L (|y(t)− x|+ ε)2

}
.

It is easy to see that Γ (·, ·) is almost USC with nonempty convex and compact
values. Let x(·) be a solution of:

ẋ(t) ∈ Γ (t, x(t)), x(0) = y(0). (5)

One has that:
1
2

d

dt
|x(t) − y(t)| ≤ L (|x(t) − y(t)|+ ε)2 .

Thus
d

dt
|x(t) − y(t)| ≤ 4L

(
|x(t)− y(t)|+ ε2

)2
. If a2 =

√
max
t∈I

e4Lt

∫ t

0

e−4Lτ dτ

then |x(t)− y(t)| ≤ a2

√
ε2 + 2Cε

It is easy to see that |x(t) − y(t)| ≤
√

2Cε when L ≤ 0.
We let b := max{a1

√
ε2 + 2Cε,

√
2Cε} and derive

δ−1 = |y(τ−1 )− x(τ−1 )| ≤ a2δ
+
0 + b.

When τ1(x(t)) > τ1(y(t)) the proof is similar.
One can prove also that for every interval [τ+

i , τ−i+1]

δ−i+1 = |y(τ−i+1)− x(τ−i+1)| ≤ a2δ
+
i + b.

We need an estimate for δ+
i . If τ1(x(t)) < τ1(y(t)) we have:

|x(τ−1 )− y(τ+
1 )| ≤ |x(τ−1 )− y(τ−1 )|+ |y(τ−1 )− y(τ+

1 )| ≤ δ−1 + C|τ−1 − τ+
1 |.

Furthermore |τ−1 − τ+
1 | = |τ(x(τ−1 ))− τ(y(τ+

1 ))| ≤ N |x(τ−1 )− y(τ+
1 )| ≤ N [δ−1 +

C(τ+
1 − τ−1 )]. Therefore |τ−1 − τ+

1 | ≤
Nδ−1

1− CN
. Obviously

δ+
1 = |x(τ+

1 )− y(τ+
1 + 0)| ≤ |x(τ−1 )− y(τ−1 )|+

∫ τ+
i

τ−
i

|ẋ(t)− ẏ(t)| dt +

|I1(x(τ−i ))− I1(y(τ+
i ))| ≤ δ−1 + 2C(τ+

1 − τ−1 )
+N |x(τ−1 )− y(τ+

1 )| ≤ δ−1 + 2C(τ+
1 − τ−1 ) +

N [δ−1 + C(τ+
1 − τ−1 )] ≤ (1 + N)δ−1 +

N(2 + N)C
1− CN

δ−1 =
1 + N + CN

1− CN
δ−1 .

Denote a1 :=
1 + N + NC

1−NC
. One can prove by induction that

δ+
i ≤ a1δ

−
i , δ−i+1 ≤ a2δ

+
i + b, |τ−i − τ+

i | ≤
Nδ−i

1− CN
. (6)
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Therefore δ−l ≤
N

1− CN
a2

√
Cε

l∑
i=1

(1+N +CN)i−1(p+1− l). Thus there exists

a constant K > 0 such that |x(t)− y(t)| ≤ K
√
ε on I \

p⋃
i=1

[τ−i , τ+
i ]. Furthermore

p∑
i=1

(τ+
i − τ−i ) ≤

p∑
i=1

Nδ−1
1− CN

and hence
p∑

i=1

(τ+
i − τ−i ) ≤ K

√
ε.

Due to A1, A2 there exists a constant λ > 0 such that τ−i+1− τ−i ≥ λ, thanks
to Corollary 1. It follows from (6) that τ+

i − τ−i < δ for sufficiently small ε > 0.

Now we study the discrete approximations. First we prove a lemma for approx-
imation of the solutions of (1) with the solutions of:

ẋk(t) ∈ F (t, xk
j ), xk

j+1 = lim
t↑tj+1

x(t).

If τi(x(t)) ∈ [tj , tj+1), then xk(τi(x) + 0) = xk(τi(x)− 0) + Si(x). (7)

Recall that we use the same partition ∆k as in (4).

Lemma 3. Let ε > 0 be fixed. Then for k big enough for every solution y(·) of

(1) there exists a solution x(·) of (4) such that |x(t)−y(t)| ≤ ε on I \
p⋃

i=1

[τ−i , τ+
i ],

τ+
i < τ−i+1 and

p∑
i=1

(τ+
i − τ−i ) ≤ ε. Here τ−i < τ+

i are the i-th impulses of x(·)

and y(·). Furthermore one can choose k such that ε = O

(√
1
k

)

Proof. We define xk(·) successive on the intervals [tki , t
k
i+1]. Let xk

i = xk(ti).
Define the multifunction:

Gi(t, z) := {u ∈ F (t, xk
i ) : 〈y(t)− xk

i , ẏ(t)− u〉 ≤ L|y(t)− xk
i |2}. (8)

It is easy to see that Gi(·, ·) is almost USC with nonempty convex and compact
values. Thus there exists a solution z(·) of

ż(t) ∈ Gi(t, z(t)), z(ti) = xk
i . (9)

If τi(z(t)) �= t for every t ∈ [tki , t
k
i+1] and every i we let xk(t) := z(t) on [tki , t

k
i+1].

If τl(z(t∗)) = t∗ ∈ [tki , t
k
i+1) then we let xk(t) = z(t) on [tki , t

∗) and xk(t∗ + 0) =
xk(t∗) + Sl(xk(t∗)). Now we define

Gi(t, z) := {u ∈ F (t, xk(τl)) : 〈y(t)−xk(τl), ẏ(t)−u〉 ≤ L|y(t)−xk(τl)|2}. (10)

We let x(t) = z(t) on [τl, t
k
i+1], where z(·) is a solution of (9) with xk

i replaced
by xk(τl). One can define xk(·) on the whole interval I.
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As in the proof of Theorem 2 we assume first that xk(·) and y(·) intersect the
impulse surfaces successively. For t ∈ [τ+

i , τ−i+1] we have

〈y(t)− xk(t), ẏ(t)− ẋk(t)〉 ≤ L|y(t)− xk(t)|2 +
4C2|L|

k
. (11)

Denote a2 =

√
max 4C2|L|e2Lt

∫ t

0

e−τdτ . If b = max

{
a2

√
1
k
,

√
2C
k

}
then

δ−i+1 = |y(t−i+1) − x(t−i+1)| ≤ a2δ
+
i + b. Using similar fashion as in the proof

of Theorem 2 we can show that δ+
1 ≤

1 + N + NC

1−NC
δ−1 . If a1 :=

1 + N + NC

1−NC
,

then it is easy to show by induction that:

δ+
i ≤ a1δ

−
i , δ−i+1 ≤ a2δ

+
i + b, |τ−i − τ+

i | ≤
Nδ−i

1−NC
.

Due to Lemma 2 for sufficiently large k there exists a constant M > 0 (not
depending on k) such that for every solution y(·) of (1) (obtained after (8)–(10))
there exists an approximate solution xk(·) such that:

|y(t)− xk(t)| ≤ M√
k

on I \
(

p⋃
i=1

[τ−i , τ+
i ]

)

and
p∑

i=1

(τ+
i − τ−i ) ≤ M√

k
.

It remains to show that for every xk(·) obtained after (8)–(10) there exists a

solution zk(·) of (7) such that |xk(t)− zk(t)| ≤ O

(√
1
k

)
on I \

p⋃
i=1

[τ−i , τ+
i ] and

p∑
i=1

(τ+
i − τ−i ) ≤ O

(√
1
k

)
.

Obviously for sufficiently large k every approximate solution xk(·) has no more
than 1 impulse on [ti, ti+1) for i = 0, 1, . . . , k − 1.

On every [ti, ti+1) we define the multifunction:

G(t, z) := {u ∈ F (t, zk
i ) : 〈xk(t)− zk(ti), ẋk(t)− u〉 ≤ L|xk(t)− zk(ti)|2},

where zk
0 = x0 and zk

i := lim
t↑ti

zk(t). Furthermore zk(·) is a solution on [ti, ti+1]

of
ż(t) ∈ G(t, z(t)), z(ti) = zk

i ,

for i = 0, 1, . . . , k − 1. We have to show that |xk(t) − zk(t)| ≤ O

(√
1
k

)
on

I \
p⋃

i=1

[τ−i , τ+
i ] and

p∑
i=1

(τ+
i − τ−i ) ≤ O

(√
1
k

)
.
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If xk(·) is without impulses on [ti, ti+1], then

〈xk(t)− zk(t), ẋk(t)− żk(t)〉 ≤ L|xk(t)− zk(t)|2 +
4C
k

. (12)

Let τ−i , τ+
i , δ−i and δ+

i be the above. It is easy to show by induction that

δ−i+1 ≤ a2δ
+
i + b. Also |τ−i − τ+

i | ≤
Nδ−i

1−NC
+

1
k

and δ+
i ≤ a1δ

−
i +

2C
k

. The proof

is completed thanks to Lemma 2.

Using the same fashion as in the proof of Lemma 3 as a corollary of Theorem 2
one can proof:

Theorem 3. Under the conditions of Theorem 2 we have (for k big enough):
1) For every solution x(·) of (1) there exists a solution y(·) of (4) such that

|x(t)− y(t)| ≤ O

(√
1
k

)
, ∀t ∈ I \

p⋃
i=1

[τ−i , τ+
i ],

p∑
i=1

(τ+
i − τ−i ) ≤ O

(√
1
k

)
(13)

2) For every solution y(·) of (4) there exists a solution x(·) of (1) such that
(13) holds.

In the both cases τ+
i < τ−i+1.

Consider now the autonomous variant of (1),i.e.

ẋ(t) ∈ F (x(t)), x(0) = x0 a.e. t ∈ I = [0, 1], t �= τi(x(t)),
∆x|t=τi(x) = Si(x), τi(x) ≤ τi+1(x), i = 1, . . . , p, (14)

where F : Rn ⇒ Rn.
The corresponding to (4) system has the form:

ẋk(t) = vj ∈ F (xk
j ), xk(t) = xk

j + vj(t− tj). (15)

If ∃ t ∈ [tj , tj+1), with t = τi(x(t)), then we consider on [τi+1, 1] the problem
(1) with initial condition xk

j+1 = xk(tj+1) + Si(x). And for it we juxtapose the
discrete system (15). Of course xk(0) = x0 (xk

j is defined before (4)).
The following theorem is a corollary of Theorem 3:

Theorem 4. If all the conditions of Theorem 2, then for k big enough we have:
1) For every solution x(·) of (14) there exists a solution y(·) of (15) such that

|x(t)− y(t)| ≤ O

(√
1
k

)
, t ∈ I \

p⋃
i=1

[τ−i , τ+
i ],

p∑
i=1

(τ+
i − τ−i ) ≤ O

(√
1
k

)
(16)

2) For every solution y(·) of (15) there exists a solution x(·) of (14) such that
(16) holds.

In the both cases τ+
i < τ−i+1.
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Abstract. Optimal bang-bang controls appear in problems where the
system dynamics linearly depends on the control input. The principal
control structure as well as switching points localization are essential
solution characteristics. Under rather strong optimality and regularity
conditions, for so-called simple switches of (only) one control component,
the switching points had been shown being differentiable w.r.t. problem
parameters. In case that multiple (or: simultaneous) switches occur, the
differentiability is lost but Lipschitz continuous behavior can be observed
e.g. for double switches. The proof of local structural stability is based
on parametrizations of broken extremals via certain backward shooting
approach. In a second step, the Lipschitz property is derived by means
of nonsmooth Implicit Function Theorems.

1 Introduction

In the paper, we consider ODE driven optimal control problems with system
dynamics depending linearly on the control input. In case when the control is
vector-valued and underlying bound constraints, extremals are often of bang-
bang type. The structure of the control functions and, particularly, switching
points localization are essential solution characteristics.

In recent years, substantial results on second-order optimality conditions have
been obtained [1,9,10,11,12]. Important early results are given in [14,13]. The so-
lution stability under parameter perturbation was investigated e.g. in [7,3,5].
Optimality and stability conditions therein include: (i) bang-bang regularity
assumptions (finite number of switches, excluding e.g. endpoints), (ii) strict
bang-bang properties (nonvanishing time derivatives of switching functions at
switching points e.g.), (iii) assumption of simple switches (switch of no more
than one control component at each time), (iv) appropriate second-order condi-
tions (positive definiteness of related quadratic forms e.g.).

Stability properties for the switching points localization had been obtained
from the so-called deduced finite-dimensional problem ([7,5]) using standard
sensitivity results from nonlinear programming, or from a shooting type ap-
proach applied to first-order conditions from Pontryagin’s maximum principle
(e.g. [3,6]). In particular, the results cover differentiability of switching points
w.r.t. parameters under conditions (i), (ii) for linear state systems ẋ = Ax+Bu,

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 317–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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cf. [3], and differentiable behavior and local uniqueness of structure for semi-
linear systems ẋ = f(x) + Bu under (i), (ii), (iv), cf. [6]. In the given paper,
Lipschitz behavior (and possible lack of differentiability) will be proved for sys-
tems ẋ = f(x) + g(x)u with simultaneous switch of two control components.

Notations. Let Rn be the Euclidean vector space with norm | · |, and scalar
product written as (a, b) = aT b. Superscript T is generally used for transposi-
tion of matrices resp. vectors. The Lebesgue space of order p of vector-valued
functions on [0, 1] is denoted by Lp(0, 1;Rk). W l

p(0, 1;Rk) is the related Sobolev
space, and norms are given as ‖ · ‖p and ‖ · ‖l,p, (1 ≤ p ≤ ∞, l ≥ 1), resp. In
several places, Lie brackets [g, f ] = ∇xg f − ∇xf g occur. The symbol ∇x de-
notes (partial) gradients whereas ∂x is used for (partial) generalized derivative
in sense of Clarke. By convM resp. clM the convex hull and closure of a set
M are determined. For characterizing discontinuities, jump terms are given as
[v]s = v(ts + 0)− v(ts − 0) e.g. The index s will become clear from the context.

2 Bang-Bang Extremals and Generalized Shooting
System

Consider the following optimal control problem where the control function enters
the state equation linearly, and pointwise control bounds are assumed:

(Ph) min Jh(x, u) = k(x(1), h)
s.t. ẋ(t) = f(x(t), h) + g(x(t), h)u(t) a.e. in [0, 1], (1)

x(0) = a(h), (2)
|ui(t)| ≤ 1, i = 1, . . . ,m, a.e. in [0, 1] . (3)

The parameter h is assumed to be real-valued and chosen close to h0 = 0.
Further, all data functions are supposed to be sufficiently smooth w.r.t. their
respective variables. In particular, we assume that f , g and k are twice contin-
uously differentiable w.r.t. x and, together with their derivatives, are Lipschitz
continuous functions of (x, h).

The state-control pair (x, u) ∈ W 1
∞(0, 1;Rn) × L∞(0, 1;Rm) is called admis-

sible for (Ph) if the state equation (1) together with the initial condition (2) and
the control constraints (3) hold with parameter h.
The admissible pair (x, u) is an extremal for (Ph), if first-order necessary opti-
mality conditions from Pontryagin’s Maximum Principle (PMP) hold. It includes
the adjoint system

ṗ(t) = −A(x(t), u(t), h)T p(t) , p(1) = ∇xk(x(1), h) (4)

with A(x, u, h) = ∇x (f(x, h) + g(x, h)u), and the maximum condition

u(t) ∈ arg max
|vi|≤1

{−p(t)T g(x(t), h) v }.

Using the subdifferential notation and defining

Sign y = ∂ | y | =
{

sign y if y �= 0
[−1,+1] for y = 0 , y ∈ R,
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one may equivalently write

uj(t) ∈ −Sign (p(t)Tgj(x(t), h)), j = 1, . . . ,m. (5)

With these notations, extremals for problem (Ph) can be characterized e.g. as
solutions of the following backward shooting system:

ẋ(t) = f(x(t), h) + g(x(t), h)u, x(1) = z,
ṗ(t) = −A(x(t), u(t), h)T p(t), p(1) = ∇xk(z),
σ(t) = g(x(t), h)T p(t), u(t) ∈−Sign σ(t).

(6)

For given parameter value h and terminal state guess z ∈ Rn, a solution of
the generalized differential-algebraic system (6) will consist of the functions x =
x(t, z, h), u = u(t, z, h) and p = p(t, z, h). The pair (x, u) herein is a stationary
solution for (Ph) if the boundary condition (2) holds:

T (z, h) = x(0, z, h) − a(h) = 0 . (7)

The vector function σ = g(x, h)T p in (6) is called the switching function related
to (x, u). If, for some j ≤ m, σj ≡ 0 on a certain interval then this part of the
control trajectory is called a singular arc.

In order to analyze the stability properties of optimal control structure in
(Ph) for h near h0 = 0, we make assumptions on existence and structure of (a
possibly local) reference solution (x0, u0) of (P0):

Assumption 1. (bang-bang regularity)
The pair (x0, u0) is a solution such that u0 is piecewise constant and has no
singular arcs. For every j and σ0

j = gj(x0, 0)T p, the set Σj = { t ∈ [0, 1] :
σ0

j (t) = 0 } is finite, and 0, 1 /∈ Σj.

Notice that, under the given smoothness assumptions, σ0 ∈ W 1
∞(0, 1;Rm) ⊂

C([0, 1]). However, in general the function is not continuously differentiable on
[0, 1]. For t /∈

⋃
Σk, from σ̇ = ṗT g + pT∇xg ẋ we see that

σ̇0
j (t) = p(t)T [gj , f ] (t) +

∑
k �=j

u0
k(t) p(t)T [gj, gk] (t) (8)

(where [ ·, · ] stand for Lie brackets, and the functions f, g etc. are evaluated
along x0(t) with h = 0 fixed). The formula shows that, for all t, the function σ0

has one-sided time-derivatives but σ̇0
j may be discontinuous for t ∈ Σk, k �= j.

Remark. The above piecewise representation for σ̇0 yields, in particular, that
σ0 ∈ C1([0, 1]) in case of so-called semilinear state systems where g = g(h) is
independent of x (cf. [5,6]). Further, σ̇0

j will be continuous in all simple switching
points t ∈ Σj where Σj ∩Σk =Ø ∀ k �= j (see e.g. [7]).

In case of differentiable switching function components, a common stability
condition consists in requiring all zeros being regular, i.e. σ̇0

j (ts) �= 0 for each
ts ∈ Σj . The natural generalization to piecewise differentiable case is
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Assumption 2a. (strict bang-bang property)
For every j = 1, . . . ,m, for all ts ∈ Σj: σ̇0

j (ts + 0) · σ̇0
j (ts − 0) > 0.

Optimality and stability investigations in e.g. [1,12,9] considered reference con-
trol functions having only simple switches, i.e. the case where Σi∩Σj =Ø ∀ i �= j.
We will call ts ∈ Σj ∩Σi, i �= j, a double switching point if ts /∈ Σk for arbitrary
k /∈ {i, j}, and a multiple switching point in general. Alternatively, one could
speak of simultaneous switches of two or more control components at certain
time. The notation has to be distinguished from situations where a switching
point is a multiple zero of the related switching function component: the latter
is excluded by Assumption 2a. For the purpose of the given paper we add

Assumption 2b. (double switch restriction)
All ts ∈

⋃
Σk related to h = 0 are switching points of at most two control

components.

As a consequence from (8), we obtain the jump condition for σ̇0
j at ts ∈ Σj ∩Σi:[

σ̇0
j

]s
= σ̇0

j (ts + 0) − σ̇0
j (ts − 0) =

[
u0

i

]s
p(ts)T [gj , gi] (ts). (9)

3 Local Stability of Bang-Bang Structure

The shooting system (6), (7) introduced in the preceding section, at h = 0 ad-
mits the solution x = x0, u = u0 with the related adjoint function p. For general
h, solution existence and uniqueness cannot be guaranteed without additional
assumptions which are considered in forthcoming sections. However, for an as-
sumed solution (xh, uh) near (x0, u0) one can provide conditions ensuring that
(i) the control uh is of bang-bang type, and (ii) the switching structure of both
uh and u0 coincide.

Theorem 1. Suppose Assumptions 1, 2a, and 2b hold true. Further, let (xh, uh,
ph) ∈ W 1

∞ × L∞ ×W 1
∞ with z = zh = xh(1) be a solution of (6) satisfying the

initial condition (7) and the estimate

‖xh − x0‖∞ + ‖uh − u0‖1 < ε . (10)

If δ = |h|+ε is sufficiently small then the following relations hold for (xh, uh, ph)
together with σh = g(xh, h)T ph:
(i) uh(t) = −sign σh(t) almost everywhere on [0, 1], and uh has the same
switching structure and number of switching points as u0,
(ii) if σh

j (ths ) = 0, then σ̇h
j (ths + 0) · σ̇h

j (ths − 0) > 0 (j = 1, . . . ,m). ��
For the proof, the following standard estimates are useful:

‖ xh − x0‖1,1 + ‖ ph − p ‖1,1 + ‖ σh − σ ‖1,1 = O(δ) (11)

with δ = |h| + ε. In L∞ sense, they follow from Gronwall’s Lemma applied to
(xh− x0) resp. (ph− p0). Additional L1 estimates for time derivative terms are
then deduced from state and adjoint equations in (6).
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Proof. Let ts, ts′ be switching points from
⋃

Σk. By Assumption 1, a radius
ρ > 0 exists such that

Bρ(ts) ∩ Bρ(ts′) = Ø for all ts �= ts′ , 0, 1 �∈ Bρ(ts) for all ts.

For ts ∈ Σj , define σ+
j , σ−

j as smooth continuations of σ0
j from (ts, ts + ρ) (resp.

(ts − ρ, ts)) to Bρ(ts) by setting σ±
j (ts) = σ0

j (ts) = 0 and integrating

σ̇±
j (t) = p(t)T

[
g0

j , f
0
]
(t) +

∑
k �=j

u0
k(ts ± 0) p(t)T

[
g0

j , g
0
k

]
(t)

(where f0, g0
k etc. denote f or gk evaluated along x = x0), cf. (8).

From the continuity properties of σ together with Assumption 2a and (9), we
see that there exist µ > 0, r ∈ (0, ρ) such that

|σ0
k(t)| ≥ µ ∀ t with dist{t, Σk} ≥ r, ∀ k,

|σ̇±
k (t)| ≥ µ ∀ t with dist{t, Σk} ≤ 2r, ∀ k. (12)

Let δ = |h| + ε be sufficiently small: Due to (11), outside of Br(ts), ts ∈ Σk,
the functions σ0

k and σh
k then are of the same sign, and

|σh
k (t)| ≥ µ/2 ∀ t with dist{t, Σk} ≥ r, ∀ k.

Thus, the functions may vanish only inside intervals Br, i.e. near switching points
of the reference control u0. By (6), each of the functions σj has a time-derivative
in L∞ given almost everywhere on [0, 1] by

σ̇h
j = (ph)T

[
gh

j , f
h
]

+
∑
k �=j

uh
k · (ph)T

[
gh

j , g
h
k

]
. (13)

Consider first the case that ts ∈ Σj is a simple switch of u0, and let t ∈ Br(ts):
In this situation, all terms in the representation (13) are continuous on Br(ts)
and, for sufficiently small δ,

|σ̇h
j (t)| ≥ µ/2 ∀ t with |t − ts| ≤ r

follows from (11). Moreover, in Br(ts), σ̇h
j and σ̇0

j will be of the same sign so
that σh

j is strictly monotone there. Consequently, it will have an unique zero on
this interval (as does σ0

j ).
Now, let ts ∈ Σj ∩Σi be a double switch of u0: by (13), we may write

σ̇h
j = uh

i (ph)T
[
gh

j , g
h
i

]
+ ωh

j

where ωh
j and (ph)T [gh

j , g
h
i ] are continuous on Br(ts). Since the control values

uh
i (t) belong to [−1, 1] = conv{u0

i (ts − 0), u0
i (ts + 0)} we have

dist
{
σ̇h

j (t), conv{σ̇+
j (t), σ̇−

j (t)}
}

= O(δ).

If δ is chosen sufficiently small then it follows from (12) that, on Br(ts), σ̇h
j has

the same sign as both of σ̇±
j , and |σ̇h

j (t)| ≥ µ/2 there. Again, σh
j turns out to

be strictly monotone in Br(ts) and will have an unique and regular zero there.
Summing up, the conclusions (i) and (ii) of the Theorem follow. ��
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4 Generalized Second-Order Condition

In the last section it was shown that locally, under condition (10), any extremal
described by the shooting system (6), (7) corresponds to a bang-bang control
with the same prinicipal switching behavior as u0. Notice further that, for h, δ
sufficiently small, the restriction ‖x−x0‖∞+ ‖p−p0‖∞ =O(δ+|h|) together with
Assumption 1 fixes the value u(1) for any stationary solution related to (Ph).
Therefore, locally one may uniquely determine extremals by solving the so-called
deduced finite-dimensional problem formulated in terms of the switching vector
Σ = (Σ1, . . . , Σm) ∈ RL, cf. [1,7].

In order to allow for double or general multiple switches, in [4] the enumeration
of switching points by double indices α = (j, s) was introduced, where j points
to the switching control component, and s enumerates the elements in Σj in
increasing order: 0 = tj0 < . . . < tjs < tj,s+1 < . . . < tj,l(j) < tj,l(j)+1 = 1 for
all j = 1, . . . ,m. Vectors Σ satisfying the given monotonicity requirement form
an open set DΣ ⊂ RL for L =

∑m
j=1 l(j).

Each Σ = (τjs) ∈ DΣ sufficiently close to Σ0 can be used to construct an
admissible pair x = x(t, Σ, h), u = u(t, Σ) for (Ph) by the following rules:

uj(t, Σ) ≡ (−1)l(j)−su0
j(1) for t ∈ (τjs, τj,s+1), (14)

ẋ(t) = f(x(t), h) + g(x(t), h)u(t, Σ), x(0) = a(h) . (15)

Inserting x(1, Σ, h) into the objective functional we obtain the deduced finite-
dimensional problem related to (Ph):

min φh(Σ) = k (x(1, Σ, h), h) w.r.t. Σ ∈ DΣ . (16)

For the reference parameter h0 = 0, the vector Σ = Σ0 is a local solution.
Under the given smoothness assumptions and for small parameter values h ≈

0, the functionals φh are continuously differentiable w.r.t. Σ but may not belong
to C2(DΣ): in general, ∇Σφh is only piecewise continuously differentiable in
those parts of DΣ where all tjs are simple. Instead of classical Hessian, Clarke’s
generalized derivatives will thus be used below (see [2], also [8]).
For sake of simplicity, the calculation of ∇Σφh and ∂Σ(∇Σφh) will be carried
out for the case that at most one double switch occurs, e.g. tα = tβ for some
α = (j, s), β = (i, r). On the following sets, ∇2

Σφh is continuous w.r.t. (Σ, h):

D1 = {Σ ∈ DΣ : τα < τβ}, D2 = {Σ ∈ DΣ : τα > τβ}.

At points Σ′ ∈ clD1 ∩ clD2 (i.e. τ ′α = τ ′β), one can find ∂Σ(∇Σφh(Σ′)) by a
selection representation for generalized derivatives, [8]:

∂Σ(∇Σφh(Σ′)) = conv{ lim
Σ∈D1,Σ→Σ′

∇2
Σφh(Σ), lim

Σ∈D2,Σ→Σ′
∇2

Σφh(Σ) }. (17)

For convenience, define an adjoint function p = p(·, Σ, h) related to (15),(14) by

ṗ = −A(x(Σ, h), u(Σ), h)T p , p(T ) = ∇xk(x(T,Σ, h), h) (18)

and, in addition, set σ = σ(·, Σ, h) = g(x(·, Σ, h))T p(·, Σ, h).
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Let us further define auxiliary functions related to ∇Σ(x, p) and ∇Σφ:
The matrix function A[t] = A(x(t, Σ, h), u(t, Σ), h) given by ∇x(f + gu) from
(4) is bounded and piecewise continuous. For given (x, u) and h, it is used to
define fundamental matrix solutions for linearized state and adjoint equations:

Ψ̇(t) = A[t]Ψ(t), Φ̇(t) = −A[t]TΦ(t), Ψ(0) = Φ(0) = I. (19)

By direct calculation, Φ−1 = ΨT is checked for arbitrary t ∈ [0, 1]. Further, it is
easy to see that p from (18) satisfies p(t) = Φ(t)Ψ(1)T∇xk.

The functions x = x(t, Σ, h) and p = p(t, Σ, h) almost everywhere have first
order derivatives ηα = ∂x/∂τα and ρα = ∂p/∂τα w.r.t. switching points τα, α =
(j, s). They solve the following multi-point boundary value problems (cf. [4]):

η̇α=Aηα, ηα(0) = 0, [ ηα]s = − [∇pH ]α , (20)
ρ̇α=−ATρα − C ηα, ρα(1) = ∇2

xk · ηα(1), [ ρα]s = [∇xH ]α . (21)

The terms g,∇g, k herein are evaluated along x = x(·, Σ, h), and C = C[t]
stands for ∇2

xH [t]. The switching terms are

[∇pH ]α = gj[tα]
[
u0

j

]s
, [∇xH ]α = ∇xgj [tα]T p(tα)

[
u0

j

]s
. (22)

If tα = tjs is a simple switch for u, then we have [∇H ]α = [∇H ]s – the full
jump of ∇H at tα. For multiple switches, in general this is not true.

After these preliminaries, the derivatives of φh may be calculated. In the first
step we obtain

∂φh

∂τα
=∇xk

T ηα(1) =−
[
u0

j

]s∇xk
TΨ(1)Φ(tα)T gj [tα] =−

[
u0

j

]s
(pT gj)[tα]. (23)

Repeating differentiation, consider first mixed second-order terms with α �= β:
in D1,2 we have tα �= tβ so that we get continuous representation

∂

∂τβ

(
∂

∂τα
φh

)
= −

[
u0

j

]s {
ρβ(tα)T gj[tα] + p(tα)T∇xgj[tα]ηβ(tα)

}
.

In symmetric form, it may be written as (cf. [4], or [9]):

∂

∂τβ

(
∂

∂τα
φh

)
= ηβ(1)T∇2

xk ηα(1) +
∫ 1

tαβ

ηβ(s)T∇2
xH [s] ηα(s) ds

− [∇xH ]β ηα(tβ) − [∇xH ]α ηβ(tα). (24)

Notice that, due to (22), the last terms will have jump discontinuities at tα = tβ .
Next consider ∂2φh/∂t

2
α in D1∪D2: from (23) we obtain one-sided derivatives,

∂±

∂τα

(
∂

∂τα
φh

)
= −

[
u0

j

]s {
σ̇j(tα) + ρ±α (tα)T gj [tα] + p(tα)T∇xgj [tα]η±α (tα)

}
.

As long as tα does not coincide with any other control switching point from
Σ the derivative σ̇ is continuous at tα. The remaining switches cancel out by



324 U. Felgenhauer

(20)-(21), so that ∂2φh/∂t
2
α is continuous in D1 resp. D2. Thus, for tα �= tβ , one

may give the derivative a final form similar to (24)
∂2

∂τ2
α

φh = ηα(1)T∇2
xk ηα(1) +

∫ 1

tα

ηα(s)T∇2
xH [s] ηα(s) ds

−
[
u0

j

]s
σ̇j(tα) − [∇xH ]α ηα(tα + 0). (25)

In the limit for tα − tβ → ±0, one has to replace σ̇j(tα) by σ̇j(tα ± 0) resp.
After partial second-order derivatives and their limits have been found, one

can compose ∂Σ(∇Σφh(Σ′)) for Σ′ ∈ clD1 ∩ clD2 in accordance to (17).
As it was mentioned in the beginning, for h = 0 the vector Σ0 solves (16). We

will assume for stability investigation that, at Σ0, the following strong second-
order condition holds with Clarke’s generalized Hessian [2]:

Assumption 3. ∃ c > 0: vT (Qv) ≥ c |v |2 for all v ∈ RL and each matrix
Q ∈ ∂Σ (∇Σφ0) (Σ0).

5 Lipschitz Continuity of Bang-Bang Structure

For further analysis of stability properties of switching points consider the sta-
tionary point map

Z(Σ, h) = ∇Σφh(Σ) = 0 (26)

for h near h0 = 0, cf. (23). Then the following stability result holds:

Theorem 2. Let (P0) have a bang-bang solution (x0, u0) with switching points
Σ0 such that Assumptions 1, 2a and 2b are fulfilled. Then, a neighborhood H of
h0 = 0 exists such that
(i) In RL there exists a neighborhood S of Σ0 such that ∀ h ∈ H equation (26)
has an unique solution Σ = Σ(h). As a function of h, Σ = Σ(h) is Lipschitz
continuous on H.
(ii) ∀ h ∈ H: Σ = Σ(h) ∈ DΣ.
In particular, ths may be (an at most) double switch belonging to Σj(h) ∩ Σi(h)
only if there is a neighboring t0s ∈ Σ0

j ∩Σ0
i , too.

(iii) All matrices Q in ∂Σ (∇Σφh) (Σ(h)) are positive definite with lower eigen-
value bound c′ > 0 independent of h ∈ H. The vector Σ(h) thus is a strict local
minimizer of φh from (16). ��

Proof. The first statement of the Theorem is proved by Clarke’s version of
Implicit Function Theorem ([2], §7.1): by Assumption 2b, every matrix Q in
∂ΣZ(Σ0, 0) = ∂Σ (∇Σφ0) (Σ0) is of maximal rank so that (i) is valid.

In order to prove part (ii) it is sufficient to remember the monotonicity prop-
erties defining switching vectors in DΣ . Since by (i), |Σ(h) −Σ0| =O(h), for h
sufficiently close to zero the relations follow from continuity arguments.

Finally, consider ∂ΣZ(Σ(h), h) = ∂Σ (∇Σφh) (Σ(h)):
With given Σ = Σ(h), construct uh = u(·, Σ(h)), xh = x(·, Σ(h), h) by (14), (15)
and accomplish this admissible pair by adjoint and switching functions ph, σh,
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cf. (18). Defining kh, Ah, Ch and Hh analogously, one can solve related systems
of type (19) and (20) in order to find ηh

α = ∂xh/∂tα.
Matrices from ∂ΣZ(Σ(h), h) again have the form of convex combinations of limits
of the Hessians for φh(Σ(h)) from sets of type Dj , whose elements are described
by formulas (24), (25) with the appropriate new data functions. As far as, by
(i) and the general smoothness assumptions on (Ph), all elements of the related
Hessians continuously depend on h ∈ H near h0 = 0, the positive definiteness
remains to be true for the perturbed matrices with certain c′ = c−O(h). ��

Conclusion. The main results on local structural stability of bang-bang ex-
tremals and Lipschitz continuity of switching points have been proved in the
paper for case of at most double switches. A generalization to multiple switches
of higher order requires thorough strengthening of assumptions 2 and 3.
In contrast to situations where all switching points are simple, it could not been
proved yet whether the given assumptions are sufficient optimality conditions
for extremals from (6) and (7). Work on this problem is in progress.
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Abstract. The paper deals with the problems of state estimation for
nonlinear dynamical control system described by differential equations
with unknown but bounded initial condition. The nonlinear function in
the right-hand part of a differential system is assumed to be of quadratic
type with respect to the state variable. Basing on the well-known results
of ellipsoidal calculus developed for linear uncertain systems we present
the modified state estimation approaches which use the special structure
of the dynamical system.

1 Introduction

In many applied problems the evolution of a dynamical system depends not
only on the current system states but also on uncertain disturbances or errors
in modelling. There are many publications devoted to different aspects of treat-
ment of uncertain dynamical systems (e.g., [5,9,10,11,12,13,15]). The model of
uncertainty considered here is deterministic, with set-membership description of
uncertain items which are taken to be unknown with prescribed given bounds.

The paper deals with the problems of control and state estimation for a dy-
namical control system

ẋ(t) = A(t)x + f(x(t)) + G(t)u(t), x ∈ Rn, t0 ≤ t ≤ T, (1)

with unknown but bounded initial condition

x(t0) = x0, x0 ∈ X0, X0 ⊂ Rn, (2)

u(t) ∈ U, U ⊂ Rm for a.e. t ∈ [t0, T ]. (3)

Here matrices A(t) and G(t) (of dimensions n× n and n×m, respectively) are
assumed to be continuous on t ∈ [t0, T ], X0 and U are compact and convex. The
nonlinear n-vector function f(x) in (1) is assumed to be of quadratic type

f(x) = (f1(x), . . . , fn(x)), fi(x) = x′Bix, i = 1, . . . , n, (4)

where Bi is a constant n× n - matrix (i = 1, . . . , n).
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Consider the following differential inclusion [6] related to (1)–(3)

ẋ(t) ∈ A(t)x(t) + f(x(t)) + P (t) for a.e. t ∈ [t0, T ], (5)

where P (t) = G(t)U.
Let absolutely continuous function x(t) = x(t, t0, x0) be a solution to (5) with

initial state x0 satisfying (2). The differential system (1)–(3) (or equivalently,
(5)–(2)) is studied here in the framework of the theory of uncertain dynami-
cal systems (differential inclusions) through the techniques of trajectory tubes
X(·, t0, X0) = {x(·) = x(·, t0, x0) | x0 ∈ X0} of solutions to (1)–(3) with their
t-cross-sections X(t) = X(t, t0, X0) being the reachable sets (the informational
sets) at instant t for control system (1)–(3).

Basing on the well-known results of ellipsoidal calculus [12,2,3] developed for
linear uncertain systems we present the modified state estimation approaches
which use the special structure of the control system (1)–(4) and combine ad-
vantages of estimating tools mentioned above. Examples and numerical results
related to procedures of set-valued approximations of trajectory tubes and reach-
able sets are also presented.

2 Preliminaries

2.1 Basic Notations

In this section we introduce the following basic notations. Let Rn be the n–
dimensional Euclidean space and x′y be the usual inner product of x, y ∈ Rn

with prime as a transpose, ‖ x ‖ = (x′x)1/2. We denote as B(a, r) the ball in
Rn, B(a, r) = {x ∈ Rn : ‖ x − a ‖ ≤ r}, I is the identity n× n-matrix. Denote
by E(a,Q) the ellipsoid in Rn, E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}
with center a ∈ Rn and symmetric positively definite n× n–matrix Q.

Let h(A,B) = max{h+(A,B), h−(A,B)}, be the Hausdorf distance for A,
B ⊂ Rn, with h+(A,B) and h−(A,B) being the Hausdorf semidistances between
A and B, h+(A,B) = sup{d(x,B) | x ∈ A}, h−(A,B) = h+(B,A), d(x,A) =
inf{‖x− y ‖ | y ∈ A}.

One of the approaches that we will discuss here is related to evolution equa-
tions of the funnel type [7,11,14,17]. Note first that we will consider the
Caratheodory–type solutions x(·) for (5)–(2), i.e. absolutely continuous func-
tions x(t) which satisfy the inclusion (5) for a. e. t ∈ [t0, T ]. Assume that all
solutions {x(t) = x(t, t0, x0) | x0 ∈ X0} are extendable up to the instant T that
is possible under some additional conditions ([6], §7, Theorem 2). The precise
value of T depending on studied system data will be given later.

Let us consider the particular case of the funnel equation related to (5)–(2)

lim
σ→+0

σ−1h

⎛⎝X(t + σ),
⋃

x∈X(t)

{x + σ(A(t)x + f(x)) + σP (t)}

⎞⎠ = 0, t ∈ [t0, T ],

(6)
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X(t0) = X0. (7)

Under above mentioned assumptions the following theorem is true (details
may be found in [7,11,14,17]).

Theorem 1. The nonempty compact-valued function X(t) = X(t, t0, X0) is the
unique solution to the evolution equation (6)-(7).

Other versions of funnel equation (6) are known written in terms of semidistance
h+ instead of h [12]. The solution to the h+-equations may be not unique and
the ”maximal” one (with respect to inclusion) is studied in this case. Mention
here also the second order analogies of funnel equations for differential inclusions
and for control systems based on ideas of Runge-Kutta scheme [5,15,16]. Discrete
approximations for differential inclusions through a set-valued Euler’s method
were developed in [1,4,8]. Funnel equations for differential inclusions with state
constraints were studied in [11], the analogies of funnel equations for impulsive
control systems were given in [7].

2.2 Trajectory Tubes in Uncertain Systems with Quadratic
Nonlinearity

Computer simulations related to modelling in nonlinear problems of control un-
der uncertainty and based on the funnel equations require in common difficult
and long calculations with additional quantization in the state space. Never-
theless in some simpler cases it is possible to find reachable sets X(t; t0, X0)
(more precisely, to find their ε–approximations in Hausdorf metrics) basing on
the Theorem 1.

Example 1. Consider the following differential system:{
ẋ1 = − x1,
ẋ2 = 0.5x2 + 3(0.25x2

1 + x2
2),

0 ≤ t ≤ T. (8)

Here we take the case when the uncertainty in the system is defined by un-
certain initial states x0 that are unknown but belong to the following ellipsoid

X0 = E(0, Q0), Q0 =
(

4 0
0 1

)
. (9)

The trajectory tube X(·) found on the base of Theorem 1 is given at Fig. 1 (here
T = 0.2).

Computational analysis of systems even under quadratic nonlinearity may be
more difficult if cross-sections X(t) (the reachable sets) of the trajectory tube
X(·) are not convex.

Example 2. Consider the following differential system:{
ẋ1 = 2x1,
ẋ2 = 2x2 + x2

2,
0 ≤ t ≤ T. (10)
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Fig. 1. Trajectory tube X(·) for the uncertain system with quadratic nonlinearity

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

0

2

4

6

8

10

x1

x2

−3 −2 −1 0 1 2 3
−2

0

2

4

6

8

10

12

14

16

18

x1

x2

Fig. 2. The reachable set X(t) for 0 ≤ t ≤ t∗ = 0.44 (the left picture) and for 0 ≤ t ≤
T = 0.5 (the right picture)

Here an unknown state x0 belongs to the ball B(0, 1) ⊂ R2. The left picture
at Fig. 2 shows that X(t) keeps the convexity property till the instant t∗ =
0.5ln(1 +

√
2) � 0.44. For later time t > t∗ the reachable set X(t) loses the

convexity as shown at the right picture of Fig. 2. Mention that in this example
the value t∗ is calculated by analyzing the properties of the curve( x1

e2t

)2

+
(

2x2

e2t(2 + x2)− x2

)2

= 1

that describes the boundary of X(t).

3 Results

The methods of constructing the external (or ”upper” with respect to inclusion)
estimates of trajectory tubes X(·, t0, X0) of a differential system with uncer-
tainty may be based on the combination of ellipsoidal calculus [2,3,12] and the
techniques of evolution funnel equations. It should be noted that external el-
lipsoids approximated the trajectory tube may be chosen in various ways and
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several minimization criteria are well-known. We consider here the ellipsoidal
techniques related to the construction of external estimates with minimal volume
(details of this approach and motivations for linear control systems may be found
in [2,12]).

Here we assume for simplicity that U = {0} and therefore P (t) = {0} in (5)-
(2), matrices Bi (i = 1, ..., n) are symmetric and positively definite, A(t) ≡ A.
We may assume that all trajectories of the system (5)-(2) belong to a bounded
domain D = {x ∈ Rn :‖ x ‖≤ K} where the existence of such constant K > 0
follows from classical theorems of the theory of differential equations and differ-
ential inclusions [6].

From the structure (4) of the function f we have two auxiliary results.

Lemma 1. The following estimate is true

‖ f(x) ‖≤ N, N = K2(
n∑

i=1

λ2
i )

1/2,

where λi is the maximal eigenvalue for matrix Bi (i = 1, ..., n).

Lemma 2. For all t ∈ [t0, T ] the inclusion X(t) ⊂ X∗(t) holds where X∗(·) is
a trajectory tube of the linear differential inclusion

ẋ ∈ Ax + B(0, N), x0 ∈ X0. (11)

Theorem 2. Let t0 = 0, a0 = 0, X0 = B(a0, r), r ≤ K and t∗ = min
{

K−r√
2M

; 1
L ;

T }. Then for all t ∈ [t0, t∗] the following inclusion is true

X(t, t0, X0) ⊂ E(a(t), Q+(t)) (12)

where M = K
√
λ + N, L =

√
λ + 2K

(∑n
i=1 λ2

i

)1/2 with λ and λi being the
maximal eigenvalues of matrices AA′ and Bi (i = 1, ..., n), respectively, and
where vector function a(t) and matrix function Q+(t) satisfy the equations

ȧ = Aa, a(t0) = a0 (13)

Q̇+ = AQ+ + Q+AT + qQ+ + q−1G,

q = {n−1Tr((Q+)−1G)}1/2, G = N2I,
Q+(t0) = Q0 = r2I.

(14)

Proof. Applying the ellipsoidal techniques [2,12], Lemmas 1-2 and comparing
systems (5)-(2) and (11) we come to the inclusion (12).

Example 3. Results of computer simulations based on the above theorem for the
differential system {

ẋ1 = x1,

ẋ2 = 3x2 + x2
2,

(15)

with X0 = B(0, 1) are given at Fig. 3. The pictures at Fig. 3 show that the
approach presented in Theorem 2 is appropriate only for enough small values of
t ∈ [t0, T ].
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Fig. 3. Reachable sets X(t, t0, X0) and their estimates E(a(t),Q+(t)) at instants t =
0.1 and t = 0.4.

Let us discuss another estimation approach based on techniques of evolution
funnel equations. Consider the following system

ẋ = Ax + f̃(x)d, x0 ∈ X0, t0 ≤ t ≤ T, (16)

where x ∈ Rn, ‖x‖ ≤ K, d is a given n-vector and a scalar function f̃(x) has a
form f̃(x) = x′Bx with B = diag(b21, ..., b

2
n). The following theorem presents an

easy computational tool to find estimates of X(t) by step-by-step procedures.

Theorem 3. Let X0 = E(0, B−1). Then for all σ > 0

X(t0 + σ, t0, X0) ⊆ E(a(σ), Q(σ)) + o(σ)B(0, 1), (17)

where a(σ) = σd and Q(σ) = (I + σA)B−1(I + σA)′.

Proof. The funnel equation for (16) is

lim
σ→+0

σ−1h

⎛⎝X(t + σ, t0, X0),
⋃

x∈X(t,t0,X0)

{
x + σ(Ax + f̃(x)d)

}⎞⎠ = 0, t ∈ [t0, T ],

X(t0, t0, X0) = X0. (18)

If x0 ∈ ∂X0 where ∂X0 means the boundary of X0, we have f̃(x0) = 1 and ([2])⋃
x0∈∂X0

{(I + σA)x0 + σf̃(x0)d} =
⋃

x0∈∂X0

{(I + σA)x0 + σd} ⊆ E(a(σ), Q(σ)).

(19)
It is not difficult to check that the inclusion (19) is true also for any interior
point x0 ∈ intX0, so we have⋃

x0∈X0

{(I + σA)x0 + σf̃(x0)d} ⊆ E(a(σ), Q(σ)). (20)

Applying Theorem 1 and taking into account the inclusion (20) we come to the
estimate (17).
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the uncertain control system

Example 4. Consider the system (8)-(9). Fig. 4 presents the results of the com-
puter simulations based on Theorem 3.

Note that the last approach requires less computations then the first one given
by Theorem 2 and provides better upper estimates of the trajectory tube.

Results similar to above Theorems 2–3 may be derived also for the system (5).
In this case the final ellipsoidal estimate is more complicated because the tech-
nique includes an additional operation of approximating externally the sum of
two ellipsoids, the first one related to nonlinearity (as in Theorems 2-3) and the
second one due to presence of P = E(qp, Qp). We illustrate the estimation by
the following example.

Example 5. Consider the following control system:{
ẋ1 = 6x1 + u1,
ẋ2 = x2

1 + x2
2 + u2,

0 ≤ t ≤ T, (21)

X0 = B(0, 1), P (t) ≡ U = B(0, 1). (22)

The trajectory tube X(t) and its estimate E(0, Q∗(t) are given at Fig. 5 (here
T = 0.27).
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Abstract. We present a theoretical model to determine the optimal
management of a size-distributed forest.The decision model is given in
form of a distributed optimal control problem that cannot be solved an-
alytically. Thus, the paper presents a numerical technique that allows
transforming the original distributed control problem into an ordinary
control problem. The method has the advantage that it does not require
programming numerical algorithms but rather can be implemented with
standard commercial optimization packages such as GAMS. The empir-
ical application of our model for the case of forest management allows
determining the selective cutting regime when carbon sequestration is
taken into account.

1 Introduction

The analysis of the optimal management of renewable resources has a very long
history within economics. Traditionally, the renewable resource is considered
as a non-structured population, i.e. all individuals are identical. However, the
economic literature has now recognized that the assumption of non-structured
populations does not allow to address correctly the two key issues of the man-
agement of renewable natural resources - the determination of the optimal re-
placement periods, and the optimal long-run allocation of the total population
among the different values of the structuring variable (Kennedy, 1987). In the
case of forestry, economic analysis based on non structured populations cannot
correctly determine the optimal replacement period since it does not take ac-
count of the fact that the birth, growth and death processes of the population
depend on the structuring characteristic of each individual.

Moreover, the distribution of the individual characteristics over the entire
population is important to model correctly the multiple services that forests may

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 334–341, 2008.
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offer: amenity and recreational values, natural habitat of wildlife, mushrooms,
protection of watersheds, carbon sequestration etc. A simple example is the
production and timber and sequestration of carbon. The maximization of the
net benefits with respect to timber calls for growing a reduced number of high
value trees while maximization of the net benefits with respect to carbon requires
maximizing the standing biomass of the forest. Thus, a specific distribution of the
individual characteristics over the entire forest is necessary to favor a particular
forest service.

In this paper we present a theoretical model to determine the optimal selec-
tive-logging regime of a size-distributed forest. The law of motion of the economic
model is governed by a partial integrodifferential equation that describes the
evolution of the forest stock over time. Given the complexity of the problem it is
not possible to obtain an analytical solution. To solve the problem numerically
we employ a technique known as the “Escalator Boxcar Train”. This technique
has been utilized so far to solve partial differential or partial integrodifferential
equations describing the evolution of biological populations. In this paper we
provide the necessary changes to utilize this method within the context of a
distributed optimal control problem. The usefulness of the “Escalator Boxcar
Train” is illustrated by determining the optimal selective-logging regime of a
privately owned forest when carbon sequestration is taken into account.

The paper is organized as follows. The following section presents the economic
decision problem. Section 3 presents the numerical technique of the “Escalator
Boxcar Train” and derives the necessary changes that allow to employ it for the
solution of the distributed optimal control problem. Section 4 briefly illustrates
the proposed numerical technique. The paper ends with a summary.

2 The Economic Model

Denote the diameter of a tree by l ∈ Ω, Ω ≡ [l0, lm), where l0 and lm indicate
the biological minimum and maximum size of a tree. The decision problem of
the forest owner, given a planning horizon of t1, can be stated as:

max
u(t,l),p(t,l0)

∫ t1

0

∫ lm

l0

B(u(t, l), x(t, l))exp−rt dl dt−
∫ t1

0

C(p(t, l0))exp−rt dt (1)

+
∫ lm

l0

St1(x(t1, l))exp−rt1 dl

subject to the constraints

∂x(t, l)
∂t

≡ −∂(g(e(t), l)x(t, l))
∂l

− δ(e(t), l)x(t, l)− u(t, l), (2)

x(t0, l) = x0(l), g(e(t), l0)x(t, l0) = p(t, l0), u(t, l) ≥ 0, p(t, l0) ≥ 0, (3)

where x(t, l) is the state variable that characterizes the distribution density of
trees, and u(t, l) p(t) are the control variables that denote the flux of logged
trees, and the flux of trees planted with diameter l0 respectively, g(e(t), l) is the
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growth rate of trees, δ(e(t), l) is the instantaneous mortality rate, e(t) denotes
the competition between individuals in the forest, that is measured by the basal

area, that is, e(t) =
∫ lm

l0
π
(

l
2

)2

x(t, l) d l, and r denotes the discount rate. The

function B(u(t, l), x(t, l))exp−rt presents the discounted net benefits of forest
management, including the benefits from timber and sequestered carbon. The
strictly convex function C(p)exp−rt ∈ C2 captures the discounted cost of plant-
ing trees, the function St1(x)exp−rt1 ∈ C1 the value of the standing trees at
the end of the planning horizon. The term x0(l) denotes the initial distribution
density of trees, and the restriction g(e(t), l0)x(t, l0) = p(t, l0) requires that the
flux of the change in diameter at l0 multiplied the tree density coincides with the
total amount of trees planted with diameter l0. Finally, it is required that the
control variables are nonnegative. Equation (2) provides the equation of motion
for size-structured populations in the case of a managed forest with no biological
reproduction (i.e., all young trees are planted).

3 The Numerical Approach

To numerically solve the distributed optimal control problem we propose a
method named the Escalator Boxcar Train (de Roos, 1988). In contrast to other
available methods (Feichtinger, Prskawetz and Veliov, 2004), the Escalator Box-
car Train, EBT, can be implemented with standard computer software utilized
for solving mathematical programming problems.

The partial integrodifferential equation (2) describes the time evolution of
the population density-function over the domain Ω of the individual structural
variable l. For the derivation of the EBT method we will assume that e(t) is
constant such that the partial integrodifferential equation is a partial differential
equation. However, as de Roos (1988) specifies, the method is also applicable in
the case where the environment is not constant over time. Let Ω be partitioned
into n + 1 subdomains Ωi(t = 0) = [li(0), li+1(0)), i = 0, 1, 2, · · · , n at the initial
point of time of the planning horizon and define Ωi(t) as Ωi(t) = {l(t, t =
0, l0)|l0 ∈ Ωi(0)}, i.e., Ωi(t) defines the evolution of the tree diameter over time,
such that all trees that form a cohort in a subdomain at t=0 stay together
throughout their life.

Let the total number of trees, Xi(t), and the average diameter of the trees,
Li(t) within the subdomain Ωi, i = 1, 2, · · · , n, that we call internal cohorts, be
defined as

Xi(t) =
∫

Ωi

x(t, l)dl, and Li(t) =
1

Xi(t)

∫
Ωi

l x(t, l)dl. (4)

To take account of the control variable, let Ui denote the amount of cut trees in
the subdomain Ωi. That is,

Ui =
∫

Ωi

u(t, l) dl. (5)
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the total number of trees and their average diameter totally characterizes the
population within the subdomain or cohort i. The total population is thus a
collection of cohorts. Mathematically, the distribution density x(t, l) is approxi-
mated by a set of delta functions of size Xi(t) at diameter Li(t). Using Leibniz
rule, the change in time of Xi(t) is given by:

dXi(t)
dt

=
d

dt

∫ li+1

li

x(t, l)dl =
∫ li+1

li

∂x(t, l)
∂t

dl+x(t, li+1)
dli+1

dt
−x(t, li)

dli
dt

(6)

Since
dli
dt

= g(e, li) and
dli+1

dt
= g(e, li+1) by definition, and using the equality

presented in equation (2), equation (6) leads to:

dXi(t)
dt

= −
∫ li+1

li

(
δ(e, l)x(t, l) + u(t, l)

)
dl (7)

In a similar fashion we obtain the ordinary differential equation describing the
dynamics of Li(t). From now on, the arguments of the functions will be sup-
pressed unless it is required for an unambiguous notation.

dLi

dt
=

d

dt

1
Xi

∫ li+1

li

l xdl

=
1
Xi

(∫ li+1

li

l
∂x

∂t
dl + li+1x

dli+1

dt
− li x

dli
dt

)
− 1

X2
i

∫ li+1

li

l xdl
dXi

dt

=
1
Xi

∫ li+1

li

l
∂x

∂t
dl +

1
Xi

∫ li+1

li

∂(l g x)
∂l

dl − 1
Xi

Li
dXi

dt

=
1
Xi

∫ li+1

li

l
(
− δx− u

)
dl +

1
Xi

∫ li+1

li

g xdl − 1
Xi

Li
dXi

dt

=
1
Xi

∫ li+1

li

g xdl − 1
Xi

∫ li+1

li

(l − Li)
(
δx + u

)
dl (8)

The ordinary differential equations for Xi(t) and Li(t) described in equations
(7) and (8) do not form a solvable system because they involve weighted integrals
over the density function x(t, l). To obtain a closed solvable system the functions
δ(e, l) and g(e, l) are approximated by their first order Taylor expansion around
l = Li(t). Higher order terms involving squares and higher powers of (l−Li) are
neglected. In this way, equation (7) can be approximated to:

dXi(t)
dt

� −δ(e, Li)Xi(t)− Ui(t). (9)

And equation (8) is approximated to:

dLi(t)
dt

� g(e, Li)−
1
Xi

(∫ li+1

li

l u dl − LiUi

)
. (10)
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Define Ūi as the average diameter of logged trees in cohort i, i.e., Ūi =
1
Ui∫ li+1

li

l u(t, l) dl, and substitute it into equation (10). Assuming that the cut

trees have in average the same diameter than the standing trees in the cohort,
that is, Ūi = Li, equation (10) leads to

dLi(t)
dt

= g(e, Li). (11)

Equations (9) and (11) describe the dynamics of internal cohorts but they do not
account for the plantation of new trees. The boundary cohort is characterized
by

X0(t) =
∫ l1

l0

x(t, s) ds and L̂0(t) =
∫ l1

l0

(l − l0)x(t, l) dl. (12)

Differentiation of X0(t) and L̂0(t) with respect to time, and employing first order
Taylor approximations of the functions g(e, l) and δ(e, l) leads to a set of ordinary
differential equations that describe the dynamics of the boundary cohort. They
are given by

dX0

dt
� −δ(e, l0)X0(t)−

d

dl
δ(e, l0)L̂0(t) + p(t)

dL̂0

dt
� g(e, l0)X0(t) +

d

dl
g(e, l0)L̂0(t)− δ(e, l0)L̂0(t). (13)

In this way, the partial differential equation and its boundary condition (2)
governing the dynamics of the distribution density can be decoupled to a system
of ordinary differential equations in Xi(t) and Li(t) described by equations (9),
(11), and (13).

Once the partial integrodifferential equation describing the evolution of the
system has been transformed into a system of ordinary differential equations, the
objective function needs to be transformed also. Thus, the approximate decision
problem is given by:

max
Ū(t),p(t)

∫ t1

0

B̂(X̄(t), L̄(t), Ū(t))exp−rt dt−
∫ t1

0

C(p(t))exp−rt dt

+ St1(X̄(t1), L̄(t1))exp−rt1

(D’)

subject to the constraints

dXi(t)
dt

= −δ(E(t), Li)Xi(t)− Ui(t),
dLi(t)

dt
= g(E(t), Li)

dX0

dt
= −δ(E(t), l0)X0(t)−

d

dl
δ(E(t), l0)L̂0 + p(t)

dL̂0

dt
= g(E(t), l0)X0(t) +

d

dl
g(E(t), l0)L̂0(t)− δ(E(t), l0)L̂0(t)

Xi(0) = X̄0, g(E(t), l0)X0(t) = p(t), Ui(t), p(t) ≥ 0 Ui(t) ≤ Xi(t),
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where X̄, L̄(t) and Ū denote the vectors X̄ = (X0, · · · , Xn), L̄ = (L0, · · · , Ln)
and Ū = (U1, · · · , Un) respectively, X̄0 the initial density of each cohort, and

E(t) is the approximation of e(t), that is, E(t) =
∑n

i π
(

Li

2

)2

Xi.
It is only left one additional transformation. Since the value of the upper

interval bound of the boundary cohort, l1, increases over time, all newly planted
trees have a length widening interval [l0, l1]. Thus, the boundary cohort cannot be
continued indefinitely, because the range would become larger and larger and the
approximation would break down. Therefore, the cohorts have to be renumbered
at regular time intervals �t. This renumbering operation transforms the current
boundary cohort into an internal cohort and initializes a new, empty boundary
cohort realizing the following operations

Xi(k�t+) = Xi−1(k�t−), Li(k�t+) = Li−1(k�t−), X1(k�t+) = X0(k�t−)

L1(k�t+) = l0 +
L̂0(k�t−)
X0(k�t−)

, X0(k�t+) = 0, L̂0(k�t+) = 0, k = 1, 2, · · · (14)

Once this transformation has been applied, the system of differential equations
may be converted into a system of difference equations that can be solved using
standard software such as GAMS (General Algebraic Modelling System, (Brooke,
Kendrick and Meeraus, 1992)).

4 Empirical Study

The purpose of the empirical analysis is to illustrate the applicability of the
EBT method by determining the optimal selective-logging regime of a diameter-
distributed forest, that is, the selective logging regime that maximizes the dis-
counted private net benefits from timber production and carbon sequestration
of a stand of pinus sylvestris (Scots pine), over time horizon of 300 years.

The initial diameter distribution of the forest is presented in Table 1 and
parameters and functions used are defined in Table 2. The thinning and planting
period, �t, is set equal to 10 years, which is a common practice for a pinus
sylvestris forest.

The optimization problem was programmed in GAMS, and the Conopt2 solver
was employed to find the numerical solution. Optimizations with different ran-
dom initializations of the control variables were carried out to assure that solu-
tions are independent from the initially chosen values for the numerical optimiza-
tion technique. The empirical analysis calculates the optimal selective-logging
regime, given the initial diameter distribution of the trees described in Table 1
and a discount rate of 2%. Table 3 summarizes the results for the case where
carbon sequestration is not considered and for the case where it is considered.

Table 1. Initial diameter distribution of the trees used in the empirical analysis

Number of trees 287 218 167 115 68 35 16 7 3 1 1
Average diameter (cm) 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5
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Table 2. Parameters and functions used in the empirical analysis

growth function: g(E, l) = (80 − l)(0.0068983 − 0.00003107 E)
mortality rate: δ(E, l) = 0.01
marketable volume (m3): (0.699 + 0.000411L)(0.0002949L2.167563 )

timber price (euros/m3): min[−23.24 + 13.63L
1/2
i , 86.65]

carbon price (euros/Ton of
sequestered CO2): 15

logging costs: 23.4 euros/m3 + 3.6 euros/ha
maintenance costs (euros/ha)a: 0.07X + 1.18 10−5X2

planting costs (euros/tree): 0.60
a Maintenance costs depend on the total number of trees per hectare, X.

Table 3. Optimal selective-logging regime (where a discount rate of 2% is assumed)

Optimal management for timber Optimal management for timber and carbon
Year Number

of trees(a)
Net timber
revenue(b)

(Euros/ha)

Discounted
net benefit
(Euros/ha)

Number
of trees

Net timber
revenue
(Euros/ha)

Carbon
revenue
(Euros/ha)

Discounted
net benefit
(Euros/ha)

0 890 796.89 14.24 906 476.09 -44.37 -394.79
10 948 587.71 -175.24 1056 402.72 153.62 -262.71
20 977 615.18 -135.54 1128 760.82 205.97 37.21
30 993 892.85 33.96 1155 1296.09 193.43 305.54
40 997 1428.42 259.82 1155 1938.56 137.95 511.83
50 965 2543.29 628.85 1128 2494.13 45.09 596.15
60 936 2629.98 547.05 1138 1856.15 -69.68 255.01
70 845 3318.32 638.49 1040 3744.92 42.23 728.32
· · · · · · · · · · · · · · · · · · · · · · · ·
300 926 2018.79 3.18 1120 2241.93 -17.19 3.41

(a) The number of trees in the forest is calculated just after the trees are
planted, and before the thinning takes place.

(b) All monetary values apart from the discounted net benefit are expressed as
current values.

It shows that the incorporation of carbon sequestration benefits in the decision
problem leads to an increase in the optimal number of trees in the forest. As a
consequence, the average diameter of these trees is lower1, leading to a decrease
in revenues from timber sale. However, the revenues from the sequestering of car-
bon compensates the smaller timber revenues and the total sum of discounted
net benefits (NPV) of the forest over 300 years is 2972.02 euros per hectare,
which is a 10% higher than the NPV obtained when the carbon sequestration is
not accounted for.

5 Summary

This paper presents a theoretical model that allows determining the optimal
management of a diameter-distributed forest where the growth process of the
1 Due to space limitations, the average diameter is not shown in Table 2.
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trees depends not only on individual characteristics but also on the distribution
of the individual characteristics over the entire population. The corresponding
economic decision problem can be formulated as a distributed optimal control
problem where the resulting necessary conditions include a system of partial
integrodifferential equation that cannot be solved analytically. For this reason,
the utilization of a numerical method (Escalator Boxcar Train) is proposed. The
Escalator Boxcar Train method allows to transform the partial integrodifferential
equation into a set of ordinary differential equations and thereby to approximate
the distributed optimal control problem by a standard optimal control problem.
In contrast to the existing literature, the resulting optimization problem can
be solved numerically utilizing standard mathematical programming techniques
and does not require the programming of complex numerical algorithms.

An empirical analysis is conducted to show how the EBT method can be
implemented, determining the optimal selective-logging regime of a diameter-
distributed forest when carbon sequestration is taken into account.
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Abstract. The problem of optimal redistributive capital income tax-
ation in a differential game setup is studied. Following the influential
works by Judd [3] and Chamley [1], it has been quite common in the
economic literature to assume that the optimal limiting tax on capital
income is zero. Using a simple model of capital income taxation, pro-
posed originally by Judd, we show that the optimal tax can be different
from zero under quite general assumptions. The main result is a sufficient
condition for obtaining an appropriate solution to a differential game.

1 Motivation

Some twenty years ago Judd [3] and Chamley [1] independently arrived at the
conclusion that the optimal tax on capital income converges to zero in the long
run. In the simple version of his optimal redistributive taxation model Judd
considered three types of agents – workers, who supply labor inelastically and
consume all their income; capitalists who only receive rents and do not work; and
government which finances its consumption either through capital income taxa-
tion, or through lump-sum taxes imposed on workers. Chamley used a slightly
different setup. He derived the zero optimal tax result based on the represen-
tative agent model with an additively separable utility function, isoelastic in
consumption.

The Judd-Chamley findings have become widely accepted in public economics.
Yet, some economists have questioned the validity of the zero limiting capital
income tax in different contexts. For example, Kemp et al. [4] have demonstrated
that in the original open-loop formulation of Judd’s model the optimal tax rate
on capital income may not converge to a stable equilibrium and the optimal tra-
jectories may contain closed orbits. When the feedback Stackelberg formulation
is considered, the equilibrium tax rate could be a positive or a negative number.

Lansing [5] provided a counter-example to the simple redistributive tax model
examined by Judd and argued that with logarithmic utility function of capita-
lists the optimal tax is non-zero. However, he claimed that the obtained result
is specific for this functional form and will not be true in the general case.
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In this paper we show that under very general assumptions about the utility
and production functions the optimal tax can be different from zero. We prove a
proposition which provides a method for the explicit computation of the optimal
capital income tax and illustrate how the proposition works by examples with
CRRA utility functions. What distinguishes our approach from the rest of the
literature is that we derive the solution to the capital income tax problem using
sufficient conditions for optimality, whereas previous results have been based on
necessary conditions only. In terms of formulation, we take the Lansing version
of Judd’s optimal redistributive tax model and show that when one takes into
account the dependence of the tax rate on capital, the optimal tax may not be
zero and this result is not restricted to the logarithmic utility function. While
Kemp et al. [4] also show that the closed-loop formulation can lead to positive or
negative taxes, their model setup is different from the one we study. Some of the
more important differences are that in their model there is no depreciation and
the workers’ income consists of wages only (it does not include transfers from
the government).

2 Model Setup

We consider an economy populated by three types of infinitely-lived agents –
capitalists, workers and a government. Capitalists do not work and receive in-
come only from their capital ownership. Capital is used for the production of a
single good which can be either consumed or saved and invested. Workers supply
labor inelastically for which they receive wages and in addition, the government
grants them a lump-sum transfer or subtracts a lump-sum tax from their labor
income. The production technology is described by the function F (k) with the
standard properties that F (0) = 0, F ′(k) is positive and decreasing in k and
F ′′(k) is negative. Capital depreciates at a constant rate δ > 0 and F (k) − δk
is output net of depreciation. We assume that capital is bounded in this model.
Such an assumption is also made in [3] and it seems to hold true for some rea-
sonable specifications of production and utility functions as will be shown later
in the example. For simplicity, we consider the case where there is only one
representative capitalist.

We begin by stating the static profit maximization conditions for the compet-
itive firm:

r = F ′(k) (1)

w = F (k)− kF ′(k), (2)

where r denotes the interest rate and w is the wage paid to the worker. Since
in this setup workers do not save, their consumption is equal to their income.
The workers’ income x is composed of their wage earnings plus the government
transfer T (or minus the lump-sum tax depending on the sign of T ) which is
calculated as the tax rate τ times the capital income:

x(k, τ) = w + T = F (k)− kF ′(k) + τk(F ′(k)− δ).
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In this setting the problem that the representative capitalist faces is to maxi-
mize his lifetime utility U(c) subject to the capital accumulation constraint. The
utility function U(c) is assumed to be increasing in consumption c and concave.
Admissible controls c(t) are those non-negative integrable functions for which the
corresponding trajectory k(t) takes non-negative values. Formally the problem
is written as 1 ∫ ∞

0

e−ρtU(c(t))dt→ max (3)

with respect to c(t) and subject to

k̇(t) = (F ′(k(t))− δ)(1 − τ∗(t))k(t) − c(t) (4)

k(0) = k0 > 0.

Here F ′(k(t)) is the rental rate at time t, τ∗(t) is the capital income tax rate,
which is determined by the government and which the capitalist takes as given,
and ρ > 0 is the time preference parameter. To simplify the notations, let g(k) =
(F ′(k)−δ)k and h(k) = F ′(k)−δ−ρ. In this notation equation (4) can be written
as k̇(t) = (1− τ∗(t))g(k(t)) − c(t).

The problem that the government faces is to find a tax rule τ∗(t) that max-
imizes welfare which in this model is the weighted sum of the instantaneous
utilities of the capitalist U(c) and the worker V (x). The utility function V (x) is
also assumed to be increasing and concave. Formally, the government solves:∫ ∞

0

e−ρt[γV (x(k(t), τ(t))) + U(c∗(t))]dt→ max (5)

with respect to τ(t) and subject to

k̇(t) = (F ′(k(t))− δ)(1 − τ(t))k(t) − c∗(t) (6)

k(0) = k0 > 0,

where c∗ is the solution of the optimal control problem (3)–(4) and γ is a
parameter which determines how much weight the government puts on the
wellbeing of the workers. While no specific restrictions on γ are needed, it
seems reasonable to assign positive values to this parameter as typically gov-
ernments care about the workers. Using the definition of the function g(k) equa-
tion (6) becomes k̇(t) = (1 − τ(t))g(k(t)) − c∗(t) and the workers’ income is
x = F (k)− kF ′(k) + τg(k).

Note that the optimization problems of the government and the representative
capitalist are interrelated. When the capitalist decides about his consumption,
the decision is influenced by the tax policy of the government. Similarly, when the
government determines the optimal capital income tax, it must take into account
the response of the capitalist in terms of consumption/saving behavior. Thus, the
optimal capital income taxation problem naturally fits into the differential games
1 The integrals below are understood in the Riemann sense.
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framework. We shall say that a pair of functions (c∗, τ∗) is a Nash equilibrium
for the considered differential game (cf. [2]) iff c∗ and τ∗ are solutions of the
optimal control problems (3)-(4) and (5)-(6), respectively. If c∗ and τ∗ depend
on k the corresponding Nash equilibrium is called a feedback Nash equilibrium.

Below we formulate and prove a proposition which provides a method for
explicit computation of the solution to the optimal capital income tax problem
and to other problems with similar structure. The proof utilizes the sufficiency
conditions obtained by Seierstad and Sydsaeter in [6]. More specifically, we use
a combination of Theorem 8 and Theorem 10 and replace their transversality
condition with limt→∞ e−ρtπ(t)k(t) = 0 since both the state variable k and the
co-state variable π take non-negative values. The proof is based on the approach
proposed in [7].

Proposition 1. Let τ̄(k), k ∈ [0,+∞), be solution of the following differential
equation:

U ′(c̄)g(k) = α with the initial condition τ̄ (k0) = τ0, (7)

where α is a constant and

c̄(k) =
g(k)[ρ + g(k)τ̄ ′(k)]

g′(k)
≥ 0. (8)

Let the solution k̄(t), t ∈ [0,+∞), of the following differential equation

k̇(t) = (1− τ̄ (k(t)))g(k(t)) − c̄(t) with the initial condition k(0) = k0 > 0 (9)

exist and be bounded. We set

Hc∗(k, π) := max
c≥0

Hc(k, c, π) = max
c≥0

[U(c) + π((1 − τ̄(k))g(k) − c)],

Hg∗(k, λ) := max
τ

Hg(k, τ, λ) = max
τ

[U(c̄(k))+γV (x(τ, k))+λ((1−τ)g(k)−c̄(k))]

and assume that Hc∗(·, π) and Hg∗(·, λ) are concave functions for each π > 0
and λ > 0. We set

π̄(t) = U ′(c̄(k̄(t)) and λ̄(t) := γV ′(x(τ̄ (k̄(t)), k̄(t))), t ∈ [0,∞),

and assume that Hc∗(k̄(t), π̄(t)) = Hc(k̄(t), c̄(k̄(t)), π̄(t)) and Hg∗(k̄(t), λ̄(t)) =
Hg(k̄(t), τ̄ (k̄(t)), λ̄(t)) for almost all t ∈ [0,∞). Assume in addition that the
following relationship is satisfied for every k:

γV ′′(x(τ̄ (k), k))
[
h(k)− g′(k)(1 − τ̄(k)) +

c̄(k)g′(k)
g(k)

]
((1− τ̄ (k))g(k)− c̄(k))

= γV ′(x(τ̄ (k), k))[c̄′(k)− h(k)]− U ′(c̄(k))c̄′(k). (10)

Then the feedback Nash equilibrium of the game is given by the functions

c∗(k) = c̄(k), τ∗(k) = τ̄(k).
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Remark 1. For example, to ensure the assumption that the solution of (9) is
bounded, we can calculate the value θ(k0) := (1 − τ̄(k0))g(k0) − c̄(k0) of the
right-hand side of (9) at the initial point k0. Clearly, for θ(k0) ≤ 0, the solution
of (9) will belong to the interval [0, k0] and will be bounded. Let us consider
the case when θ(k0) > 0. If there exists a point k̂ > k0 with θ(k̂) = 0, then the
solution of (9) will belong to the interval [k0, k̂], and will be also bounded. The
existence of such k̂ can be checked easily once we have c̄ and τ̄ . It is important to
note, however, that the proposition remains valid even in some cases when capital
grows unboundedly. An important example is the one with logarithmic utility
functions U(c) and V (x) and a linear production function F (k) = Ak. Direct
application of Proposition (1) leads to the solution c∗ = ρk, τ∗ =

γρ

(1 + γ)(A− δ)
.

If the parameters of the model are such that A − δ − ρ − γρ

γ + 1
> 0, capital

will increase indefinitely. The transversality conditions though, will still hold as

k(t)π(t) =
1
ρ

and k(t)λ(t) =
γ + 1

ρ
.

Remark 2. Equations (7) and (8) determine a family of tax functions which
depend on the parameter α. The value of this parameter is found by solving (10)
with respect to α provided that a positive solution exists.

Proof. Let c∗(t), t ∈ [0,+∞), be an admissible control and let the corresponding
trajectory k∗(t) be well defined on the interval [0,+∞). Then c∗ will be a so-
lution of the optimal control problems (3)-(4) whenever the following sufficient
optimality conditions2 hold true:

U ′(c∗(t)) = π(t) (11)

π̇(t) = π(t) (ρ− g′(k∗(t)) + τ̄ ′(k∗(t))g(k∗(t)) + g′(k∗(t))τ̄ (k∗(t))) (12)

plus the concavity of Hc∗(·, π) and the transversality condition

lim
t→∞

e−ρtk∗(t)π(t) = 0.

Taking the time derivative of (7) with k := k̄(t) gives:

˙̄π(t)g(k̄(t)) + π̄(t)g′(k̄(t)) ˙̄k(t) = 0

˙̄π(t) = − π̄(t)g′(k̄(t)) ˙̄k(t)
g(k̄(t))

.

By substituting ˙̄k(t) with the right-hand side of the differential equation (4) with
c = c̄(k̄(t)), we get

˙̄π = − π̄g′(k̄)
g(k̄)

(
(1− τ̄ (k̄))g(k̄)− g(k̄)(ρ + τ̄ ′(k̄)g(k̄))

g′(k̄)

)
,

2 In fact, for this problem the constraint on the state variable k ≥ 0 is not binding
since k̄(t) = 0 is a solution of the capital equation. Because of the uniqueness of
solution, given that k0 > 0 the value k̄ = 0 is never reached and the Lagrangian
reduces to the Hamiltonian.
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which is exactly (12). Thus, c∗(t) = c̄(k̄(t)) satisfies the sufficient conditions for
optimality.

The transversality condition is ensured by the fact that capital in this model
is bounded and so is the co-state variable which depends on k. Next we turn to
the optimization problem of the government.
Let τ∗(t), t ∈ [0,+∞), be an admissible control and let the corresponding trajec-
tory k∗(t) be well defined on the interval [0,+∞). Then τ∗ will be a solution of
the optimal control problems (5)-(6) whenever the following sufficient optimality
conditions hold true:

λ(t) = γV ′(x(τ∗(t), k∗(t)) (13)
λ̇ = λρ− γV ′(x)x′

k − U ′(c̄(k∗))c̄′k(k∗)− λ(1 − τ∗(t))g′(k∗) + λc̄′k(k∗),

which can be rewritten using the definition for h(k) as

λ̇(t) = λ(t)[c̄′k(k∗(t))− h(k∗(t))]− U ′(c̄(k∗(t)))c̄′k(k∗(t)), (14)

plus the concavity of Hg∗(·, λ) and the transversality condition

lim
t→∞

e−ρtk∗(t)λ(t) = 0.

Taking the time derivative of λ̄(t) defined earlier, we obtain that

˙̄λ(t) = γV ′′(x(τ̄ (k̄(t)), k̄(t)))[x′
k(τ̄ (k̄(t)), k̄(t)) + x′

τ (τ̄ (k̄(t)), k̄(t))τ̄ ′(k̄(t))] ˙̄k(t).

After computing the respective derivatives and using (8), this can be written as

˙̄λ = γV ′′(x(τ̄ (k̄), k̄))
[
h(k̄)− (1− τ̄ (k̄))g′(k̄) +

c̄(k̄)g′(k̄)
g(k̄)

]
((1−τ̄ (k̄))g(k̄)−c̄(k̄)).

Finally, substituting the right-hand side of the above expression with the right-
hand side of (10) we obtain equation (14). Thus, τ∗(t) = τ̄ (k̄(t)) also satisfies the
sufficient conditions for optimality. Again, like in the problem of the represen-
tative capitalist, the transversality condition is satisfied due to the boundedness
of capital which is non-negative. ��

3 An Example

To demonstrate how the proposition works we provide a simple example for
which the optimal capital income tax at infinity is obtained explicitly and it
is different from zero. The example uses the following production and utility

functions: F (k) =
kσ

σ
+ δk, U(c) =

c1−σ

1− σ
, V (x) =

x1−σ

1− σ
, where σ is some

number between zero and one. In this formulation we have that g(k) = kσ.
Condition (7) with α > 0 becomes c̄−σkσ = α, from where if we denote β = α− 1

σ ,
it follows that c̄ = βk. So based on (7) and (8) we can find the optimal tax rule:

βk =
kσ

σkσ−1
(ρ + kσ τ̄ ′(k))
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τ̄ ′(k) =
σβ − ρ

kσ
, τ̄ (k) =

σβ − ρ

1− σ
k1−σ + τ0.

Assume in addition that τ̄ (k0) =
σβ − ρ

1− σ
k1−σ
0 + 1− 1

σ
. Then the optimal tax is

τ̄(k) =
σβ − ρ

1− σ
k1−σ + 1− 1

σ
.

The income of the workers is x =
σβ − ρ

1− σ
k and the differential equation for k

becomes k̇ =
kσ

σ
− β − ρ

1− σ
k, from where

k(t)1−σ =
1− σ + e(ρ−β)t(σ(β − ρ)k1−σ

0 − 1 + σ)
σ(β − ρ)

.

Having found k(t) and τ̄(k(t)), we are in a position to calculate the limiting
capital income tax τ̄∞ which is defined as the limit of τ̄ (k̄(t)) as t → ∞. We
have that

k̄1−σ
∞ := lim

t→∞
k̄(t)1−σ =

1− σ

σ(β − ρ)

and accordingly,

τ̄∞ =
σ(ρ− 2β) + β

σ(ρ− β)
.

To ensure that c̄(k) and τ̄ (k) as obtained above are indeed the solution to the
differential game we need to verify two more conditions – condition (10) and the

concavity of the maximized Hamiltonian functions. Using that
V ′′(x)x
V ′(x)

= −σ,
condition (10) simplifies to

γ(1− σ)σ−1

(
1− 2σ +

ρ

β

)
=
(
σβ − ρ

β

)σ

. (15)

The latter represents an equality from which the parameter β (and therefore α)
can be computed.

The maximized Hamiltonians for the problems of the capitalist and the gov-

ernment are Hc∗(k, π) =
σπ

σ−1
σ

1− σ
+

πkσ

σ
− σβ − ρ

1− σ
πk and Hg∗(k, λ) =

λ
σ−1

σ γ
1
σ

1− σ
+

(βk)1−σ

1− σ
+

λkσ

σ
− λ

σ−1
σ γ

1
σ − λβk, respectively, and they are concave.

From Proposition 1 it follows that c̄ = c∗ and τ̄ = τ∗. Below we show that
for different values of the parameters of the model in this example we can have
either positive or negative limiting capital income taxes.

Case 1. Positive limiting tax. Let σ = 0.8, ρ = 0.25 and γ = 7.1895. Then
direct calculations yield τ∗∞ = 0.3333 and k∗

∞ = 12.8601. If, for example, k0 = 1,
the corresponding tax at time zero will be τ∗(1) = 0.10. Thus, the government
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begins with a relatively small tax on capital income and as time elapses the tax
rate gradually increases to approach 1/3. Of course, the above results will be
valid only if condition (15) is satisfied which requires that β = 0.4.

Case 2. Negative limiting tax. Now let σ = 0.5, ρ = 0.5, and γ =
√

2. In this
case β = 2. Assume also that k0 = 1.21. With these values of the parameters the
government again begins at time zero with a tax rate of 10 percent of capital
income as can be directly computed. However, with time, unlike in the previous
case when the tax rate increases, here it decreases to the equilibrium value
τ∗∞ = −0.3333 corresponding to k∗

∞ = 0.4444. The intuition is that as capital
becomes smaller and smaller at some point in time it becomes optimal from the
welfare perspective to subsidize capital in order to sustain production. Note that
the government budget is balanced in every period since the moment that the
capital income tax becomes negative, or in other words a subsidy is granted to
the owners of capital, the government takes exactly the same amount from the
workers in the form of a lump-sum tax.
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Abstract. A brief survey on the numerical properties of the methods
for H∞ design and µ-analysis and synthesis of linear control systems is
given. A new approach to the sensitivity analysis of LMI – based H∞
design is presented that allows to obtain linear perturbation bounds on
the computed controller matrices. Some results from a detailed numeri-
cal comparison of the properties of the different available H∞ optimiza-
tion methods are then presented. We also discuss the sensitivity of the
structured singular value (µ) that plays an important role in the robust
stability analysis and design of linear control systems.

1 Introduction

In this paper we present a brief survey on the numerical properties of the meth-
ods for H∞ design and µ-analysis and synthesis of linear control systems. While
there are several results in the sensitivity and error analysis of the Riccati –
based H∞ optimization methods, the numerical properties of the Linear Matrix
Inequalities (LMI) – based H∞ design methods are not studied in depth up to
the moment. This is due to the fact that the solution of the LMI involved is done
by complicated optimization methods which makes difficult the derivation of er-
ror bounds. In this paper we present a new approach to the sensitivity analysis
of LMI – based H∞ design that allows to obtain linear perturbation bounds on
the computed controller matrices. A comparison of the sensitivity bounds for the
Riccati – based and LMI – based H∞ design methods shows that at the price
of larger volume of computations the LMI – based methods are free from the
numerical difficulties typical for the Riccati – based methods near the optimum.
Some results from a detailed numerical comparison of the properties of the dif-
ferent available H∞ optimization methods are then presented. We also discuss
the sensitivity of the structured singular value (µ) that plays an important role
in the robust stability analysis and design of linear control systems.

For brevity, we consider only the discrete-time caseH∞ optimization problem,
the conclusions concerning the continuous-time case being essentially the same.

We use the following notations: Rm×n – the space of real m × n matrices;
Rn = Rn×1; In – the identity n×n matrix; M� – the transpose of M ; ‖M‖2 – the
spectral norm of M ; ‖M‖F =

√
tr(M�M) – the Frobenius norm of M ; ‖M‖∞ :=

supRe s≥0 ‖M(s)‖2; vec(M) ∈ Rmn – the column-wise vector representation of
M ∈ Rm×n. The notation “:=” stands for “equal by definition”.
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2 Numerical Methods for H∞ Optimization

Consider a generalized linear discrete-time plant, described by the equations

xk+1 = Axk + B1wk + B2uk

zk = C1xk + D11wk + D12uk (1)
yk = C2xk + D21wk + D22uk

where xk ∈ Rn is the state vector, wk ∈ Rm1 is the exogenous input vector (the
disturbance), uk ∈ Rm2 is the control input vector, zk ∈ Rp1 is the controlled
vector, and yk ∈ Rp2 is the measurement vector. The transfer function matrix
of the system will be denoted by

P (z) =

⎡⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤⎦ .

The ‘H∞ suboptimal discrete-time control problem’ is to find an internally sta-
bilizing controller K(z) such that, for a pre-specified positive value of γ, it is
fulfilled that

‖F�(P,K)‖∞ < γ (2)

where F�(P,K) is the lower linear fractional transformation (LFT) on K(z).
In ‘H∞ optimization control problem’ one tries to find the infimum of γ (fur-

ther denoted by γopt) which satisfies (2). This infimum is difficult to find ana-
lytically in the general case. It is usually computed numerically by a bisection
procedure involving some method for suboptimal design. The solution of the H∞
optimization control problem corresponds to the best disturbance attenuation
at the controlled output of the closed-loop system.

There are three groups of methods for solving the discrete-time H∞ optimiza-
tion problems.

1. Methods based on a bilinear transformation to a continuous-time problem [1]
These methods allow to solve the discrete-time H∞ problem with the algorithms
and software for solving continuous-time problems. They implement a bilinear
transformation and its inverse so that the accuracy of the final solution depends
on the condition number of this transformation. Usually such methods perform
badly for high order problems and are considered unreliable from numerical point
of view. Note that it is possible to derive formulas for the discrete-time controller
implementing analytically the bilinear transformation [8]. Unfortunately, these
formulas are very complicated and we were unable to find a stabilizing controller
applying them to our examples.

2. Riccati equations based methods [1,6]
These methods include the solution of two matrix algebraic Riccati equations
and represent an efficient way for solving the H∞ suboptimal problem requiring
a volume of computational operations proportional to n3. Their implementation,
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however, is restricted only to ’regular’ plants, i.e. plants for which the matrices
D12 and D21 are of full rank and the transfer functions from controls to controlled
outputs and from disturbance to measured outputs have no invariant zeros on
the unit circle. Although various extensions are proposed for the ’singular’ cases,
the numerical difficulties in such cases are not overcame. Also, for γ approaching
the optimum value γopt the Riccati equations become ill-conditioned which may
affect the accuracy of the controller matrices obtained.

The numerical properties of the Riccati based H∞ design are relatively well
studied (see,for instance, [3]).

3. LMI-based methods [4,5,11]
These methods are based on the solution of three or more LMIs derived from
Lyapunov based criteria. The main advantage of these methods is that they
are implemented without difficulties to ’singular’ plants the only assumption
being the stabilizability and detectability of the triple (A,B2, C2). The LMI ap-
proach yields a finite-dimensional parametrization of all H∞ controllers which
allows to exploit the remaining freedom for controller order reduction and for
handling additional constraints on the closed-loop performance. The LMIs are
solved by convex optimization algorithms which require a volume of computa-
tional operations proportional to n6 [2,9]. This fact restricts the implementation
of LMI-based methods to relatively low order plants in contrast to the Riccati
equations based methods.

3 Sensitivity Analysis of the LMI-Based H∞
Optimization

Consider a proper discrete-time plant P (z) with state equations in the form
(1) with D22 = 0 and let N12 and N21 denote the null spaces of (BT

2 , DT
12) and

(C2, D21), respectively. The discrete-time suboptimalH∞ problem (2) is solvable
if and only if there exist two symmetric matrices R,S ∈ Rn×n satisfying the
following system of three LMIs [5]

[
N12 0
0 I

]T
⎡⎣ARAT −R ARCT

1 B1

C1RAT −γI + C1RCT
1 D11

BT
1 DT

11 −γI

⎤⎦[N12 0
0 I

]
< 0, (3)

[
N21 0
0 I

]T
⎡⎣ATSA− S ATSB1 CT

1

BT
1 SA −γI + BT

1 SB1 DT
11

C1 D11 −γI

⎤⎦[N21 0
0 I

]
< 0, (4)

[
R I
I S

]
> 0. (5)

Computing solutions (R,S) of the LMI system (3)-(5) is a convex optimization
problem. The sensitivity of the LMIs under consideration, subject to variations
in the plant data, may affect the accuracy of the matrices R and S and hence
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the accuracy of controller matrices. It is not clear up to the moment how LMIs
sensitivity is connected to the sensitivity of the given H∞ suboptimal problem.

In what follows, we present briefly a sensitivity analysis of the LMI approach
to H∞ optimization. First we perform sensitivity analysis of the LMI (4). Its
structure allows us to consider only the following part

(N21 + ∆N21)�

∗
{[

(A + ∆A)�(S∗ + ∆S)(A + ∆A)− (S∗ + ∆S) 0
(B1 + ∆B1)�(S∗ + ∆S)(A + ∆A) 0

]
+
[

0 (A + ∆A)�(S∗ + ∆S)(B1 + ∆B1)
0 −γoptI −∆γoptI + (B1 + ∆B1)�(S + ∆S)(B1 + ∆B1)

]}
∗(N21 + ∆N21) := H̄∗ + ∆H̄1 < 0, (6)

and to study the effect of the perturbations ∆A, ∆B1, ∆B2, ∆C1, ∆C2, ∆D11,
∆D12, ∆D21, ∆D22 and ∆γopt on the perturbed LMI solution S∗+∆S, where S∗

and ∆S are the nominal solution of LMI (4) and the perturbation, respectively.
The essence of our approach is to perform sensitivity analysis of the LMI (4) in
a similar manner as for a proper matrix equation after introducing a suitable
right hand part, which is slightly perturbed.

The matrix H̄∗ is obtained using the nominal LMI

N21
�
[
A�S∗A− S∗ A�S∗B1

B1
�S∗A −γoptI + B1

�S∗B1

]
N21 := H̄∗ < 0. (7)

The matrix ∆H̄1 is due to the data and closed-loop performance perturbations,
the rounding errors and the sensitivity of the interior point method that is
used to solve the LMIs. It is important to mention that the (1, 2), (2, 1), (2, 2)
blocks of the LMIs (3) and (4) pose constraints on the size of the perturbations
∆B1, ∆C1, ∆D11 and ∆γopt since the introduced right hand part matrix must
be negative definite.

The perturbed relation (6) may be written as

H̄∗ + ∆H̄1 = N21
�VN21 +N21

�V∆N21 + ∆N21
�VN21 + ∆N21

�V∆N21, (8)

where

V =
[
A�S∗A− S∗ + A�∆SA−∆S + A�S∗∆A + ∆A�S∗A 0

B1
�S∗A + B1∆SA + B1

�S∗∆A + ∆B1
�S∗A 0

]
+[

0 A�S∗B1 + A�∆SB1 + A�S∗∆B1 + ∆A�S∗B1

0 −γoptI −∆γoptI + B1
�S∗B1 + B1

�∆S∗B1 + B1
�S∗∆B1 + ∆B1

�S∗B1

]
.

Here the terms of second and higher order are neglected and we use the relation
(7) to obtain the following expression

∆H̄1 = N21
�ΨSN21 +N21

�(H̄∗ + ΨS)∆N21 + ∆N21
�(H̄∗ + ΨS)N21 +

∆N21
�(H̄∗ + ΨS)∆N21, (9)
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where

H̄∗ = N21
�H∗N21, ΨS = ΘS + ΛS , ΘS =

[
A�∆SA−∆S A�∆SB1

B1
�∆SA B1

�∆SB1

]
,

ΛS =
[

A�S∗∆A + ∆A�S∗A A�S∗∆B1 + ∆A�S∗B1

B1
�S∗∆A + ∆B1

�S∗A B1
�S∗∆B1 + ∆B1

�S∗B1 −∆γoptI

]
.

Neglecting the second and higher order terms in (9) one obtains

∆H̄1 = N21
�ΘSN21 +N21

�ΛSN21 + ∆N21
�H̄∗N21 +N21

�H̄∗∆N21. (10)

Using the fact that ‖vec(M)‖2 = ‖M‖F we can finally obtain relative perturba-
tion bound for the solution S∗ of the LMI (10) in the form

‖∆S‖2
‖S∗‖F

≤ kA
‖∆A‖F
‖A‖F

+ kB1

‖∆B1‖F
‖B1‖F

+ kγ
|∆γopt|
|γopt|

+ kCD
‖[∆C2, ∆D21]‖F
‖[C2, D21]‖F

+ kH
‖∆H̄1‖F
‖H̄∗‖F

, (11)

where kA, kB1 , kγ , kCD, kH may be considered as individual relative condition
numbers of the LMI (4) with respect to the perturbations in the data.

In a similar way it is possible to find relative perturbation bound for the
solution R of the LMI (3). The bounds on ∆R and ∆S are then used to find
perturbation bounds on the controller matrices.

4 A Comparison of the Available Methods for H∞ Design

In this section we present in brief the results from a numerical comparison of the
methods for discrete-timeH∞ design as implemented in Robust Control Toolbox
of MATLAB [1] and SLICOT library [10].

As a test example we consider a family of discrete-time H∞ optimization
problems for a system with

A = diag {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1− α,−1 + α} ,

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0 0
0 −0.1 0
0 0 0.1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1 =

⎡⎣1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

⎤⎦ , C2 =
[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]
,
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D11 =

⎡⎣0.1 0 0
0 0.1 0
0 0 0.1

⎤⎦ , D12 =

⎡⎣ 0 0
β 0
0 β

⎤⎦ , D21 =
[
0 η 0
0 0 η

]
, D22 =

[
0 0
0 0

]
.

With the decreasing of α two open-loop poles will approach the unit circle which
creates difficulties for the methods based on Riccati equations solution. If the
parameter β (η) is zero then the regularity conditions are violated. Changing
parameters α, β, η allows to reveal the numerical properties of the different
methods for H∞ optimization.

The numerical results obtained lead to the following conclusions.

– The experiments show a serious disadvantage of the routines based on the
Riccati equations solutions. The condition numbers of the Riccati equations
in some cases approach 1/eps (eps is the relative machine precison) while in
the same cases the solution obtained by the LMI based method do not show
singularities and allows to obtain smaller values of γopt.

– The fulfillment of regularity conditions is important only for the methods
based on the Riccati equations solution. The violation of these conditions
doesn’t affect the method based on LMI solution.

– Although the LMI based method produces the best solution it is necessary
to take into account that the numerical properties of the second step of
this method - the computation of controller matrices - are not studied well.
A numerical analysis showing some type of stability of the method is still
needed.

5 Numerical Aspects of the µ-Analysis and Synthesis

The structure of an uncertain control system is shown in Figure 1 where M ∈
Cn×n and ∆ is the block-diagonal matrix representing the uncertainty.

The robust stability analysis of the system, shown in Figure 1, is done by
using the so called structured singular value (µ)[13]. The structured singular
value is a powerful tool in the robust analysis and design of control systems. In
particular, the size of the smallest destabilizing perturbation for a linear time
invariant system is inversely proportional to µ. The value of µ may be also
connected to the robust performance of a control system. Unfortunately, in the
general case the structured singular value can not be computed analytically and
its determination is done by a complicated numerical method [12]. The function

∆

M

Fig. 1. M -∆ feedback connection
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Fig. 2. Exact and computed structured singular value

µ can be bounded above by the solution of a convex optimization problem, and
in general there exists a gap between µ and its convex bound. This gap may
introduce an unnecessary pessimism in the robust analysis and design. In what
follows, we show that by an appropriate choice of the system parameters, the
gap between µ and its upper bound may be made arbitrarily large.

Consider a second order system described by the equation

d2y

dt2
+ a1

dy

dt
+ a2y = 0,

where the coefficients a1, a2 are subject to uncertainty. Specifically, we shall
suppose that

a1 = ā1(1 + p1δ1), |δ1| ≤ 1,

a2 = ā2(1 + p2δ1), |δ2| ≤ 1

where ā1, ā2 are the nominal values of the coefficients, p1, p2 are the relative
uncertainties in a1, a2, respectively and δ1, δ2 are real uncertainties.

For this system it is possible to compute the exact value of the structured
singular value. After some lengthly derivation, it is possible to show that in the
given case the frequency response of µ is given by

µ =
1

max {| − 1/p1|, |(−ā2 + ω2)/(ā2p2)|}
(12)

where ω is the frequency in rad/s.
In Figure 2 we show the exact and computed structured singular value for

ā1 = 0.01, ā2 = 400.0025 and p1 = p2 = 0.5. The system under consideration is
lightly damped (the system poles are −0.005± 20.0001j) and it is assumed that
the relative changes in the coefficients are less than 50 %. The computed value of
µ is found by the function mussv from the Robust Control Toolbox of MATLAB.
It is seen from Figure 2 that the upper bound computed exceeds the exact
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value of µ several times. This may be an indication of a high sensitivity of the
structured singular value or may be associated with some numerical difficulties
of its computation. From the computed upper bound one may conclude that the
system does not achieve robust stability (the supremum of µ is greater than 1).
In fact, the system remains stable for relative changes in the coefficients less
than 100 %.
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Abstract. We consider an optimal control problem with control con-
straints satisfying conditions of smoothness and coercivity. By applying
two Runge-Kutta schemes: one to the differential equation and a different
one to the adjoint differential equation that is related to the maximum
principle for optimal control, we show that the error of approximation
taken with respect to the mesh spacing is of second order. This extends
previous results where the same scheme was applied to the prime and to
the adjoint equation. This extends previously known results where the
same discretization scheme is applied to the primal and to the adjoint
equation.

Keywords: optimal control, Runge-Kutta scheme, numerical solution.

1 Introduction

In this paper we consider the terminal optimal control problem with control
constraints assuming conditions of coercivity and smoothness. Our goal is to
find a discrete approximation, using Runge-Kutta formulae whose error is of
second order with respect to the step size h. Estimates of the same order for the
problem considered here were obtained earlier in [1]. In contrast to [1], in this
paper we consider a larger class of discretizations employing two Runge-Kutta
schemes to the state and costate equations that may be different from each other.
When the optimal control has time derivative of bounded variation, we prove
the existence of an approximate solution, which error estimate is O(h2), as in
[1], but for larger class of discretizations. In our proof we apply the fixed point
argument from [1].

Section 2 contains a preliminary material, while section 3 provides the proof
of our main result.

2 Preliminaries

We consider the following optimal control problem

minimize C(x(1)) (1)
subject to ẋ(t) = f(x(t), u(t)), u(t) ∈ U, a.e. t ∈ [0, 1],

x(0) = x0, x ∈ W 1,∞, u ∈ L∞,

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 358–365, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where the state x(t) ∈ Rn, the control u(t) ∈ U , f : Rn×Rm → Rn, C : Rn →
R and the set U ⊂ Rm is closed and convex. The two main assumptions are
formulated below.

Smoothness. The problem (1) has a local solution (x∗, u∗) ∈ W 2,∞ × W 1,∞.
There exist an open set Ω ⊂ Rn × Rm and a ball Bρ(x∗(t), u∗(t)) ⊂ Ω for
t ∈ [0, 1], such that the second derivative of f is Lipschitz continuous in Ω, while
the second derivative of C is Lipschitz continuous in Bρ(x∗(1)).

Here Ba(z) is the closed ball centered at z with radius a and Wm,∞(Rn)
denotes the Sobolev space of vector-valued measurable functions x : [0, 1]→ Rn

whose j-th derivative belongs to L∞(Rn) for all 0 ≤ j ≤ m with norm ‖x‖W m,∞

=
m∑

j=1

‖x(j)‖L∞ .

Under Smoothness assumption, there exists an associated adjoint function
ψ∗ ∈ W 2,∞, for which the minimum principle is satisfied at (x∗, ψ∗, u∗):

ẋ(t) = f(x(t), u(t)) for all t ∈ [0, 1], x(0) = x0,

ψ̇(t) = −∇xH(x(t), ψ(t), u(t)) for all t ∈ [0, 1], ψ(1) = ∇C(x(1)),
−∇uH(x(t), ψ(t), u(t)) ∈ NU (u(t)), u(t) ∈ U for all t ∈ [0, 1],

where H is the Hamiltonian defined by H(x, ψ, u) = ψf(x, u), and ψ is a row
vector in Rn. The set NU (u) is a set of row vectors

NU (u) = {w ∈ Rm : w(v − u) ≤ 0 for all v ∈ U}.

Coercivity. There exists a constant α > 0 such that

B(x, u) ≥ α‖u‖2L2 for all (x, u) ∈ M,

where the setM the quadratic form B, and the matrices A(t), B(t), C(t), Q(t),
R(t), S(t) are defined by

M = {(x, u) : x ∈W 1,2, u ∈ L2, ẋ(t) = Ax + Bu,

x(0) = 0, u(t) ∈ U − U a.e. t ∈ [0, 1]},

B(x, u) =
1
2
(x(1)TV x(1) + 〈x,Qx〉 + 〈u,Ru〉+ 2 〈x, Su〉),

A(t) = ∇xf(x∗(t), u∗(t)), B(t) = ∇uf(x∗(t), u∗(t)), V = ∇2C(x∗(1)),

Q(t) = ∇xxH(w∗(t)), R(t) = ∇uuH(w∗(t)), S(t) = ∇xuH(w∗(t));

Here, 〈·, ·〉 is the usual L2 inner product, w∗ = (x∗, ψ∗, u∗). Coercivity repre-
sents a second-order sufficient condition for strict local optimality. We need the
following abstract result [1,2].
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Proposition 1. Let X be a Banach space and let Y be a normed space with
norms in both spaces denoted by || · ||. Let F : X → 2Y let L : X → Y be
a bounded linear operator, and let T : X → Y with T continuously Frechet
differentiable in Br(ω∗) for some ω∗ ∈ X and r > 0. Suppose that the following
conditions hold for some δ ∈ Y and scalars ε, λ, and σ > 0 :

(P1) T (ω∗) + δ ∈ F(ω∗);
(P2) ‖∇T (ω)− L‖ ≤ ε for all ω ∈ Br(w∗);
(P3) The map (F − L)−1 is single valued and Lipschitz continuous in Br(π), π =
(T − L)(ω∗), with Lipschitz constant λ;

If ελ < 1, εr ≤ σ, ||δ|| ≤ σ and ||δ|| ≤ (1 − λε)r/λ, then there exists a unique
ω ∈ Br(ω∗) such that T (ω) ∈ F(ω). Moreover we have the estimate

||ω − ω∗|| ≤ λ

1− λε
||δ||.

We approximate the optimality system for (1) by the following discrete time
system

x′
k =

s∑
i=1

bif(yki, uki), x0 = a, (2)

yki = xk + h

s∑
j=1

aijf(ykj ,ukj), (3)

ψ′
k = −

s∑
i=1

bizki∇xf(yki, uki), ψN = ∇C(xN ), (4)

zki = ψk+1 + h

s∑
j=1

aijzkj∇xf(ykj ,ukj), (5)

−
∑
j∈Ni

bjzkj∇uf(ykj ,ukj) ∈ NU (uki), (6)

where x′
k = (xk+1 − xk)/h, ψ′

k = (ψk+1 − ψk)/h; ψk and zki are row vectors
in Rn, and yki, zki, uki are approximations, respectively, to the state, costate,
and control variables at the moment (tk + σih) ∈ [0, 1], 0 ≤ σi ≤ 1, Ni =
{j ∈ [1, s] : σj = σi}, 1 ≤ i ≤ s, 0 ≤ k ≤ N − 1. Theorem 7.2 in [3] [p.
214] implies that there exist positive constants γ and β, β ≤ ρ, such that,
if h < γ whenever (xk, uki, ψk+1) ∈ Bβ(x∗(t), u∗(t), ψ∗(t)) for some t, then
each one of the equations (3) and (5) has a unique solution yki = yi(xk,uk),
zki = zi(xk,uk, ψk+1) and yki, zki ∈ Bρ(x∗(t), u∗(t), ψ∗(t)).

We assume that the following conditions hold

(a)

s∑
i=1

bi = 1, (b)

s∑
i=1

bici =
1

2
, ci =

s∑
j=1

aij , (c)

s∑
i=1

biσi =
1

2
, (7)
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(a)

s∑
i=1

bi = 1, (b)
∑
i∈Nl

bici =
∑
i∈Nl

bi(1 − σi), ci =

s∑
j=1

aij , (c)

s∑
i=1

biσi =
1

2
, (8)

(a)
∑
i∈Nl

bici =
∑
i∈Nl

biσi, (b)
∑
i∈Nl

bi =
∑
i∈Nl

bi > 0, (9)

where l ∈ [1, s], 0 ≤ σi ≤ 1. Conditions (7) are related to the state equations
while the conditions (8) are related to the costate equations. The parts (a) and
(c) of (8) and conditions (a) and (c) of (7) are identical with the conditions (19)
in [1]. They allow us to apply the numerical integration result formulated in [1]
(Proposition 4.1). The coefficients of the state and costate equations are related
with each other through the conditions (9). The condition (8c) follows from (7c)
and (9b) as well as (8a) follows from (7a) and (9b). We will use the notations
b = (b1, b2, · · · , bs)T , b = (b1, b2, · · · , bs)T , and

τ(v; h) =

1∫
0

ω(v, [0, 1]; t, h) dt, τk(v; h) =

tk+1∫
tk

ω(v, [tk, tk+1]; t, h) dt

for the averaged modulus of smoothness of v over the intervals [0, 1] and [tk, tk+1]
with modulus of continuity

ω(v, J ; t, h) = sup{|v(s1)− v(s2)| : s1, s2 ∈ [t− h/2, t + h/2] ∩ J};

| · | denotes the Euclidean norm for vectors.

3 Main Result

Theorem 1. If the coefficients of the Runge-Kutta integration scheme satisfy
conditions (7)-(9), and if smoothness and coercivity conditions hold, then for all
sufficiently small h, there exists a solution (xh, ψh,uh) of (2)-(6) such that

max
0≤k≤N
1≤i≤s

|xh
k − x∗(tk)| + |ψh

k − ψ∗(tk)| + |uh
ki − u∗(tk + σih)| ≤ ch(h + τ (u̇∗; h)).

Proof. The proof is based on the Proposition 1. In the L∞ discrete space X with
elements ω = (x, ψ,u), where

x = (x0, . . . ,xN ), xk ∈ Rn,

ψ = (ψ0, . . . , ψN ), ψk ∈ Rn,

u = (u0, . . . ,uN−1), uk ∈ U,

and U = {(u1,u2, . . . ,us) ∈ Rms : ui ∈ U for each 1 ≤ i ≤ s and ui = uj for
every j ∈ Ni}, we consider the maps
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T (ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
k −

s∑
i=1

bif(yki, uki), 0 ≤ k ≤ N − 1

ψ′
k +

s∑
i=1

bizki∇xf(yki, uki), 0 ≤ k ≤ N − 1

−
∑

j∈Ni

bjzkj∇uf(ykj ,ukj), 1 ≤ i ≤ s, 0 ≤ k ≤ N − 1

ψN −∇C(xN )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F(ω) =

⎛⎜⎜⎝
0
0

NU (uk1) × NU (uk2) × · · · × NU (uks), 0 ≤ k ≤ N − 1
0

⎞⎟⎟⎠
and the linear operator

L(ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x′
k −Akxk −Bkukb, 0 ≤ k ≤ N − 1

ψ′
k + ψk+1Ak + (Qkxk + Skukb)T , 0 ≤ k ≤ N − 1

−
∑

j∈Ni

bj(uT
kjRk + xT

k Sk + ψk+1Bk), 1 ≤ i ≤ s, 0 ≤ k ≤ N − 1

ψN − xT
NV

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Here and hereafter we use the notations: Ak = A(tk), Bk = B(tk), etc. The above
three operators map the space X into the space Y consisting of 4-tuples of finite
sequences in L1×L1×L∞×Rn. Here L1(RNn) and L∞(Rm) are discrete spaces

with norms defined by ‖z‖L1 =
N∑

i=0

h|zi|, ‖z‖L∞ = sup
0≤i≤N

|zi|, zi ∈ Rn. The point

ω∗ ∈ X is the sequence with elements ω∗
k = (x∗

k, ψ
∗
k, u

∗
k), where x∗

k = x∗(tk),
ψ∗

k = ψ∗(tk), u∗
ki = u∗(tk + σih). Now we are going to show that conditions

(P1)-(P3) are fulfilled.
1. The proof of condition (P1) consists of four parts, that refer to the corre-

sponding components of the operators T and F . In the first part, i. e. for the
proof of the estimate of the state residual conditions (7) are used, which can
be seen in [1]. The fourth part is straightforward from ψ∗

N = ∇C(x∗
N ). For the

estimate of the costate residual (the second part) we use the Lipschitz continuity
of the functions ∇xf, x

∗, u∗, ψ∗ to obtain

ψ∗
ki := ψ∗(tk + σih) =

ψ∗
k+1 + (σi − 1)hψ̇∗

k+1 + O(h2) = ψ∗
k+1 + (1− σi)hψ∗

k+1∇xfk + O(h2),

z∗ki := ψ∗
k+1 + h

s∑
j=1

aijz
∗
kj∇xf(y∗kj , u

∗
kj) = ψ∗

k+1 + h
s∑

j=1

aijψ
∗
k+1∇xfk + O(h2),
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which together with (8) (b) yield
s∑

i=1

biz
∗
ki =

s∑
i=1

biψ
∗
ki + O(h2), where x∗

ki =

x∗(tk + σih), y∗ki = yk(x∗
k, u

∗
k), ∇xfk = ∇xf(x∗(tk), u∗(tk)). It is clear that

|y∗ki − x∗
ki| = O(h), |y∗ki − x∗

k| = O(h), |z∗ki − ψ∗
ki| = O(h), |u∗

ki − u∗
k| = O(h)

and |∇xf(y∗ki, u
∗
ki)−∇xf(x∗

ki, u
∗
ki)| = O(h). By the help of

s∑
i=1

bi∇xf(y∗ki, u
∗
ki) =

s∑
i=1

bi∇xf(x∗
ki, u

∗
ki)+O(h2) (the proof of this estimate makes use of (9) (a)), and

ψ̇∗ = −∇xH(x∗, ψ∗, u∗), we can write

s∑
i=1

biz
∗
ki∇xf(y∗ki, u

∗
ki) =

s∑
i=1

biψ
∗
ki∇xf(x∗

ki, u
∗
ki) +

s∑
i=1

bi(z∗ki − ψ∗
ki)∇xf(y∗ki, u

∗
ki) +

s∑
i=1

biψ
∗
ki(∇xf(y∗ki, u

∗
ki)−∇xf(x∗

ki, u
∗
ki)) =

s∑
i=1

biψ
∗
ki∇xf(x∗

ki, u
∗
ki) +

s∑
i=1

bi(z∗ki − ψ∗
ki)∇xfk +

s∑
i=1

bi(z∗ki − ψ∗
ki)Mki +

s∑
i=1

biψ
∗
k(∇xf(y∗ki, u

∗
ki)−∇xf(x∗

ki, u
∗
ki))−

s∑
i=1

biσih∇xH(tk + θh)(∇xf(y∗ki, u
∗
ki)−∇xf(x∗

ki, u
∗
ki)) =

s∑
i=1

biψ
∗
ki∇xf(x∗

ki, u
∗
ki) + O(h2),

where Mki is a matrix whose (p, q)-th element is

(Mki)pq = ∇x
∂fp

∂xq
(tk + θpqh)(y∗ki − x∗

k) +∇u
∂fp

∂xq
(tk + θpqh)(u∗

ki − u∗
k),

where 0 < θpq < 1, ∂fp

∂xq (t) = ∂fp

∂xq (x∗(t), u∗(t)) (the upper index p indicates the
p-th component of the vector x ∈ Rn) and ∇xH(t) = ∇xH(x(t), ψ(t), u(t)).

Using Proposition 4.1 from [1] under conditions (8a) and (8c) we obtain that

ψ∗′
k +

s∑
i=1

biz
∗
ki∇xf(y∗ki, u

∗
ki) =

− 1
h

tk+1∫
tk

ψ∗(t)∇xf(x∗(t), u∗(t)) dt +
s∑

i=1

biψ
∗
ki∇xf(x∗

ki, u
∗
ki) + O(h2) ≤

cτk(u̇∗;h) + O(h2).
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Hence, the L1 norm of the second component of T (ω∗) − F(ω∗) satisfies the
following inequality:

N−1∑
i=0

h

∣∣∣∣∣ψ∗′
k +

s∑
i=1

biz
∗
ki∇xf(y∗ki, u

∗
ki)

∣∣∣∣∣ ≤ ch(h + τ(u̇∗;h)).

In order to estimate the control residual we first mention that the condition (9)
(b) gives −

∑
j∈Ni

bjψ
∗
kj∇uf(x∗

kj , u
∗
kj) ∈ NU (u∗

ki). Using the estimate
∑

j∈Ni

bjz
∗
kj =∑

j∈Ni

bjψ
∗
kj + O(h2) that is straightforward from (8b), and also the estimate∑

j∈Ni

bj∇uf(y∗kj , u
∗
kj) =

∑
j∈Ni

bj∇uf(x∗
kj , u

∗
kj) +O(h2), which can be proven with

the help of (9a), by analogy with the costate case we obtain that∑
j∈Ni

bjz
∗
kj∇uf(y∗kj , u

∗
kj) =

∑
j∈Ni

bjψ
∗
kj∇uf(x∗

kj , u
∗
kj) + O(h2).

Finally, we achieve the estimate

min
{∣∣∣∣y +

∑
j∈Ni

bjz
∗
kj∇uf(y∗kj , u

∗
kj)
∣∣∣∣ : y ∈ NU (u∗

ki)
}

= O(h2)

and conclude that

‖T (w∗)−F(w∗)‖ ≤ ch(h + τ(u̇∗; h)).

2. The next estimate,

‖∇T (ω)− L‖ ≤ c(‖w − w∗‖+ h),

is derived by estimating the differences between the matrices of these two op-
erators, which is achieved by making use of the fact that the elements of the
matrices are Lipschitz continuous functions on the closed ball Bβ(x∗, u∗, ψ∗).

3. In order to prove (P3) we have to make sure (see [4], Theorem 3, p. 79)
that for a given parameter π = (p,q, r, s), under conditions (9b), the inclusion

L(w) + π ∈ F(w),

is exactly the necessary condition for the linear quadratic problem:

minimize Bh
(x,u) + sTxN + h

N−1∑
k=0

(
qT

k xk +
s∑

i=1

rT
kiuki

)

subject to x′
k = Akxk + Bkukb− pk, x0 = 0, uk ∈ U,

where

Bh
(x,u) =

1

2

(
xT

NV xN + h

N−1∑
k=0

(
xT

k Qkxk + 2xT
k Skukb +

s∑
i=1

biuT
kiRkuki

))
.
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If the quadratic form Bh
satisfies the discrete coercivity condition

Bh
(x,u) ≥ α‖u‖2L2 for all (x,u) ∈Mh, (10)

where α > 0 is independent of h and

Mh = {(x,u) : x′
k = Akxk + Bkukb, x0 = 0, uk ∈ U−U},

then the problem has unique solution that depends Lipschitz continuously on π
[5] (Lemma 1).

If (7a), (8a), (9b) hold, then the quadratic form Bh
satisfies (10). In order to

prove this let us consider the quadratic form Bh(x,u) obtained from Bh
(x,u)

by replacing b and bi with b and bi, respectively. Using condition (9b), and

xT
k Skukb− xT

k Skukb
= xT

k Sk

(
uk1b̄1 + · · ·+ uks b̄s − uk1b1 − · · · − uksbs

)
= 0,

s∑
i=1

(
biuT

kiRkuki − biuT
kiRkuki

)
= 0,

we can make the conclusion that the equalities

Bh
(x,u) = Bh(x,u) +

h

2

N−1∑
k=0

(
xT

k Skukb− xT
k Skukb +

s∑
i=1

(
biuT

kiRkuki − biuT
kiRkuki

))
= Bh(x,u)

hold. Taking into account that for sufficiently small h the quadratic form Bh(x,u)
satisfies the discrete coercivity condition (see formula (47) in [1]) we complete
the proof.

To complete the proof we choose the constant quantities in Proposition 1 in
such a way that the inequalities therein are satisfied. ��
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Abstract. Optimality conditions of Pontryagin’s type are obtained for
an optimal control problem for a size-structured system described by a
first order PDE where the differential operator depends on a control and
on an aggregated state variable. Typically in this sort of problems the
state function is not differentiable, even discontinuous, which creates dif-
ficulties for the variational analysis. Using the method of characteristics
(which are control and state dependent for the considered system) the
problem is reformulated as an optimization problem for a heterogeneous
control system, investigated earlier by the second author. Based on this
transformation, the optimality conditions are obtained and a stylized
meaningful example is given where the optimality conditions allow to
obtain an explicit differential equation for the optimal control.

1 Introduction

In this paper we consider the following optimal control problem:

max
v(t)∈V

{∫ ω

0

L(s, x(T, s))ds +
∫ T

0

K(t, y(t), v(t)) dt

}
, (1)

subject to the constraints

xt(t, s) + g(t, s, y(t), v(t))xs(t, s) = f(t, s, x(t, s), y(t), v(t)), (t, s) ∈ D, (2)

x(0, s) = x0(s), x(t, 0) = 0, s ∈ Ω, t ∈ [0, T ], (3)

y(t) =
∫

Ω

h(t, s, x(t, s)) ds, t ∈ [0, T ], (4)

Here t ∈ [0, T ], s ∈ Ω := [0, ω) (T > 0 and ω > 0 are fixed), D = [0, T ] × Ω;
x : D &→ R and y : [0, T ] &→ Rm are state variables, v : [0, T ] &→ V ⊂ Rr is a
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control variable, L, K, f , h, x0 are given functions of the respective arguments.
Informally xt and xs mean the partial derivatives of x, although these will not
necessarily exist, therefore the strict meaning of the system will be explained in
the next section. Here t is interpreted as time, s – as the “size” of the agents in
a population, then x(t, ·) is the size-density of the population, y(t) is a vector of
some aggregated quantities related to the population (such as the total number
of agents, if h = x, the total “biomass”, if h = sx, etc.). The meaning of the
control v(t) in the population context is the intensity of supply of food, water,
heating, etc., in absolute or relative (to the population size) units. In the same
context x0(s) is the density of the initially existing agents. The function g is
interpreted as the growth “velocity” of the agents of size s at time t, given the
values of the aggregated quantities y(t) and of the control v(t). The function
f represents the in-/out-flow due to mortality, migration, etc.; f includes also
the term −gsx that appears since we have taken gxs in the l.-h. side of (2)
instead of [gx]s (which results from the standard model micro-foundation). Of
course, several other interpretations are possible and well known in the contexts
of physics or economics.

In the present paper we deliberately restrict the generality of the model by
excluding distributed (harvesting) controls, inflow of agents of zero size (which
is often present in this sort of models), more general objective function, etc.
There are several reasons for this restriction: size limitation of the paper, nu-
merous technical difficulties that arise in some more general considerations,
more transparency that will help to exhibit our main point: derivation of op-
timality conditions that hold also in case of a discontinuous state function x.
The last point is important, especially in the control context, since x is typi-
cally discontinuous. In our restricted model this happens due to possible dis-
continuity of x0 and/or inconsistency of the initial and boundary conditions in
(3). In case of controllable boundary conditions or of distributed control of the
in-/out-flow such discontinuity (or at least non-differentiability) may be created
endogenously.

Despite of the large amount of literature on size-structured systems
([6,4,1,2,5], to mention a few) the control theory for such systems is, to our knowl-
edge, not developed (in contrast to the age-structured systems, which could be
viewed as a special case). On the other hand, recent research in management of
renewable resources and in air quality protection faces challenging control prob-
lems for size-structured systems. The present paper is aimed to make a step in
the development of a respective control theory and the corresponding numerical
methods.

The paper is organized as follows. The strict formulation of the problem is
given in Section 2. In Section 3 the problem is transformed to an optimiza-
tion problem for a heterogeneous control system [9], which is used in Section 4
to obtain Pontryagin’s type optimality conditions. Section 5 presents the
solution of a stylized meaningful example, which can be used for numerical
tests.
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2 Main Assumptions and Strict Formulation of the
Problem

The following will be assumed further on in the paper.

Standing assumptions. The set V ⊂ Rr is convex and compact. The functions
f , g, h, L, K are defined on the projections of the set D × R × Rm × V ,
corresponding to the indicated variables, with values in R (respectively, in Rm

for h), are measurable in t and continuous in v (locally uniformly in the rest of
the variables). The derivatives fs, fx, fy, gs, gy, gss, gsy, hs, hx, Ls, Lx, Ky exist,
are locally bounded, continuous in v and locally Lipschitz in (s, x, y) (uniformly
in the rest of the variables). In addition, |f(t, s, x, y, v)|+ |h(t, s, x)| ≤ C(1+ |x|),
where C is a constant, f(t, s, 0, y, v) = 0, h(t, s, 0) = 0, L(s, 0) = 0, g(t, 0, y, v) >
0, g(t, ω, y, v) ≤ 0. Moreover, x0 : Ω &→ R is measurable and bounded, x0(s) = 0
for s > s0, where s0 < ω.

Due to the assumptions for g we have that for given measurable functions y
and v the solution of the equation

ċ(t) = g(t, c(t), y(t), v(t)), c(0) = σ ∈ Ω

exists on D and is unique. We denote this solution by cy,v[σ](t), t ∈ [0, T ]. Then
for every fixed t the mapping σ ←→ cy,v[σ](t) is a diffeomorphism between
S0 := [0, s0] and Sy,v(t) := [cy,v[0](t), cy,v[s0](t)].

For fixed measurable y and v and σ ∈ S0 we consider the equation

ξ̇(t) = f(t, cy,v[σ](t), ξ(t), y(t), v(t)), ξ(0) = x0(σ).

According to the assumptions for f this solution exists on [0, T ] and is unique.
Denote it by ξy,v[σ](t). Define the function x(t, s) for t ∈ [0, T ] and s ∈ Sy,v(t)
as x(t, s) = (ξy,v[s])−1(t), with the inversion of the above diffeomorphism in the
r.-h. side. Then the following equation holds:

d
dt

x(t, cy,v[σ](t)) = f(t, cy,v[σ](t), x(t, cy,v [σ](t)), y(t), v(t)), x(0, σ) = x0(σ). (5)

We extend the definition of x by setting x(t, s) = 0 if s �∈ Sy,v(t). Due to the
assumptions for x0, f , and the zero boundary condition in (3), this definition
of x as a solution of (2) (for fixed y and v) coincides with the usual definition
of a “mild” solution (that is, a solution along the characteristics) systematically
developed i.e. in [6]. We mention that this definition of a solution of (2) can be
well micro-founded in the population context without assuming differentiability
and even continuity of x.

Then the meaning of a solution of (2)–(4) for a fixed measurable v is clear:
x has to satisfy (2) in the sense just explained (involving (5)), and in addition
equation (4) has to be satisfied. In order to make use of functional spaces (which
is convenient for proving existence theorems, for example), both (5) and (4) are
required to be satisfied almost everywhere, which does not affect the objective
function (1).
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3 Reformulation of the Problem in the Framework of
Heterogeneous Control Systems

We shall reformulate problem (1)–(4) in the framework of heterogeneous control
systems as presented in [9], which allows for an easy utilization of the classical
method of variations for obtaining necessary optimality conditions.

Applying Corollary 2 of Theorem 102, Chapter 4 in [8] we change the variable
s = cy,v[σ](t) to get (due to h(s, 0) = 0)

y(t) =
∫

Sy,v(t)

h(t, s, x(t, s))ds =
∫

S0

h(t, cy,v[σ](t), x(t, cy,v [σ](t)))
∂cy,v[σ](t)

∂σ
dσ.

Similarly (due to L(s, 0) = 0),∫
Ω

L(s, x(T, s))ds =
∫

S0

L(cy,v[σ](T ), x(T, cy,v[σ](T )))
∂cy,v[σ](T ))

∂σ
dσ.

The term zy,v[σ](t) := ∂cy,v [σ](t)
∂σ satisfies the equation

d
dt

zy,v[σ](t) = gs(t, cy,v[σ](t), y(t), v(t))zy,v [σ](t), zy,v[σ](0) = 1.

Thus we can reformulate problem (1)–(4) in the following way, where X , C,
Z, are considered as distributed state variables, and y and v are as before:

max
v(t)∈V

{∫
S0

L(C(T, σ), X(T, σ))Z(T, σ)dσ +
∫ T

0

K(t, y(t), v(t)) dt

}
(6)

subject to

Ẋ(t, σ) = f(t, C(t, σ), X(t, σ), y(t), v(t)), X(0, σ) = x0(σ),
Ċ(t, σ) = g(t, C(t, σ), y(t), v(t)), C(0, σ) = σ,

Ż(t, σ) = gs(t, C(t, σ), y(t), v(t))Z(t, σ), Z(0, σ) = 1,
y(t) =

∫
S0

h(t, C(t, σ), X(t, σ))Z(t, σ) dσ,

(7)

where “dot” means differentiation with respect to t. Clearly the connection be-
tween x and the new state variable X is that x(t, cy,v[σ](t)) = X(t, σ). Problem
(6)–(7) is a special case of the heterogeneous control problem investigated in [9].
Namely, let us consider the following problem

max
v(t)∈V

{∫
S

l(σ,R(T, σ))dσ +
∫ T

0

∫
S

M(t, σ,R(t, σ), Y (t), v(t)) dσ dt

}
(8)

subject to

Ṙ(t, σ) = F (t, σ,R(t, σ), Y (t), v(t)), R(0, σ) = R0(σ), (9)

Y (t) =
∫

S

H(t, σ,R(t, σ)) dσ, (10)
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where now S is a measurable set of parameters in a finite dimensional space,
R(t, σ) ∈ Rn is a distributed state variable, Y (t) ∈ Rm is an aggregated state
variable (not necessarily having the same meaning as in the previous considera-
tions). Clearly, this model extends to (6), (7) by setting

R = (X,C,Z), S = S0, F = (f, g, gsZ), H = hZ, l = LZ, M = K. (11)

A solution of (9)–(10) (and the adjoint system that will appear below), given a
measurable v(t), is a pair (R, Y ) of measurable and bounded functions on [0, T ]×
S, such that X(·, σ) is absolutely continuous for a.e. s ∈ S, and all the equations
in (9)–(10) are satisfied for a.e. t ∈ [0, T ] and σ ∈ S. The optimality in prob-
lem (8)–(10) has the usual meaning with all measurable selections v for which
a corresponding bounded solution (R, Y ) exists on [0, T ] × S (it will be unique
on the assumptions below) considered as admissible controls. This definition is
consistent with the one for the particular case of a size-structured system.

Theorem 1. Assume that S is a compact measurable set with positive measure
in a finite-dimensional Euclidean space; V ⊂ Rr is nonempty and compact, the
functions F , H, l, M , R0 are defined on the respective projections of the set
[0, T ]×S×Rn×Rm×V (corresponding to the variables on which they depend),
measurable in (t, s), differentiable in R, Y , Lipschitz in v (locally uniformly in
the rest of the variables), the derivatives with respect to R and Y are locally
bounded, and locally Lipschitz in R, Y (uniformly in the rest of the variables).

Let (v(t), R(t, σ), Y (t)) be an optimal solution of problem (8)–(10), and let v
be bounded. Then the following adjoint system

− λ̇(t, σ) = λ(t, σ)FR(t, σ) + MR(t, σ) + η(t)HR(t, σ), λ(T, σ) = lR(σ), (12)

η(t) =
∫

S

[λ(t, σ)FY (t, σ) + MY (t, σ)] dσ (13)

has a unique solution1(λ, η) on [0, T ]× S. In the above equations the argument
(t, σ) stays for (t, σ,R(t, σ), Y (t), v(t)), while lR(σ) := lR(σ,R(T, σ). Moreover,
for a.e. t ∈ [0, T ] the value v(t) maximizes on V the function

v −→
∫

S

[M(t, σ,R(t, σ), Y (t), v) + λ(t, σ)F (t, σ,R(t, σ), Y (t), v)] dσ. (14)

This theorem follows from a slight improvement of [9, Theorem 1] (by making
use of [9, Proposition 1]). Since no detailed proofs are presented in [9], such will
be given in a full-size paper in preparation by the authors, including a more
general size-structured problem.

4 Maximum Principle

We apply Theorem 1 with the specifications (11) arising from the original prob-
lem (1)–(4). In this case λ = (λX , λC , λZ) and having in mind (11) the adjoint
system takes the form
1 The co-state variables λ and η are row-vectors, while X and Y are column-vectors.
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−λ̇X = λXfx + ηhxZ, λX(T, σ) = Lx(σ)Z(T, σ),
−λ̇C = λXfs + λCgs + λZgssZ + ηhsZ, λC(T, σ) = Ls(σ)Z(T, σ),
−λ̇Z = λZgs + ηh, λZ(T, σ) = L(σ),
η(t) =

∫
S0

[λXfy + λCgy + λZgsyZ] dσ + Ky,

where we skip the arguments which are evaluated along the optimal solution:
λX := λX(t, σ), ..., fx := fx(t, C(t, σ), X(t, σ), Y (t), v(t)), Lx(σ) := Lx(C(T, σ),
X(T, σ)) etc. The function (14) to be maximized takes the form

v −→ K +
∫

S0

[λXf + λCg + λZgsZ] dσ.

Changing the variables λxZ = λX , λcZ = λC , λz = λZ , and dividing by Z
(which is nonzero due to its differential equation), we obtain the following opti-
mality condition.

Theorem 2. Let (x, y, v) be an optimal solution of problem (1)–(4). Then for
almost every t the value v(t) maximizes the function

v −→
{
K(t, y(t), v) +

∫
S0

[λx(t, σ)f + λc(t, σ)g + λz(t, σ)gs]Z(t, σ)dσ
}

, (15)

where (λx, λc, λz , η) are uniquely determined by the equations

−λ̇x(t, σ) = λx(t, σ)(fx + gs) + η(t)hx, λx(T, σ) = Lx(σ),
−λ̇c(t, σ) = λx(t, σ)fs + 2λc(t, σ)gs + λz(t, σ)gss + η(t)hs, λc(T, σ) = Ls(σ),
−λ̇z(t, σ) = λz(t, σ)gs + η(t)h, λz(T, σ) = L(σ),

η(t) =
∫

S0

[λx(t, σ)fy + λc(t, σ)gy + λz(t, σ)gsy]Z(t, σ) dσ + Ky(t, y(t), v(t)).

The functions with missing arguments are evaluated at (t, C(t, σ), X(t, σ), y(t), v)
in (15), and at (t, C(t, σ), X(t, σ), y(t), v(t)) in the rest of the equations (wherever
applicable). The relation between the original state function x(t, s) and the func-
tion X(t, σ) is that x(t, C(t, σ)) = X(t, σ), on the set {C(t, σ) : t ∈ [0, T ], σ ∈
S0}, and x(t, s) = 0 otherwise.

Thus the original system and the optimality conditions are both represented in
terms of ODEs. In addition, the proof of Theorem 1 (not presented here) applied
with the specifications (11) implies the following. Denote by J(v) the objective
value (1) corresponding to a control function v ∈ V := {v ∈ L2(0, T ) : v(t) ∈ V }.
Then, assuming that the derivatives with respect to v in the r.-h. side below exist,
the functional J is differentiable, and

J ′(v)(t) = Kv(t, y(t), v(t)) +
∫

S0

[λx(t, σ)fv + λc(t, σ)gv + λz(t, σ)gsv ]Z(t, σ)dσ,

where all the variables are evaluated as in Theorem 2, but v ∈ V is arbitrary
(not necessarily the optimal one). This makes it possible, in principle, to apply a
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gradient projection method for numerical approximation of the optimal solution.
One can use the discretization scheme proposed in [9] for approximating the
objective function and its gradient. However, the issue of convergence is not
simple, especially in the non-coercive case, as the recent paper [7] shows even
for purely ODE optimal control systems (see also [3] for convergence analysis).

5 An Example

In the example below we obtain explicit differential equations for the optimal
control, which can be used for numerical tests. The explicit solution is possible
due to independence of the growth function g on y.

Consider the problem

max
v(t)≥0

{∫ ω

0

sx(T, s)ds−
∫ T

0

[
by(t) +

d

2
v(t)2

]
dt

}
,

xt + α(ω − s)v(t)xs = αv(t)x(t, s), x(0, s) = x0(s),

y(t) =
∫ ω

0

sκx(t, s) ds,

where b, d, α are positive constants, κ is either 0 or 1, and x0 is a non-negative
measurable function, which equals zero outside S0 := [0, s0] ⊂ [0, ω). Obviously
the standing assumptions are satisfied. The differential equation represents a
conservation law, and the overall model has an obvious interpretation in the
population context.

Using equations (7) we obtain

X(t, σ) =
x0(σ)
ϕ(t)

, C(t, σ) = ω − (ω − σ)ϕ(t), Z(t, σ) = ϕ(t),

where ϕ(t) = e−α
∫ t
0 v(θ) dθ. Since the adjoint equations in Theorem 2 are linear,

we can express λx, λc and λz in terms of X , C and Z. After somewhat tedious
and long calculations one finds an expression for the function to be maximized
in (15), involving only the “free” value v and the optimal control v(t), together
with the data of the problem. Maximizing in v, and assuming that the resulting
values are non-negative (which naturally happens under mild and natural — in
view of the interpretation of the problem — conditions) we obtain in the case
κ = 0 that v(t) = v∗, where v∗ is the unique solution of the equation

v =
α

d

∫
S0

(ω − σ)x0(σ) dσe−αTv.

The fact that v is constant results from the fact that the maintenance costs
by(t) depend only on the size of the population, which is constant under the
conservation low assumed in the model.
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In the case κ = 1 (which is more realistic, since the term by(t) represents
maintenance costs proportional to the total biomass, rather to the population
size) we obtain that the optimal control v(t) satisfies the nonlinear ( and non-
evolutionary) integral equation

v(t) =
α

d

∫
S0

(ω − σ)x0(σ)dσ

[
e−α

∫ T
0 v(θ) dθ − b

∫ T

t

e−α
∫ τ
0 v(θ) dθ dτ

]
.

Introducing
µ = e−α

∫ T
0 v(θ) dθ (16)

as an unknown parameter we obtain an equation of the form

v(t) = pµ− pb

∫ T

t

e−α
∫

τ
0 v(θ) dθ dτ,

where
p =

α

d

∫
S0

(ω − σ)x0(σ) dσ,

Obviously the solution v(t) is twice differentiable, and differentiating two times
we obtain the following boundary value problem for a second order differential
equation for v:

v̈(t) + αv̇(t)v(t) = 0, v(T ) = µp, v̇(0) = bp.

The solution depends on µ, which has to be determined from equation (16).
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Abstract. In this work, the multiphase model TCAM has been applied
to evaluate the impact of three different emission scenarios on PM10 con-
centrations in northern Italy. This domain, due to high industrial and
residential site, to a close road net and to frequently stagnating mete-
orological conditions, is often affected by severe PM10 levels, far from
the European standard laws. The impact evaluation has been performed
in terms of both yearly mean value and 50 µg/m3 exceedance days in 9
points of the domain, chosen to be representative for the chemical and
meteorological regimes of the domain. The results show that all the three
emission reduction scenarios improve air quality all over the domain, and
in particular in the area with higher emission density.

1 Introduction

Multiphase models can simulate the physical-chemical processes involving sec-
ondary pollutants in the troposphere, allowing to assess the effectiveness of sus-
tainable emission control strategies. In this paper, the chemical and transport
model TCAM [1] is introduced and applied, as a module of GAMES (Gas Aerosol
Modelling Evaluation System) integrated modelling system [2], including the
emission model POEM-PM [3], the CALMET meteorological model [4], a pre-
processor providing the initial and boundary conditions required by the model
and the System Evaluation Tool (SET). The modelling system has been vali-
dated over northern Italy in the frame of CityDelta project. The model has been
used to asses the effectiveness of three different emission control strategies in the
frame of CityDelta project [5]. The first emission scenario is related to the emis-
sion reduction expected up to 2020 assuming the European Current Legislation
(CLE), while the second one is based on the Most Feasible emission Reduction
(MFR) that could be obtained using the best available technology. Finally, the
third scenario is equal to the CLE one, but the PM2.5 emission are drop to zero
inside the Milan metropolitan area.

2 Model Description

TCAM (Transport and Chemical Aerosol Model) is a multiphase three-dimen-
sional Eulerian model, in a terrain-following co-ordinate system [3]. The model

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 377–384, 2008.
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formalizes the physical and chemical phenomena involved in the formation of
secondary air pollution by means of the following mass-balance equation:

∂Ci

∂t
= Ti + Ri + Di + Si, (1)

where Ci [µg m−3] is the concentration of the i-th species, Ti is the trans-
port/diffusion term [µg m−3 s−1], Ri [µg m−3 s−1] is the multiphase term, Di

[µg m−3 s−1] includes the wet and dry deposition and Si is the emission term.
To solve equation (1), TCAM implements a split operator technique [6] al-

lowing to separately treat the horizontal transport, the vertical phenomena (in-
cluding transport-diffusion, emissions and deposition) and the chemistry.

The advection scheme implemented in TCAM is derived by CALGRID model
[7]. The module is based on a finite differences scheme and it solves horizontal
transport of both gas and aerosol species. The module describes the convective
and the turbulent transport, neglecting the molecular diffusion processes [8]
solving the PDE transport equation using chapeau functions [9] and the non
linear Forester filter [10].

The dry deposition phenomenon is described by the equation [8]:

Fi = Ci · vdi, (2)

where Fi [µg m−2 s−1] is the removed pollutant flux, Ci is the concentration of
the i-th species at ground level and vdi [m s−1] is i-th species deposition velocity.

Wet deposition (for both gas and aerosol species) is described by the equation
[8]:

∂Ci

∂t
= −Λp · Ci, (3)

where Λp [s−1] is the scavenging coefficient defined distinctly for gas (Λgas) and
aerosol (Λpm) species. For gases, two components are calculated: (1) the uptake of
ambient gas concentration into falling precipitation, which can occur within and
below clouds, and (2) the collection by precipitation of cloud droplets containing
dissolved gas species. For particles, separate in-cloud and below-cloud scavenging
coefficients are determined. Within clouds, all aerosol mass is assumed to exist in
cloud droplets (all particles are activated as condensation nuclei), so scavenging
is due to the efficient collection of cloud droplets by precipitation. Below clouds,
dry particles are scavenged by falling precipitation with efficiency depending on
particle size.

TCAM allows the simulation of gas chemistry using both the lumped structure
(Carbon Bond 90 [11]) and the lumped molecule (SAPRC90 [12], SAPRC97 [13],
SAPRC99 [14]) approach. In order to describe the mass transfer between gas and
aerosol phase, the COCOH97 [15], an extended version of SAPRC97 mechanism
is implemented in the model. The ODE chemical kinetic system is solved by
means of the Implicit-Explicit Hybrid (IEH) solver [16], that splits the species
in fast and slow ones, according to their reaction velocity. The system of fast
species is solved by means of the implicit Livermore Solver for Ordinary Differ-
ential Equations (LSODE) [17,16] implementing an Adams predictor-corrector
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method in the non-stiff case [18], and the Backward Differentiation Formula
method in the stiff case [18]. The slow species system is solved by the Adams-
Bashfort method [18]. The aerosol module implemented in TCAM is coupled
with the COCOH97 gas phase chemical mechanism. TCAM describes the most
relevant aerosol processes: the condensation, the evaporation [8], the nucleation
of H2SO4 [19] and the aqueous oxidation of SO2 [8]. The aerosol module de-
scribes the particles by means of a fixed-moving approach; a generic particle
is represented with an internal core containing the non volatile material, like
elemental carbon, crustal and dust. The core dimension of each size class is es-
tablished at the beginning of the simulation and is held constant during the
simulation. The volatile material is supposed to reside in the outer shell of the
particle whose dimension is evaluated by the module at each time step on the
basis of the total mass and of the total number of suspended particles. The
aerosol module describes the dynamics of 21 chemical compounds: twelve inor-
ganic species (H2O, SO4=, NH4+, Cl-, NO3-, Na+, H+, SO2(aq), H2O2(aq),
O3(aq), elemental carbon and other), and 9 organics, namely a generic pri-
mary organic species and 8 classes of secondary organic species. Each chemical
species is split in n (namely n = 10) size bins, so that the prognostic variables
of the aerosol module are 21n. The estimation of equilibrium pressures of the
condensing inorganic species is computed by means of the SCAPE2 thermo-
dynamic module [20], while the Condensible Organic Compounds included in
COCOH97 mechanism are considered as fully condensed due to their very low
volatility.

Water is assumed to be always in equilibrium between the gas and the aerosol
phases. This assumption is also made by other model developers [21]. Moreover,
in the case of the TCAM model, the gas phase water content is known from the
relative humidity, provided by the meteorological model. As a consequence the
gas phase water concentration is known for the whole simulation at each grid
point and does not participate to the balance equation [8].

3 Simulations Setup

The model has been applied to a 300×300 km2 domain placed in northern Italy
(Figure 1), including the Lombardia region as well as portions of Piemonte, Lig-
uria, Veneto and Emilia-Romagna. The site, centred on the Milan metropolitan
area, is characterized by complex terrain, by high industrial and urban emissions
and by a close road net.

The domain has been horizontally divided into 5 × 5 km2 grid cells and
vertically in 11 varying levels ranging from 20 to 3900 meters above ground
level. The 2004 simulation has been performed. The input data are provided
to the model by meteorological, emission and boundary condition GAMES pre-
processors, starting from data shared by JRC-IES in the frame of CityDelta-
CAFE exercise [5].
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Fig. 1. Simulation domain

3.1 Emission Data

The emission fields have been estimated by means of POEM-PM model [3] pro-
cessing two inventories: the Lombardia Region inventory, with a 5× 5 km2 reso-
lution, and the EMEP (European Monitoring and Evaluation Programme) one
[22], following a resolution of 50×50 km2. The inventories include yearly emission
data of NOx, V OC, CO, NH3, SOx, PM10 and PM2.5 for each CORINAIR
sector. Temporal modulation is performed using monthly, weekly and hourly
profiles provided by EMEP [22]. Speciation profiles for organic compounds are
defined mapping UK classes (227 species) into SAROAD ones [3]. Chemical
characterization of emitted PM has been performed using EMEP profiles [22],
provided by JRC. Size distribution of emitted particles has been obtained using
profiles defined in [23]. The simulations concern the base case (2004) and three
different emission scenario at 2020 (Table 1): (1) the CLE scenario, computed
applying to the emission the current legislation up to 2020, (2) the MFR (Most

Table 1. Total emission for the base case (kTons/year/domain) and emission scenario
reduction

Scenario NOx VOC PM2.5 PM10 SO2 NH3

Base Case 208 258 30 38 63 80
2020 CLE 54% 58% 57% 53% 54% 6%
2020 MFR 74% 58% 57% 53% 54% 6%
2020 CLE+City 54% 58% 77% 68% 54% 6%
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Fig. 2. PM10 mean concentration (µg/m3 computed by TCAM model for the base
case

Feasible Reduction) scenario, in which the emissions are computed supposing
that for each pollutant the best emission reduction technology is applied and (3)
the CLE+City scenario, which considers the CLE scenario with PM2.5 set to
0 in the Milan metropolitan area (see dot line in Figure 1). Table 1 highlights
the heavy emission reduction estimated using the current legislation scenario
(close to 50% with the exception of ammonia), while the most feasible reduction
scenario implies only an extra reduction of NOx with respect the CLE one. The
CLE+City scenario is equal to CLE scenario with the exception of PM2.5 (and
consequently of PM10), which shows a reduction of about the 80% (compared to
the 50% of the CLE emission) with respect to the base case, due to the switch
off of the Milan metropolitan area emissions.

4 Base Case Results

Figure 2 presents the mean PM10 concentration computed for the base case. The
spatial distribution of yearly mean concentration shows higher concentrations
in the Po Valley and in the south-east area of the domain where high NH3
emissions favour the formation of secondary inorganic aerosol.

The validation of the aerosol phase simulation results has been performed
comparing computed (TCAM) and observed (OBS) 2004 daily mean concen-
tration in a set of stations selected to be representative of the chemical and
meteorological regimes over the domain (Figure 2). Table 2 highlightes that the
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Table 2. Performances indexes computed for PM10 concentration series

Index Osio Vimercate Rezzato Juvara Limito Magenta Verziere

Mean OBS 42.79 42.31 49.11 50.98 43.19 49.29 51.83
Mean TCAM 44.94 34.08 37.32 60.19 48.62 40.16 69.43
NME -0.05 0.19 0.24 -0.18 -0.12 0.18 -0.33
CORR 0.46 0.36 0.55 0.6 0.49 0.47 0.64

model is able to represent the mean value of the period for the entire year, with
values of normalized mean error (NME) lower than 0.25, with the exception of
Rezzato station and Verziere. The values of correlation coefficient (CORR) is
comparable to performances of the CityDelta models [5].

5 Emission Scenario Impacts

The evaluation of the impact of the three different scenarios has been per-
formed with respect to the yearly mean values and the 50µg/m3 exceedance days
(ECC50) in 9 selected point (NW, N, NE, W, C, E, SW, S, SE) representative
of the different meteorological and chemical regimes in the domain (Figure 1).
Both the indicators present in the base case values out of the current air qual-
ity standard limits1 in the center east of the domain (C, E, SE). In terms of

Table 3. Scenario impact assessment for mean concentration and number of 50µg/m3

exceedances

Index Scenario NW N NE W C E SW S SE

Mean
Base Case 8.9 17.1 5.5 24.3 67.5 36.3 20.2 12.2 35.3
CLE-Base Case -4.8 -7.5 -2.1 -14.1 -18.2 -17.1 -9.1 -4.5 -14.1
MFR-Base Case -4.6 -9.5 -2.6 -13.1 -37.1 -18.4 -11.3 -6.1 -19.2
CLE+City-Base Case -4.8 -7.3 -2.0 -14.1 -24.1 -17.0 -9.0 -4.5 -14.3

ECC50
Base Case 1 15 0 31 210 87 18 2 85
CLE-Base Case -1 -14 0 -30 -97 -80 -16 -1 -72
MFR-Base Case -1 -15 0 -30 -192 -76 -18 -2 -78
CLE+City-Base Case -1 -14 0 -30 -138 -80 -16 -1 -72

mean values (Table 3), the three emission scenarios have very similar impacts
in the areas where base case concentrations are lower than 30µg/m3. The differ-
ences are markable in the Milan metropolitan area (C point) where MFR and
CLE+City scenarios show reductions consistently higher than CLE. The impact
of the 3 scenarios on the number of exceedance days (Table 3) is noticeable in all
the points of the domain. The impacts are quite similar, with the exception of

1 Yearly mean lower than 50µg/m3 and exceedance days lower than 35.
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the C point, where the MFR shows a reduction of 192 days with respect to the
base case, while the CLE shows a reduction of 97 days. In this point, the local
impact of the CLE+City scenario could be highlighted, with 40 exceedance days
less than the CLE one. For each scenarios, the number of exceedance days in the
higher concentration areas exceed (C point) or are very close (E, SE points) to
the 2020 air quality standard of 7 days per year. It is important to note that for
both the indicators the impact of the CLE and CLE+City scenarios outside the
Milan metropolitan area is the same, suggesting that local emission reduction
has effect only in close to the area of the intervention.

6 Conclusion

The work presents the formulation and the application of the Transport and
Chemical Aerosol Model (TCAM) over a northern Italy domain. The first part
of the work presents the results of the validation phase, showing that the model is
able to correctly reproduce measured daily PM10 concentration series, in terms
of both mean values and correlation coefficient. The second part highlights the
evaluation of the impact of three different emission scenarios over the domain at
2020. The results show that all the scenarios have a high impact on the simulated
air quality indexes. However, the value of the exceedance days index is aspected
not to respect the 2020 air quality standards in the more industrialized area of
the domain.
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Abstract. We used the Eulerian Chemistry-Transport Model EUROS
to simulate the concentrations of airborne fine particulate matter above
Europe. Special attention was paid to both primary as well as secondary
particulate matter in the respirable size range up to 10 µm diameter. Es-
pecially the small particles with diameters up to 2.5 µm are often formed
in the atmosphere from gaseous precursor compounds. Comprehensive
computer codes for the calculation of gas phase chemical reactions and
thermodynamic equilibria between the compounds in the gas phase and
those ones in the solid phase had been implemented into the EUROS-
model. Obtained concentrations of PM10 for the year 2003 are compared
to measurements. Additionally, calculations were carried out to assess the
contribution of emissions derived from the sector agriculture in Flanders,
the northern part of Belgium. The obtained results demonstrate the im-
portance of ammonia emissions in the formation of secondary particulate
matter. Hence, future abatement policy should consider more the role of
ammonia in the formation of secondary particles.

1 Introduction

Many European countries currently face problems with episodes of high con-
centrations of fine particulate matter (PM) in the ambient air. These particles
are associated with strong adverse health effects [1,2]. In 2003, there were more
than ten episodes of high particle concentrations (PM10 > 100 µg/m3) at sev-
eral PM10 monitoring stations in Belgium. Advanced computer models including
atmospheric transport and turbulent diffusion, but also atmospheric chemistry
and microphysics, can help to understand the connections between emissions,
chemical reactions and meteorological factors in the formation of PM. Not only
primary emissions of particles contribute to high PM-concentrations, but also
formation of secondary particulate matter from the emissions of precursor com-
pounds contribute significantly to PM10- and PM2.5-concentrations. Especially
the emissions of ammonia (NH3), nitrogen oxides (NOx) and sulphur dioxide
(SO2) are involved in these processes, leading preferentially to small secondary
particles of the size fraction PM2.5.

To investigate these processes, we extended the operational Eulerian air qual-
ity model EUROS with two special modular algorithms for atmospheric parti-
cles. The EUROS model is an Eulerian air quality model for the simulation of
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tropospheric ozone over Europe. It was originally developed at RIVM in the
Netherlands and was implemented in Belgium in 2001. It is now an operational
tool for policy support at the Belgian Interregional Environment Agency (IR-
CEL) in Brussels [3,4]. The base grid of EUROS covers nearly whole Europe
with a resolution of 60 ∗ 60 km. Several subgrids (e.g. around Belgium) with a
resolution of down to 7.5 ∗ 7.5 km can be chosen.

A detailed emission module describes the emission of six pollutant categories
(NOx, non-methane volatile organic compounds (NMVOC), SO2, NH3, PM2.5

and PM10−2.5) and for 7 different emission sectors (traffic, residential emis-
sions, refineries, solvents use, combustion, industry and agriculture). Both point
sources and area sources are included. As far as the meteorology is concerned, the
model uses three-dimensional input datasets derived from the ECMWF (Euro-
pean Centre for Medium-Range Weather Forecasts, Reading, UK) meteorological
reanalysed datasets.

Following an extended literature study, the Caltech Atmospheric Chemistry
Mechanism (CACM, [5]) and the Model of Aerosol Dynamics, Reaction, Ioniza-
tion and Dissolution (MADRID 2, [6]) were selected and implemented into the
EUROS model.

Currently, EUROS is able to model mass and chemical composition of aero-
sols in two size fractions (PM2.5 and PMcoarse). The chemical composition is
expressed in terms of seven components: ammonium, nitrate, sulphate, primary
inorganic compounds, elementary carbon, primary organic compounds and sec-
ondary organic compounds (SOA).

In Section 2, we shortly discuss the implementation of CACM and MADRID
2 into the EUROS model. Section 3 presents and discusses the results of calcu-
lations with the EUROS model for PM10 and PM2.5 for the year 2003. Addi-
tionally, the influence of emissions from the sector agriculture is investigated.

2 Methodology

For modelling aerosols, CACM is used as gas phase chemical mechanism in EU-
ROS. This mechanism comprises 361 reactions among 122 components. With
this, CACM contains a basic ozone chemistry plus the most important reac-
tions of various generations of organic compounds during which condensable
products are formed. Liquid phase chemistry and heterogeneous reactions are
not yet integrated into the current implementation of the Chemistry-Aerosol-
Module.

Emission data for the two size fractions of primary PM (PM2.5 and PM10−2.5)
and for the precursor compounds of secondary particulate matter (NOx, SO2,
NMVOC and NH3) are derived from the EMEP-database for Europe [7] and for
Flanders from recent emission inventories [8].

More information on the implementation of the aerosol module into the
EUROS-model and results obtained with this model can be found in [9,10].
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Fig. 1. Yearly averaged modeled PM10-concentration in Belgium in 2003

3 Results

3.1 Comparison of Modeled and Observed PM10-concentrations in
Belgium

Figure 1 shows the yearly averaged PM10-concentration map for Belgium for
the year 2003. The three Belgian regions are shown on the map: the Flemish
region in the northern part of Belgium, the capital Brussels in the centre and
the Walloon region in the southern part of Belgium.

The highest PM10-concentrations in Belgium were calculated for the western
part of both the Flemish and the Walloon region. High concentrations of partic-
ulate matter were also calculated for the central part of Flanders. In contrast,
lower PM10-concentrations were calculated for the eastern part of Flanders. The
lowest PM10-concentrations were clearly modeled for the south-eastern part of
the Walloon region.

In comparison, Figure 2 shows a map with the observed yearly averagedPM10-
concentrations in Belgium in 2003 [11]. In order to obtain PM10-concen-trations
for the whole territory of Belgium (and not only for the area around the mea-
surement locations), concentrations were interpolated in between the measure-
ment stations by means of the RIO interpolation technique, developed by VITO
[12,13].
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Fig. 2. Yearly averaged observed PM10-concentration in Belgium in 2003 and interpo-
lation with RIO (www.irceline.be)

The comparison shows that the EUROS-model underestimates the observed
PM10-concentrations. Note that the concentration scale used for Figure 1 and
Figure 2 is not the same. However, this kind of underestimation is known from
other models for fine particulate matter and can be traced back for an important
part to the underestimation of diffusive emissions of primary particulate mat-
ter. However, the modeled geographical distribution of the PM10-concentration
across Belgium agrees well with the geographical distribution of the observed
and interpolated concentrations. Especially the gradient within Flanders with
higher concentrations in the west and in the centre and lower concentrations in
the east is reproduced quite well by the model.

3.2 Contributions of Agricultural Emissions to PM10- and
PM2.5-concentrations in Flanders

Figure 3 shows the contribution of emissions of the sector “agriculture” in Flan-
ders to PM10-concentrations in Belgium for the month of July, 2003. This cal-
culation was carried out by performing a second model calculation, but leaving
away the emissions from the sector “agriculture” in Flanders. These are mainly
emissions of primary particulate matter (PM10−2.5) and ammonia (NH3). After-
wards, the difference was calculated between the obtained results with all emis-
sions and the results obtained without the emissions from agricultural sources
in Flanders. The calculation shows that the emissions of this sector contribute

www.irceline.be


Modelling of Airborne Primary and Secondary Particulate Matter 389

Fig. 3. Relative difference in PM10-concentrations between a calculation with all emis-
sions and a calculation without the Flemish agricultural emissions for July 2003

significantly to PM10-concentrations in large parts of Flanders. Especially in
the western part of Flanders, a high contribution of up to around 45 % is cal-
culated. This high contribution can be explained by relatively high emissions
of primary coarse particles (PM10−2.5) due to agricultural sources in the Flem-
ish emission inventory [8]. Figure 4 and Figure 5 show the contribution of the
Flemish agricultural emissions to PM2.5-concentrations in Belgium in January
and in July, 2003, respectively. These results show that agricultural emissions
contribute both locally and also on average in whole Flanders less to PM2.5-
concentrations than it is the case to PM10-concentrations. As an average over
whole Flanders, 7.5 % of PM2.5 is derived from agricultural sources in January
and 16.9 % in July, 2003. The maximum contribution in July in Flanders is 32
%. However, these are significant contributions also to the PM2.5-fraction. This
contribution is, in contrast to the one to PM10-concentrations, only for a small
part due to emissions of primary PM2.5, as only 11 % of the Flemish primary
PM2.5-emissions are derived from agricultural sources [8].

Much more important is the contribution of agricultural emissions to the for-
mation of secondary particulate matter, presumably mainly due to the formation
of ammonium nitrate and ammonium sulphate in the size range PM2.5. 95 % of
all Flemish ammonia emissions are derived from agricultural sources, making this
sector responsible for an important part of secondary formed PM2.5 in Flanders.

Table 1 gives an overview of the obtained results concerning the calculation
of the contribution of the Flemish agricultural emissions to the PM2.5-
concentrations in the three Belgian regions. The mean contribution to PM2.5-
concentrations is 12.2 % in Flanders.
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Fig. 4. Relative difference in PM2.5-concentrations between a calculation with all emis-
sions and a calculation without Flemish emissions from the sector agriculture for Jan-
uary, 2003

Fig. 5. Relative difference in PM2.5-concentrations between a calculation with all emis-
sions and a calculation without Flemish emissions from the sector agriculture for July,
2003
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Table 1. Reduction of PM2.5-concentrations when removing the emissions of the sector
agriculture in Flanders for January and July, 2003 and mean contribution

4 Conclusions

The calculations carried out using the EUROS-model with implemented aerosol
module show that PM10-concentrations are underestimated by the model, main-
ly due to underestimations in the primary emissions of particles, but the modeled
geographical pattern agrees well with that one obtained by observations. The
contribution of emissions derived from the sector “agriculture” was found to be
rather high, both to PM10-concentrations as well as to PM2.5-concentrations.
The high contribution to the first size class of airborne particles is predominantly
due to high emissions of primary particles in the size range PM10−2.5, especially
in the western part of Flanders. The high contributions to the size range of
the fine particles have their origin mainly in the formation of ammonium salts
such as ammonium nitrate and ammonium sulphate in the atmosphere. Approx-
imately 12 % of PM2.5-concentration in Flanders on average are due to Flemish
agricultural emissions. For the small size range of particles, especially ammonia
emissions are important. Hence, future emission reduction programs should con-
sider more the importance of an abatement of ammonia emissions due to their
potential in the formation of secondary PM2.5.
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Abstract. In this work the POD approach to model reduction is used to
construct a reduced-order control space for the simple one-dimensional
transport equations. Several data assimilation experiments associated
with these transport models are performed in the reduced control space.
A numerical comparative study with data assimilation experiments in
the full model space indicates that with an appropriate selection of the
basis functions the optimization in the POD space is able to provide
accurate results at a reduced computational cost.

1 Introduction

A major difficulty in the operational use of 4D-Var data assimilation for oceano-
graphic and atmospheric global circulation models is the large dimension of the
control space, which is the size of the discrete model initial conditions, typically
in the range 106 − 108. A way to significantly decrease the dimension of the
control space without compromising the quality of the final solution for the 4D-
Var data assimilation, motivates us to construct the control variable on a basis
of characteristic vectors capturing most of the energy and the main features of
variability of the model. We would then attempt to control the vector of initial
conditions in the reduced space model.

In this paper the proper orthogonal decomposition (POD) technique is used
to construct a reduced-order control space for the simple one-dimensional trans-
port equations. The POD technique (it also goes by other names such as the
Karhunen-Loève decomposition, principal component analysis and the Hotelling
transform) is a method for deriving low order models of dynamical systems.

The paper is organized as follows. The numerical model under investigation is
presented in Section 2. Section 3 is devoted to reviewing the POD method and
4D-Var formulation based on POD. Section 4 contains results from data assim-
ilation experiments using 4D-Var and POD 4D-Var methods. Finally, Section 5
provides some conclusions and discussions of some related issues of this study.
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2 Numerical Model

Our model under study is a pure one-dimensional transport equation defined by
the following partial differential equation ([5]):

∂c
∂t

= −V ∂c
∂x

, x ∈ Ω = [0, 2π], t ∈ [0, T ], c(x, 0) = f(x) . (1)

The initial condition f and the space distributed parameter V are chosen to be
f(x) = sin(x) and V(x) = 6x(2π−x)/(4π2). Then, the exact (analytical) solution
of (1) is given by cexact(x, t) = sin(2πx/(x+ (2π−x) exp(3t/π))). Details about
the numerical aspects and implementation of a data assimilation algorithm for
this model are presented in [3,5].

3 POD Reduced Model and POD 4D-Var Assimilation

Basically, the idea of POD method is to begin with an ensemble of data, called
snapshots, collected from an experiment or a numerical procedure of a physical
system. The POD technique is then used to produce a set of basis functions
which spans the snapshot collection. When these basis functions are used in a
Galerkin procedure, one obtains a finite-dimensional dynamical system with the
smallest possible degrees of freedom. For a successful application of the POD
4D-Var in data assimilation problems, it is of most importance to construct an
accurate POD reduced model. In what follows, we only give a brief description
of this procedure (see [1,2,4]).

For a temporal-spatial flow c(x, t), we denoted by c1, . . . , cn a set adequately
chosen in a time interval [0, T ], that is ci = c(x, ti). Defining the mean c =
1
n

∑n
i=1 ci, we expand c(x, t) as

cPOD(x, t) = c(x) +
M∑
i=1

βi(t)Φi(x) , (2)

where Φi(x) – the ith element of POD basis – , and M are appropriately chosen
to capture the dynamics of the flow as follows:

1. Compute the mean c = 1
n

∑n
i=1 ci;

2. Construct the correlation matrix K = [kij ], where kij =
∫

Ω(ci−c)(cj−c) dx;
3. Compute the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and the corresponding

orthogonal eigenvectors v1, v2, . . . , vn of K;
4. Set Φi :=

∑n
j=1 vi

j(ci − c) .

Now, we introduce a relative information content to select a low-dimensional
basis of size M % n, by neglecting modes corresponding to the small eigenvalues.
Thus, we define the index

I(k) =
∑k

i=1 λi∑n
i=1 λi
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and choose M , such that M = argmin{I(m) : I(m) ≥ γ}, where 0 ≤ γ ≤ 1
is the percentage of total information captured by the reduced space XM =
span{Φ1,Φ2, . . . ,ΦM}. The tolerance parameter γ must be chosen to be near
the unity in order to capture most of the energy of the snapshot basis. The
reduced order model is then obtained by expanding the solution as in (2).

An atmospheric or oceanic flow c(x, t) is usually governed by the following
dynamic model

dc
dt

= F (c, t) , c(x, 0) = c0(x) . (3)

To obtain a reduced model of (3), we first solve (3) for a set of snapshots and
follow above procedures, then use a Galerkin projection of the model equations
onto the space XM spanned by the POD basis elements (replacing c in (3) by
the expansion (2), then multiplying Φi and integrating over spatial domain Ω):

dβi

dt
=< F

(
c +

M∑
i=1

βiΦi, t

)
,Φi > , βi(0) =< c(x, 0)−c(x), Φi(x) > . (4)

Equation (4) defines a reduced model of (3). In the following, we will analyze
applying this model reduction to 4D-Var formulation. In this context, the forward
model and the adjoint model for computing the cost function and its gradient
are the reduced model and its corresponding adjoint, respectively.

At the assimilation time interval [0, T ], a prior estimate or ‘background esti-
mate’, cb of the initial state c0 is assumed to be known and the initial random
errors (c0 − cb) are assumed to be Gaussian with covariance matrix B.

The aim of the data asimilation is to minimize the square error between the
model predictions and the observed system states, weighted by the inverse of the
covariance matrices, over the assimilation interval. The initial state c0 is treated
as the required control variable in the optimization process. Thus, the objective
function associated with the data assimilation for (3) is expressed by

J(c0) = (c0 − cb)TB−1(c0 − cb) + (Hc− yo)T R−1(Hc− yo) . (5)

Here, H is an observation operator, and R is the observation error covariance
matrix.

In POD 4D-Var, we look for an optimal solution of (5) to minimize the cost
function J(cM

0 ) = J(β1(0), . . . , βM (0)) given by

J(cM
0 ) = (cPOD

0 − cb)B−1(cPOD
0 − cb) + (HcPOD− yo)R−1(HcPOD− yo) , (6)

where cPOD
0 is the control vector.

In (6), cPOD
0 (x) = cPOD

0 (x, 0) and cPOD(x) = cPOD(x, t) are expressed by

cPOD
0 (x) = c(x) +

M∑
i=1

βi(0)Φi(x), cPOD(x) = c(x) +
M∑
i=1

βi(t)Φi(x) .
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Therefore, in POD 4D-Var the control variables are β1(0), . . . , βM (0). As ex-
plained later, the dimension of the POD reduced space could be much smaller
than that the original space. As a consequence, the forward model is the reduced
model (4) which can be very efficiently solved. The adjoint model of (4) is then
used to calculate the gradient of the cost function (6) and that will significantly
reduce both the computational cost and the programming effort.

It is important to notice that the initial value of the cost function in the full
model space is distinct from the initial value of the cost function in the POD
space. Starting with the initial guess given by the background estimate c0 = cb,
the value of the cost in the full model space is J(cb). The corresponding initial
guess in the reduced space is obtained by projecting the background on the POD
space XM .

The POD model in POD 4D-Var assimilation is established by construction
of a set of snapshots, which is taken from the background trajectory, or integrate
original model (3) with background initial conditions.

4 Computational Issues

This section presents the numerical results of six data assimilation experiments
to examine the performance of POD 4D-Var by comparing them with the full
4D-Var. All the performed experiments have used as ‘true’ (exact) solution c0 of
the assimilation problem, that one computed from the analytical solution cexact

of (1) given in Section 2.
We set in our approach T = 1, and used 19 discretization points in space

and 60 points in time interval [0, 1]. By means of a perturbed initial condition
we generated the observed state yo. We assumed that the correlation matrices
in (5) and (6) are diagonal matrices, given by B = σ2

bI and R = σ2
oI, with

I denoting the identity matrix of appropriate order. We set σ2
b = 0.052 and

σ2
o = 0.062 representing the variances for the background and observational

errors, respectively.
As we already pointed out, the control variables in all these experiments

are the initial conditions only. The numerical solution of the optimal control
problem was obtained using fminunc – the Matlab unconstrained minimization
routine. Its algorithm is based on the BFGS quasi-Newton method with a mixed
quadratic and cubic line search procedure.

The first experiment is the standard 4D-Var assimilation problem. In the 4D-
Var experiment, we applied a preconditioning by the inverse of square root of
the background error covariance matrix.

In the second experiment we applied the POD technique with n = 4 snap-
shots. The POD model was constructed in the manner described in Section 3,
and the snapshots were taken from the background model results. The eigenval-
ues λk and their corresponding values I(k) are contained in Table 1. Figure 1
illustrates the reconstruction of the first snapshot using the three POD modes of
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Table 1. The eigenvalues λk and their corresponding values I(k) when using POD
technique with 4 snapshots (Experiment 2)

k 1 2 3

Eigenvalue λk 2.09e+00 8.21e-01 6.14e-01

I(k) (%) 59.28 82.58 > 99.99

Table 2. The eigenvalues λk and their corresponding values I(k) when using POD
technique with 10 snapshots (Experiment 3)

k 1 2 3 4 5 6 7

Eigenvalue λk 3.21e+00 1.53e+00 1.28e+00 9.97e-01 7.82e-01 7.61e-01 6.61e-01

I(k) (%) 32.28 47.62 60.51 70.53 78.38 86.02 92.66

k 8 9 – – – – –

Eigenvalue λk 4.39e-01 2.93e-01

I(k) (%) 97.06 > 99.99

Table 3. The eigenvalues λk and their corresponding values I(k) when using POD
technique with 15 snapshots (Experiment 4)

k 1 2 3 4 5 6 7

Eigenvalue λk 3.51e+00 1.42e+00 1.26e+00 1.23e–01 1.05e–01 8.70e–01 7.88e–01

I(k) (%) 27.67 38.84 48.82 58.52 66.81 73.68 79.90

k 8 9 10 11 12 13 14

Eigenvalue λk 7.23e–01 5.33e–01 4.26e–01 3.20e–01 2.60e–01 1.74e–01 1.11e–01

I(k) (%) 85.60 89.81 93.17 95.70 97.75 99.12 > 99.99

Table 4. The eigenvalues λk and their corresponding values I(k) when using POD
technique with 20 snapshots (Experiment 5)

k 1 2 3 4 5 6 7

Eigenvalue λk 4.46e+00 1.67e+00 1.63e+00 1.45e–00 1.35e–00 1.07e+00 9.50e–01

I(k) (%) 26.08 35.85 45.38 53.85 61.76 68.02 73.57

k 8 9 10 11 12 13 14

Eigenvalue λk 8.68e-01 7.47e-01 6.63e-01 5.61e-01 5.45e-01 3.82e-01 3.32e-01

I(k) (%) 78.65 83.02 86.89 90.17 93.35 95.59 97.53

k 15 16 17 18 19 – –

Eigenvalue λk 2.45e-01 1.06e-01 7.17e-02 1.25e-08 9.20e-9

I(k) (%) 98.96 99.58 > 99.99 > 99.99 > 99.99
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Fig. 1. Reconstruction of the first snapshot using the first three POD modes

this experiment. One can notice that the worst reconstruction is produced when
using the third POD mode, since it only captures than 15.076% from the total
energy, while the best reconstruction is performed with the first mode (their
plots are overposed, becoming indistinguishable).

The experiments 3, 4, 5 and 6 apply the POD 4D-Var techniques, working
with 10, 15, 20 and 30 snapshots, respectively. The eigenvalues λk and their
corresponding values I(k) associated with the experiments 3, 4, and 5 are pre-
sented in Tables 2, 3 and 4, respectively. Figure 2 also contains new information
about these experiments, namely the relative energy spectrum for POD modes,
corresponding to different sets of snapshots of the system state.

We can see from Table 3 that choosing M = 5 modes and n = 15 snapshots,
the captured energy represents 66.81% of the total energy, while when M = 11,
the captured energy percentage is 95.70%. We also notice from Table 4 that,
when we use M = 7 modes and n = 20 snapshots in POD 4D-Var procedure,
one obtains 73.57% captured energy and then, trying to increase the number
of modes to M = 16 we get 99.58% energy of the dynamical model. The com-
parative assimilation results asssociated with experiments 4 and 6 and certain
selections of M and n are depicted in Figure 3.

As a natural remark, we conclude that better results are obtained when one
is using more POD modes and more snapshots.
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Fig. 2. Relative energy spectrum for POD modes, corresponding to different sets of
snapshots for the system state
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Fig. 3. Comparative results on the assimilation of c0 using 4D-Var method with full
order model and various reduced order models using POD 4D-Var technique
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5 Conclusions

In this paper, we applied to a simple one-dimensional transport model, both a
standard 4D-Var assimilation scheme and a reduced order approach to 4D-Var
assimilation using POD. The approach not only reduces the dimension of the
control space, but also significantly reduces the size of the dynamical model.
The results from different POD models are compared with that of the original
model. We sketch below some conclusions:

– The POD model can accurately approximate the full order model with a
much smaller size.

– The variability obtained by the original model could be captured well by a
low dimensional system that was constructed by 30 snapshots and 15 leading
POD basis functions.

– The drawback of the POD 4D-Var consists of the fact that the optimal
solution can only be sought within the space spanned by the POD basis
of background fields. When observations lay outside of the POD space, the
POD 4D-Var solution may fail to fit observations sufficiently. The above
limitation of the POD 4D-Var can be improved by implementing adaptive
POD 4D-Var.
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Abstract. The local to regional processes of chemical transformations,
washout and dry deposition cannot be directly resolved in global scale
models, they rather need to be parameterized. A suitable way to ac-
count for the non-linearity, e.g., in chemical transformation processes,
is the use of effective emission indices (EEI). EEI translate the actual
(small scale) emissions into input for global scale models, partially ac-
counting for unresolved processes occurring shortly after the release of
the emissions.

The emissions from the road traffic have some specifics, because of
which the concept of deriving EEI from the interaction of an instanta-
neous plume with the ambient air is perhaps not so convenient. A new
parameterization scheme for the EEI from the road transport is sug-
gested in the present paper. Based on few simplifying assumptions and
introducing the adjoin equations approach this new scheme makes it pos-
sible to achieve unified, not depending on the specific emission pattern,
procedure for calculating the EEI from road traffic.

1 Introduction

Transport emissions are released at relatively high concentrations at the ex-
haust of vehicles. They are then diluted to regional and then to global scales.
The local to regional processes of chemical transformations, washout and dry de-
position cannot be directly resolved in global scale models, they rather need to
be parameterized. A suitable way to account for the non-linearity, e.g., in chem-
ical transformation processes, is the use of effective emission indices (EEI). EEI
translate the actual (small scale) emissions into input for global scale models,
partially accounting for unresolved processes occurring shortly after the release
of the emissions.

The emissions from the road traffic are in a way different from the ship and
airplane emissions:

– The road network can be pretty dense in some cells of the large scale model
grid;
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– The emissions are continuous with time;
– The road traffic sources are close to earth’s surface, so the pollution deposi-

tion processes are important and should not be neglected.

That is why the concept of deriving effective emission indices from the interaction
of an instantaneous plume with the ambient air (Paoli R., 2005) is perhaps not
so convenient in the case of road transport emissions.

On the other hand, the vertical turbulent transport is a very important process
near earth’s surface, which means that it is relatively easy to parameterize the
vertical structure of the pollution fields and so relegate the considerations to a
two-dimensional problem within a layer where the emissions heterogeneity can
be important for the nonlinear chemical reactions.

A new parameterization scheme for the EEI from the road transport is sug-
gested in the present paper, based on the concept of small disturbances and
introduction of the adjoin equations approach.

2 Vertical Parameterization

Let the road traffic emissions horizontal heterogeneity play significant role on
the pollution transport and transformation in the layer z0 < z < h, where z0

is the roughness parameter and h is a kind of a blending height — a level at
which the admixtures are already well mixed horizontally and mesoscale hori-
zontal emission heterogeneity is “forgotten”. The blending height h has still to
be defined, but as an initial approximation it can be accepted that it coincides
with the height of the surface layer (SL). For the sake of simplicity the road traf-
fic emissions will be treated as sources at the earth surface and introduced by
the lower boundary condition. In such a case, the transport and transformation
equation, vertically integrated within this layer will transform into:

∂c̄

∂t
+ Lc̄ + A + F |h − F |0 = 0, (1)

where c̄ =
∫ h

z0
c(z)dzis the total vertical pollution contents in the layer, L =

∂
∂x(u − kx

∂
∂x ) + ∂

∂y (v − ky
∂
∂y ) is the transport operator, (u, v, kx, ky) are the

standard denotations of the meteorological variables, averaged in the layer z0 <
z < h, A — the term describing sources and sinks due to chemical transfor-
mations and possible wash-out by precipitation, F |h and F |0 are the pollution
fluxes trough the upper and lower boundaries.

In order to close the problem F |h and F |0 have to be expressed as functions of
c̄. This is relatively easy to do, having in mind, that in the SL the vertical trans-
port is a dominant process, and so the pollution concentration can be treated
as locally horizontally homogeneous. Due to the limited volume of the present
paper, however, the vertical parameterization will not be discussed in details.
It will be mentioned only that it is based on the heavy particles dry deposition
parameterization in the surface layer, suggested by Ganev and Yordanov (1981,
2005) and results in the following expressions for F |h and F |0:
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− F |0 = k
dc

dz

∣∣∣∣
z0

+ wgc0 = (Vd0 + wg) c0 − q (2)

=
Vd0 + wg

h− z0 + Vd0J(h)
c̄−

(
1− J(h)

Vd0 + wg

h− z0 + Vd0J(h)

)
, (3)

F |h = γ
(
c̄− c̄+

)
− wgc

+, γ =
γ′

h− z0
, c̄+ = (h− z0)c+, (4)

where Vd0 is the dry deposition velocity (absorption coefficient) at earth’s surface,
−wg, (wg > 0) is the gravity deposition velocity, q is the capacity of a flat
(locally) homogeneous admixture source, c+ is the admixture concentration at
level h, obtained by the large-scale model, J(h) is quite a complex function of
the SL turbulent characteristics and the gravity deposition, γ′ - a coefficient
which has to be derived from the vertical turbulent exchange treatment in the
large scale model.

3 On the Road Traffic Effective Emission Indices

3.1 The Concept of Small Disturbances

According to the suggested vertical parameterization the evolution of N inter-
acting compounds in the near surface layer of a region D can described by the
system of equations:

∂c̄i

∂t
+ Lc̄i + Ai + Bij c̄j + γ(c̄i − c̄+i )−Wijc

+
j = Ei, i = 1, . . . , N, (5)

where Ei(x, y, t) = δij

(
1− Jj(h) Vd0j+wgj

h−z0+Vd0jJj(h)

)
qj(x, y, t), qj(x, y, t) is the large

scale pollution source, c̄i(x, y, t) and ci(x, y, t) are the large scale pollution con-
tent and the respective concentration averaged in the layer, c+i (x, y, t) is the
concentration above the layer, c̄+i (x, y, t) = (h− z0)c+i (x, y, t), Ai(c1, c2, . . . , cN)
— the term describing sources and sinks of the i-th admixture, due to chemi-
cal transformations, {Bij}and {Wij} are diagonal matrixes describing the large
scale absorption by earth’s surface and gravity deposition with elements along
the main diagonal Bii = Vd0i+wgi

h−z0+Vd0iJi(h) and Wii = wgi (no summing up for index
i in this case), γ is a parameter describing the pollution exchange between the
near surface layer and the upper atmosphere. Summing up for repeating indexes
is assumed everywhere if anything else is not especially stated.

Accounting for smaller scale effects in the context of introducing some cor-
rections into the large scale model results means mostly taking into account
the more detailed pattern of emissions from road traffic and perhaps a more
detailed description of the underlying surface (i.e. spatial specification of the
absorption coefficients {Bij}). A more detailed description of the meteorological
fields means enhancing the spatial resolution of the model, which is not the task.

The set of parameters in (5) defines the solution:

Ai(c1, c2, . . . , cN ), Bij , Ei → c̄1, c̄2, . . . , c̄N .
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Some small disturbances in the parameters lead to another solution:
Ai(c1 + δc1, c2 + δc2, . . . , cN + δcN ), Bij + δBij , Ei + δEi → c̄1 + δc̄1, c̄2 +
δc̄2, . . . , c̄N + δc̄N , δc̄i = (h− z0)δci.

If the parameter disturbances are small enough, so that δBδ
ij c̄j % B

c̄j

ij and

Ai(c1 + δc1, c2 + δc2, . . . , cN + δcN ) ≈ Ai(c1, c2, . . . , cN ) +
∂Ai

∂cj
δcj ,

the problem of the model sensitivity to parameter disturbances can be defined:

∂δc̄i

∂t
+ Lδc̄j + αijδc̄j + Bijδc̄j + γδc̄i = δEi − δBij c̄j , i = 1, . . . , N, (6)

where δci(x, y, t) and δc̄i(x, y, t) are the concentration and vertical pollution
contents disturbances; αij = 1

h−z0

∂Ai

∂cj
.

If equations (6) are solved for the interval 0 < t < τ , τ — the time step of
the large scale model, under the initial conditions

δc̄i = 0 at t = 0, i = 1, . . . , N, (7)

the solution δc̄i(x, y, τ) will give the one time step small scale corrections to the
large scale model results due to the more detailed description of the emission
fields and deposition processes.

Equation (6) needs also boundary conditions. From a point of view of the
further considerations, the following boundary conditions are convenient:

δc̄i = 0 at D boundaries, i = 1, . . . , N, (8)

From a point of view of mass conservation it is obvious that the emission field
disturbances δqi(x, y, t) have to fulfil the relation

∫∫
Dml

δqidD = 0, where Dml =

{xm < x < xm + ∆x, yl < y < yl + ∆y} is the m, l cell of the large scale model
grid. It is obvious that if the heterogeneity of the underlying surface within a
grid cell is not accounted for (i.e. {δBij} = 0) the relation

∫∫
Dml

δEidD = 0 is also

valid.
In the case when the heterogeneity of the underlying surface is accounted

for (δVd0i �= 0) the large scale pollution sources and absorption coefficients,
then their mesoscale disturbances can be defined by the following aggregation
technique:

The detailed (accounting for mesoscale heterogeneities) of the source and ab-
sorption fields will obviously be:

Ei(x, y, t) + δEi(x, y, t) = δij

(
1− Jj(h)

Vd0j + δVd0j + wgj

h− z0 + (Vd0j + δVd0j)Jj(h)

)
(9)

(qj(x, y, t) + δqj(x, y, t))

and
Bii(y, y, t) + δBii(y, y, t) =

Vd0i + δVd0i + wgi

h− z0 + (Vd0i + δVd0i)Ji(h)
. (10)
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Then the large scale fields Ei(x, y, t) and Bii(y, y, t) can be presented in the
form:

Ei(x, y, t) = Eml
i (t).χml(x, y), Bii(x, y, t) = Bml

ii (t).χml(x, y),

Eml
i (t) =

∫∫
Dml

(Ei + δEi) dD = 0, Bml
ii (t) =

∫∫
Dml

(Bii + δBii) dD = 0, (11)

χml(x, y) = 1, when (x, y) ∈ Dml; χml(x, y) = 0, when (x, y) /∈ Dml, (12)

i.e. calculated not by averaging the values of the dry deposition velocities and
emissions, but by averaging the effect. Such a definition by “aggregation” grants
that ∫∫

Dml

δEidD = 0 and
∫∫
Dml

δBiidD = 0. (13)

If C̄ml
i = (h − z0)Cml

i is the columnar pollution contents produced by the
large scale model for the m, l grid cell for the moment t = τ and δC̄ml

i =
1

∆x∆y

∫∫
Dml

δc̄i(x, y, τ)dD, then the corrected columnar pollution contents for the

respective grid and t = τ will obviously be:

˜̄Cml
i = C̄ml

i + δC̄ml
i , i = 1, . . . , N. (14)

The same relation is obviously valid for the mesoscale corrections of the con-
centrations:

C̃ml
i = Cml

i + δCml
i , i = 1, . . . , N, (15)

whereCml
i is the concentration produced by the large scale model for the m, l

grid cell for the moment t = τ and δCml
i = 1

∆x∆y

∫∫
Dml

δci(x, y, τ)dD = δC̄ml
i

h−z0
.

4 The Adjoin Problem

The functionals δC̄ml
i can be calculated when the problem (6–8) is solved for

the time period [0, τ ], but there is also another way to obtain it. As the problem
(6–8) is linear, the technique of functions of influence can be applied (Marchuck
G.I., 1976, 1977, 1982, Penenko V. and A.Aloian, 1985, Ganev K. 2004). In such
a case the problem adjoined to (6–8), concerning the i-th admixture and the
Dml cell is:

−
∂c(i)

ml∗

k

∂t
+ L∗c(i)

ml∗

k
+ α∗

kjc(i)
ml∗

j
+ B∗

kjc(i)
ml∗

j
+ γc(i)

ml∗

k
= 0, k = 1, . . . , N

(16)

c(i)
ml∗

k
=

1
∆x∆y

χml(x, y) for k = i and c∗k = 0 for k �= i at t = τ, k = 1, . . . , N

(17)
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c(i)
ml∗

k
= 0 at D boundaries, k = 1, . . . , N, (18)

where c(i)
ml∗

k
(x, y, t) are the functions of influence, L∗ = −

(
u ∂

∂x + ∂
∂xkx

∂
∂x

)
−(

v ∂
∂y + ∂

∂yky
∂
∂y

)
.

It is relatively easy to prove, that if α∗
ij = αji, B∗

ij = Bji the functional δC̄ml
i

can be also written in the form:

δC̄ml
i =

τ∫
o

dt

∫∫
D

c(i)
ml∗

k
(δEk − δBkj c̄j) dD, (19)

or if the dependence of δEk − δBkj c̄j on time is not accounted for within a time
step:

δC̄ml
i =

∫∫
D

¯c(i)ml∗

k
(δEk − δBkjcj) dD, ¯c(i)ml∗

k
=

τ∫
o

c(i)
ml∗

k
dt. (20)

5 Further Simplifications

Even in the form (20) the expression for the mesoscale corrections is not suitable
as a basis for a reasonable parameterization. ¯c(i)ml∗

k
(x, y) can be presented by

superposition of “plumes”, but still the description of the “plumes” in the large
scale model code will be a tricky thing, requiring some geometrical considerations
and will most probably be quite time consuming.

Therefore it seems reasonable (6), (7) to be replaced by:

∂δc̄i

∂t
+ Lδc̄j + αijδc̄j + Bijδc̄j + γδc̄i = 0, i = 1, . . . , N, (21)

δc̄i = τ.(δEi − δBij c̄j) at t = 0, i = 1, . . . , N. (22)

From mass conservation point of view this is an equivalent formulation, but
all the disturbances are instantaneously introduced at the beginning of the time
step. In such a case the conjugated functions approach leads to the following
expression for δC̄ml

i :

δC̄ml
i = τ

∫∫
D

c(i)
ml∗

k
(x, y, 0). (δEk − δBkj c̄j) dD. (23)

In a quite natural manner (it’s all about processes within one time step τ)
the functions of influence at the beginning of the time step can be presented by
superposition of instantaneous “puffs”, which originate from each point of the
grid cell domain Dml and move against the wind with velocity (−Uml,−V ml),
where Uml and V ml are the (u, v) values of the large scale model for the cell
Dml.
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Under such assumptions the conjugated functions c(i)
ml∗

k
(x, y, 0) obtain the

form:

c(i)
ml∗

k
(x, y, t = 0) =

xm+∆x∫
xm

yl+∆y∫
yl

c(i)
#
k

(x, y)
∣∣
x0,y0

dx0dy0, (24)

where
c(i)

#
k

(x, y)
∣∣
x0,y0

= c(i)0k
(0) chor(x, y)|x0,y0

, (25)

chor(x, y)|x0,y0
=

1
2πσxσy

exp
(
− (x− (x0 − Umlτ))2

2σ2
x

− (y − (x0 − V mlτ))2

2σ2
y

)
,

(26)

−
∂c(i)0k

∂t
+ α∗

kjc(i)0j
+ B∗

kjc(i)0j
+ γc(i)0k

= 0, k = 1, . . . , N (27)

c(i)0k
=

1
∆x∆y

for k = i and c(i)0k
= 0 for k �= i at t = τ, k = 1, . . . , N. (28)

As quantities c(i)0k
do not depend on x0, y0, the explicit form of integral in

(24) can be easily obtained, having in mind (26) and it is:

c(i)
ml∗

k
(x, y, t = 0) = c(i)0k

(0)cml
hor(x, y) k = 1, . . . , N, (29)

cml
hor(x, y) = 1

4

(
Φ(xm+∆x−Umlτ−x

σx

√
2

)− Φ(xm−Umlτ−x
σx

√
2

)
)(

Φ(yl+∆y−V mlτ−y

σy

√
2

)− Φ(yl−V mlτ−y

σy

√
2

)
)
,

(30)

where Φ(z) = 2√
π

z∫
o

e−t2dt is the well known error function.

Thus, though N ×N adjoined equations have to be solved in order to obtain
the necessary set of functions of influence for each cell of the large model grid,
the solutions (30) can be obtained in a rather “cheap” way, which makes the
suggested approach suitable for making some mesoscale specifications of the
large scale model simulations.

Finally, the effective emission corrections can also be calculated. From (21),
(22) it is clear that the pollution outflows/inflows from cell Dml, the mesoscale
emission disturbances eml

i for a time step can be calculated by:

eml
i =

τ∫
0

dt

( ∮
Sml

(unδc̄i − kn
∂δc̄i

∂n )dS + γ
∫∫

Dml

δc̄idD

)
=

∆x∆y

(
δC̄ml

i (0)− δC̄ml
i (τ) − (αij + Bij)

τ∫
0

δC̄ml
j (t)dt

) i = 1, . . . , N. (31)

The time integral can be roughly approximated by:
τ∫

0

δC̄ml
i (t)dt = τ.

δC̄ml
i (τ) + δC̄ml

i (0)
2

i = 1, . . . , N. (32)
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σ = 0.01∆ σ = 0.05∆

σ = 0.1∆ σ = 0.5∆

Fig. 1. Plots of cml
hor for different dependence of σx = σy = σ on ∆, τ |U | =

τ
√

(Uml)2 + (V ml)2 = 0.1∆; ∆x = ∆y = ∆ = 200km, xm = 200km, yl =

200km, Uml

|U| = V ml

|U| =
√

2
2

Having in mind that
∫∫

Dml

δEidD = 0 and
∫∫

Dml

δBijdD = 0 it is clear that

δC̄ml
i (0) = 0 and so the expression (32) obtains the form:

eml
i = −∆x∆y (1 + 0.5τ(αij + Bij)) δC̄ml

j (τ) i = 1, . . . , N. (33)

The term c(i)0k
(0) in (30) strongly depends on the chemical mechanism ap-

plied, but cml
hor(x, y) is very easy to calculate. Some examples of cml

hor(x, y) are
given in Fig. 1. The calculations are made for the central cell of the grid shown,
varying the horizontal dispersion and the large-scale model velocity.

6 Conclusions

Thus, though N ×N adjoin equations have to be solved in order to obtain the
necessary set of functions of influence for each cell of the large model grid, the
solutions (31) can be obtained in a rather “cheap” way, which perhaps makes
the suggested approach suitable for parameterization of the EEI for emissions
from the road transport, thus introducing some mesoscale specifications of the
large scale model simulations.
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Abstract. The coupled process of vacuum freeze drying is modelled by
a system of nonlinear partial differential equations. This article is focused
on the submodel of heat and mass transfer in the absorption camera. The
numerical treatment of the related parabolic partial differential equation
is considered. The selected numerical results well illustrate the specific
issues of the problem as well as some recently obtained results. Brief
concluding remarks and prospectives for future investigations are given
at the end.

Keywords: vacuum freeze drying, zeolites, heat and mass transfer,
parabolic PDE, finite element method, MIC(0) preconditioning.

1 Introduction

The vacuum freeze drying is a process in which the water contents is removed
from a frozen material by sublimation. The modelled dehydration phase starts
from a frozen state. A strongly reduced pressure is maintained in the camera
where the self-frozen substance is placed. Under certain technology conditions,
the iced water is incrementally sublimated (directly transformed to vapor), leav-
ing a fine porous structure favorable to re-hydration.

During the drying process a high level of vacuum is ensured and some (con-
trolled) heat is supplied to keep a stable sublimation. The necessary amount of
heat can be determined using the molecules’ latent heat of sublimation.

The sublimated water molecules are absorbed in a s separate camera (ab-
sorption camera) which could be considered as dual (supporting) process to the
primal process of freeze during. This part of the coupled process is governed by
the material’s absorption isotherms.

The freeze drying causes less damages of the substance than other (more clas-
sical) dehydration methods using higher temperatures. In particular, the freeze
drying does not cause shrinkage or toughening of the material being dried. Com-
plementary (which could be even more important), flavors and smells generally
remain unchanged, making the process favorable for preserving of foods, spices,
herbs, etc.

Zeolite’s granules are used to absorb the sublimated water molecules. The zeo-
lites are special type of silica–containing materials which have a strongly porous

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 410–416, 2008.
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structure that makes them valuable as absorbents and catalysts. They are used
in different environmental problems, e.g. for cleaning water, reducing methyl
bromide emissions, etc. Let us mention, that not only natural zeolites but also
synthetic ones can be used in the process of freeze drying. Both, natural and
synthetic zeolites, have a substantially three–dimensional rigid crystalline struc-
ture (similar to honeycomb), consisting of a network of interconnected tunnels
and cages [9].

The mathematical model of the coupled process of freeze drying is described
by a system of time–depending partial differential equations. The model has a
well established hierarchical structure. A splitting procedure according to the
involved technological processes is applied. The objective of this article to study
the process in the absorption camera which is modelled by a heat conduction
equation. The nonlinearity of this submodel is represented by the right-hand-side
depending on the unknown temperature.

The rest of the paper is organized as follows. In Section 2 the mathematical
model is discussed. The numerical treatment of the related parabolic partial
differential equation is presented in Section 3. Results of some representative
numerical tests are given in Section 4. Finally, short concluding remarks and
plans for future investigations are given in Section 5.

2 The Model and Its Numerical Treatment

Te process in the absorption camera is described by a two dimensional heat
conduction equation [3]. It is a parabolic partial differential equation of the
form:

cρ
∂u

∂t
= Lu + f(u, x, t), x ∈ Ω, t > 0, (1)

where

Lu =
d∑

i=1

∂

∂xi

(
k(x, t)

∂u

∂xi

)
. (2)

The following notations are used in (1) and (2):

– u(x, t) – unknown distribution of the temperature;
– d – dimension of the space (d = 2 in this study);
– Ω ⊂ Rd – computational domain (see Fig. 3);
– k = k(x, t) > 0 – heat conductivity;
– c = c(x, t) > 0 – heat capacity;
– ρ > 0 – material density;
– f(u, x, t) – right–hand side function, which represents the nonlinear (depend-

ing on the temperature) nature of heating.

The following initial (3) and boundary (4) conditions are assigned to the
parabolic equation (1):

u(x, 0) = u0(x), x ∈ Ω, (3)
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u(x, t) = µ(x, t), x ∈ Γ ≡ ∂Ω, t > 0. (4)

The Crank–Nicolson time stepping scheme is used for numerical solution of the
discussed initial boundary value problem. The Finite Element Method (FEM)
with linear triangle elements (so called Courant linear finite elements) is applied
for discretization in space of (1). The computational domain is divided in triangle
elements (see Fig. 3). The triangulation is performed by the freely available
computer mesh generator Triangle [6]. The choice of Triangle is based on the
comparisons analysis of the following three mesh generators: Triangle, NETGEN
[8] and Gmsh [7], see for more details in [5]. The resulting meshes are highly
unstructured. The following mesh generating options are used: minimal angle
of a triangle (the most often used value is 30◦) and maximal area of a triangle
(different for the different subdomains and depending on the geometry).

Let us denote with K and M the FEM stiffness and mass matrices. Then, the
parabolic equation (1) is transferred in the following semi–discrete matrix form:

M
du

dt
+ Ku = F (t). (5)

If we denote with τ the time step, with un+1 the unknown solution (temperature)
at the current time level, with un the already computed solution at the previous
time level, and if use central difference approximation of the time derivative in
(5), we will obtain the following system of linear algebraic equations for the
values of un+1:(

M +
τ

2
K
)
un+1 =

(
M − τ

2
K
)
un +

τ

2
(Fn+1 + Fn). (6)

The system (6) is solved iteratively by the Preconditioned Conjugate Gradi-
ent (PCG) method [1]. The Modified Incomplete Cholesky (known as MIC(0))
preconditioner [2] is applied in the PCG framework.

3 Programming and Numerical Tests

The programming language C++ is used for computer implementation of the
above discussed numerical algorithm. The included numerical tests are performed
under Linux operational system. Various experiments with preliminary known
exact solutions were run in order to fix the mesh and time parameters of the
computer model. A specially designed experimental laboratory apparatus was
used (see Fig. 1) to evaluate the reliability and robustness of the developed
computer model.

The product to be dried is placed in the left container. In the studied case
this container is a glass flask (2 mm depth of the bottom and 1 mm depth of
the walls), and the processed product is grated carrots (60 grams) (see Fig. 1a)).
The right container is the absorption camera (in the laboratory apparatus it is
a similar glass flask – 2 mm depth of the bottom and 1 mm depth of the walls,
where 500 grams zeolites granules are put (see Fig.1b)).
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Fig. 1. The laboratory experiment

We study the temperature field in the absorption camera via numerical solu-
tion of the parabolic problem (1). The values of the related material coefficients
are given in Table 1. The right-hand-side of the differential equation represents
the intensity of the water molecules entering the absorption camera. The released
heat depends on the current temperature (nonlinear nature of the process) and
is strongly varying in space and time.

The computational domain consists of three very different subdomains con-
cerning their physical characteristics: glass, zeolites granules and vacuum. The
time to end the process of drying T is an input parameter (computed by a
separate submodel of the integrated computer system). In the reported numer-
ical experiments, T = 67 930 seconds, i.e. t ∈ [0, T ]. The time step is set to
τ = 10 seconds corresponding to the relevant accuracy requirements. Let us note
once again, that all parameters are tuned for the particular laboratory experi-
ments. The computer tests were performed on Pentium IV, 1.5 GHz processor.
Some basic characteristics of the computer model (mesh parameters) are given in
Table 2.

Table 1. Coefficients of the parabolic problem

Subdomain k(x, y, t) c(x, y, t) ρ(x, y, t)

glass 0.75 W m−1 K−1 0.84 kJ kg−1 K−1 2600 kg m−3

zeolite 0.38 W m−1 K−1 1.226 kJ kg−1 K−1 760 kg m−3

vacuum 2.8 10−6 W m−1 K−1 1.012 kJ kg−1 K−1 1.2 10−3 kg m−3
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a) b)

Fig. 2. FEM discretization of the computational domain. a) grid nodes; b) grid triangles.

Table 2. Some output parameters of the computer model

Number of Number CPU time No. iteration No. iteration

elements nodes (in seconds) (total) (per time step)

2064 1173 123.87 61137 9

4244 2170 255.53 76867 11.3

6577 3365 393.82 84388 12.4

The number of PCG iterations indicates the robustness of the developed solver
while the CPU time is representative for the total computational efficiency (scal-
ability) of the code. The first row in the table corresponds to the initial triangu-
lation of the computational domain (the mesh generator Triangle is used). The
next two rows are related to two refined triangulations. The number of nodes
(FEM degrees of freedom) N is consecutively increased by factors of of 1.84 and
1.55 at each refinement step.

It is easy to observe that the number of PCG iterations (per time step) behaves
as O(N1/4). This is the best result which could be expected based on the MIC(0)
preconditioning theory. Moreover, the theory covers only some model cases on
regular discretization grids while our meshes are unstructured.

The observed scalability of the CPU times is even better than the predicted
by the theory (and/or corresponding to the number of iterations). The obtained
favorable results could be additionally explained by the proper data locality as
well as by the quality of the developed code.

The computed temperature field at the end of the time interval (T = 67 930
seconds) is shown on Fig. 3.
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Fig. 3. The temperature field in the absorption camera

4 Concluding Remarks

The process of vacuum freeze drying is modelled by a coupled system of nonlinear
partial differential equations. It contains: a) a time dependent non-linear balance
equation describing the moving interface between dried and iced subregions of
the product (to be dried) layer; b) a parabolic equation describing the heat and
mass transfer in absorption camera. The model has a hierarchical structure, and
therefore the natural way for solving the problem is to use a splitting according
to the technological processes involved. The process in the absorption camera
(box) is considered in the present paper. The Crank–Nicolson method is used for
the numerical solution of the problem. The computational domain is discretized
using the mesh generator Triangle. Some results from the computer test of the
numerical algorithm for an experimental laboratory apparatus were presented
and discussed. The behavior of the numerically computed temperature field well
fits the behavior of the available experimental measurements.

The following improvements and future developments of the computer model
are planned: a) further tuning of the boundary conditions and the related en-
largement of the computational domain; b) development of accuracy preserving
adaptive time stepping procedure; c) development of robust computer model in
polar coordinates.
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Abstract. The defect of mass by actual schemes within the GME has
motivated the implementation of a conservative semi-Lagrangian scheme
on an icosahedral mesh. This scheme for the GME-mesh is unique. The
properties are demonstrated by applying the new algorithm to typical
test cases as they can be derived from the shallow water test suite. The
results using coarse grids show: this scheme is extremely attractive for
a climate version of the GME. Even for periods longer than those as
specified in the SWE test suite, a defect of mass in the range of accuracy
of the machine is obtained. The relative error results show that the order
of accuracy of the proposed algorithm is two.

1 Introduction

The global weather forecast model (GME) of the German weather service (DWD)
uses an icosahedral mesh: created by recursively refining the initial icosahedron
embedded into a sphere [1].

For the GME, the horizontal dynamics of the prognostic variables such as spe-
cific moisture, specific water content and ice content of clouds, and ozone mixing
ratio is described by a semi-Langrangian advection scheme. This type of schemes
is well-established for solving the equations of oceanic and atmospheric flow. One
reason is that, compared to Eulerian approaches, there is no severe stability con-
dition, such as the CFL condition [2]. Systematic mass deficiencies of the GME
have caused the implementation of an alternative semi-Langrangian scheme on
the icosahedral grid. This finally leads to a reduced defect of mass even for long
periods of simulation and when using coarse meshes. Additional advantages of
the method are shape preservation and almost no numerical dispersion.

The actually implemented method represents the transported quantities such
as moisture or geopotential in shallow water equations by a quadratic Hermite
polynomial for each grid cell, which are spherical triangles. The method does
not only use values within points of the triangle but also requires values at the
center position of the boundary arcs, calculated by cubic Hermite interpolation.
� This work has been funded by the German Research Foundation (DFG) under grant

number Jo 554/1-1 and Jo 554/1-2 within SPP 1167.
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The mass-conserving modification of this interpolation scheme still uses in-
terpolation for values in the corner points of the triangle. But interpolation at
the centers of the edges is replaced by conditions which the polynomial has to
satisfy in order to conserve both the prescribed mass integral within the spher-
ical triangle and the prescribed variation of the mass integral along two of the
edges.

The algorithm is described and applied to such test cases [3] where the exact
solution is known, because this allows to determine the error. The advantages of
the new method are demonstrated in Sect. 4.

2 Theoretical Basis of the Algorithm

A grid cell � of an icosahedral grid is a spherical triangle with corner points
p1, p2, p3. ci, iε{1, 2, 3} are the edges of �. Let V (t, x) describe the wind at
time t at a point x on the sphere. We further assume that the wind field is a
differentiable function. If x(t) with t, s ∈ I is the solution of the ordinary first
order differential equation

ẋ(t) = V (t, x(t))
x(s) = x0

with x0 on the sphere, we call x the trajectory or integral curve of V . The mass
of h over a measurable set U is given by∫∫

U

h dM,

where dM is the area element of the sphere.
Now, select ∆t > 0 such that for a grid point xgrid of an icosahedral grid the

integral curve x with I = [t, t + ∆t] and

ẋ(t̃) = V (t̃, x(t̃))
x(t + ∆t) = xgrid

does exist. The time sequence of points then leads to the description of x(t) as
departure point and xgrid as the arrival point of the integral curve.

Semi-Lagrangian methods are characterized by approximating such trajectory
elements x[t, t+∆t] which begin or end in a grid point [4]. In the following ∆t is
chosen such that all departure points are defined. Let ∆t > 0, � is a typical grid
cell, and ci, i ε {1, 2, 3} are the edges of �. We then refer to the inverse image of
ci with respect to the flux φt,s of V as the departure edge of ci. They compose
the departure triangle of �. The orientation of the boundary of � canonically
creates an orientation of the boundary of the departure triangle.

The fundamental equation upon which this semi-Langrangian transport algo-
rithm is based is the integral-differential form of the continuity equation [5,6].
At each time t0 and for each measurable set U we have

d

dt

∣∣∣∣
t0

∫∫
φt,s(U)

h(t, x) dM = 0. (1)
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Here d/dt describes the total derivative with respect to time. Since

m(t, s, U) :=
∫∫

φt,s(U)

h(t, x) dM

represents the mass at time t over the stream-invariant area φt,s(U), equation
(1) represents an advective equation for the mass, and it states that the mass
advected by the flux remains constant.

For U = � and s = t +�t it follows from (1) that∫∫
�
h(t + ∆t, x) dM =

∫∫
φt,t+∆t(�)

h(t, x) dM (2)

or m(t+∆t, t+∆t,�) = m(t, t+∆t,�), which represents the equation of mass
transport which has to be numerically solved for each grid cell at each discrete
time step [7].

3 Implementation Issues for the GME Library

In this section we describe implementation aspects for the shallow water version
of the GME.

3.1 Data Structure

The grid cells are numbered and local coordinates are introduced. The origin of
this local coordinate system is the center of the respective triangle. This allows
a parameterization of the geodesic arcs and numerical integration along these
edges. For each triangle, the oriented boundary is a sequence of geodesic arcs.
All the required variables, functions and functionals for each grid cell, edges,
and corner points, respectively, are stored within a particularly introduced data
type. Among these details are:

1. A real valued polynomial of second order in local coordinates

q(η, χ) = a0 + a1χ + a2η + a3χ
2 + a4χη + a5η

2,

representing the distribution of transported quantities on the triangle.
2. The mass functional.
3. For each edge of the triangle the variation of mass.
4. The δ-functional of the corner points.

All conditions for these quantities finally result in a 6 x 6 system of equations. At
the very beginning of all calculations, a highly accurate LU decomposition of this
matrix is calculated. This LU decomposition is the left hand side of the equations
to be solved for each time step for the coefficients of the interpolation polynomial.
The system to be solved only depends on the geometry of the triangle and on
the selected space of approximating functions. Therefore it remains constant for
the entire prediction period.
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3.2 Departure Grid

The departure grid consists of all the departure points of all icosahedral mesh
points. Its edges are the departure edges, and its cells are the departure triangles.
In general, departure edges do not represent great circle segments. Nevertheless,
since numerically only the departure points are known, and departure grid and
icosahedral grid are identical for ∆t = 0, the departure edges are approximated
by great circle segments. The intersection of an approximated departure triangle
and a grid cell is a spherical polygon, unless empty. For each time step, the mass
of departure triangles is calculated by summing up all mass integrals over such
polygons.

3.3 Calculation of Mass and Its Variation in a Departure Triangle

Due to Stoke’s theorem the integration over the above mentioned polygonial area
is converted into line integrals of all boundary segments. The polygon bound-
ary consists of departure edge segments and grid cell boundary segments. The
segments are referred to as inside arc, and boundary arcs, respectively. Integra-
tion of mass and its variation is performed along the inside arcs using Gaussian
quadrature formula.

3.4 Values of the Transported Property h at t + ∆t

Given the advective form of the continuity equation

dh

dt
+ h divV = 0, (3)

with dh/dt the total time derivative of h along the trajectory, it follows for a
wind field with divV = 0 that the new value of h(t + ∆t) at a grid point is
given by the value of h(t) at the departure point. To calculate this quantity we
have to locate the grid cell of the departure point and to evaluate the Hermitian
polynomial q(ξ, η) for h at time t at the departure point.

If divV �= 0 the new value of h(t + ∆t) at the grid point results from adding
an approximate value for the integral

−
∫

h divV dt (4)

along the trajectory to the interpolated value at the departure point (which is
the right hand side of the δ-functional). After composing the right-hand sides of
all equations, the LU solver delivers the coefficients of the quadratic polynomial
at time t + ∆t.

4 Two Test Cases for the New Scheme

The first test case of the Williamson Test Suite [3], a cosine bell advecting around
the globe, has been the basis for our similar test cases. We consider the rotation
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of an inverted cosine bell across the poles by a non-divergent wind field (A)
and the longitudinal transport of the cosine bell by a meridional wind field with
divV �= 0 (B).

The test cases have been applied for a time period of 10 to 18 days. With
hnum the numerical solution and hT the exact solution we are able to determine
the relative global error in maximum-norm, the relative defect of mass, and the
height error of the minimum. These quantities are given by

‖ hnum − hT ‖∞
‖ hT ‖∞

,
mass(hnum)−mass(hT )

mass(hT )
,
|min hnum −min hT |

|∆h(0)| ,

respectively, where ∆h(0) = maxhT−min hT is the extension of the initial state
at initial time t = 0. Similarly, the height error of the maximum is defined. For
test case A, the last quantity describes the non-physical oscillations, see Fig. 3.

4.1 (A) Rotation of the Inverted Cosine Bell

In Cartesian coordinates (x, y, z), the wind field V (x, y, z) is given by a tangen-
tial vector field of a single parameter rotational group around the y-axis. Its
amplitude is chosen such that each point of the sphere has completed one rev-
olution of 2π in 12 days. The geopotential (transported quantity) is described
by a function h on the sphere, which takes the form of an inverted cosine bell.
Except for only a few points h is infinitely differentiable. In these points, only
the first derivative of h is continuous. This lack of smoothness is the reason for
non-physical oscillations when using polynomial interpolation in an advection
scheme. In Fig. 1 (left) the bell is plotted on a geographical grid. The coordinate
lines at the left and right boundary represent the south pole and the north pole,
respectively.

We have applied the above scheme to the horizontal transport of mass for
icosahedral grids with different resolutions, specified by ni = 16, 32, and 48,
which give the number of subintervals of an initial icosahedral arc. Although
the wind field is non-divergent, we have performed a discretization of the full
continuity equation at each time step. The simulated time period covers 18
days. The global error, Fig. 1 (right) is small. It can be recognized, Fig. 2 (left),
that the implemented method for test case (A) is of second order at least.
For an icosahedral grid with ni = 48, the implementation is mass-conserving
up to machine accuracy, Fig. 2 (right). Using very coarse grids (for example
ni = 16), we observe no mass conservation, but the loss of mass is extremely
small. An explanation is the fact that, for test case (A), the departure edges are
identical with edges of the icosahedral grid (boundary arcs), but departure arcs
are numerically treated in a different way (see comment above).

Dispersive effects are not visible. The reduction of the non-physical oscilla-
tions is not yet of second order, but close to, Fig 3. Although the wiggles are
low, we will pay special attention to a further reduction of them. Nakamura [7]
emphasizes the nonoscillatory features of rational interpolation.
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mass, ni=48, right
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Results Obtained with a Semi-lagrangian Mass-Integrating 423

0

20

40

60
0

50

100

0

250

500

750

1000

0

20

40

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

+ ni=16

. ni=32

o ni=48

height error 

Fig. 4. (B) Deformation of the cosine bell, ni = 48, different positions, left; Height
error, ni=16, 32, 48 (top-down), right

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

+ ni=16

. ni=32

o ni=48

relative error in max.−norm 

0 50 100 150 200 250 300 350
−10

−8

−6

−4

−2

0

2
x 10

−14

o ni=48

defect of mass 

Fig. 5. (B) Relative error in maximum-norm, ni=16, 32, 48 (top-down), left; defect of
mass, ni=48, right

4.2 (B) Transport of Mass by a Divergent Meridional Wind Field

This test case was generated to investigate the behavior of our numerical scheme
in a wind field which alters the shape of the transported quantity. In a region
of the globe with positive divergence of the wind, the shape of the cosine bell
is flattened and broadened, whereas in regions with negative divergence, the
cosine bell is narrowed and steepened. The relative error Fig. 5 (left), the non-
physical oscillations, Fig. 4 (right), and the defect of mass, Fig. 5 (right), show the
same quantitative behavior as for case (A). Figure 4 (left) shows the numerical
solution at different time steps. The three states of the bell there represent the
initial state, the bell close to the equator, and the bell approaching the south-
pole (here on the same grid). Any transport of mass even closer to the north pole
would force an increased concentration of the bell into a smaller region until the
grid resolution would be no longer appropriate for a reasonable representation
of the peak.



424 W. Joppich and S. Pott

As long as the cosine bell moves in areas of divV ≥ 0 its discretization is
of (alomost) second order. It becomes worse when the bell passes the equator,
which is connected with additional lateral compression. A possible reason might
be that for coarse grids, functions with nearby extrema are only poorly modeled
by quadratic polynomials. The answer to this question will be the topic of further
investigation.

5 Conclusion and Outlook

The proposed Semi-Lagrangian scheme offers desired properties for many ap-
plications: mass-conservation and shape-preservation even in cases of coarse
meshes. Besides investigating some above mentioned questions concerning al-
gorithmic details we are implementing this method into a version of the GME
which is close to the production code of the DWD. By this, a parallelization is
obligatory. Due to the known complexity of the method we will perform system-
atic measurements and comparisons with the old version in order to judge the
advantages with respect to the numerical effort.
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Abstract. The paper concerns the evaluation of the thermal behaviour
of an underground repository of the spent nuclear fuel where the can-
isters are disposed at a vertical position in the horizontal tunnels. The
formulation of thermo-elastic problems should regard the basic steps of
the construction of the repository. We tested the influence of the dis-
tance between the deposition places on the thermo-elastic response of
the rock massif. The problems are solved by the in-house GEM-FEM
finite element software. One sided coupling allows a separate solution
of the temperature evolution and the computation of elastic responses
only in predefined time points as a post-processing to the solution of the
heat equations. A parallel solution of the arising linear systems by the
conjugate gradient method with a preconditioning based on the additive
Schwarz methods is used.

1 Introduction

Management of high-level, long-lived radioactive waste is an important issue
today for all nuclear-power-generating countries. The deep geological disposal of
these wastes is one of the promissing options. The design of a safe underground
depository of a spent nuclear fuel (SNF) from nuclear power stations requires
careful study of the repository construction, reliability of the protecting barriers
between SNF and the environment and study of all kinds of risks related to the
behaviour of the whole repository system. For the assessment of the repository
performance, it is fundamental to be able to do large-scale computer simulations
in various coupled processes as heat transfer, mechanical behaviour, water and
gas flow and chemical processes in rocks and water solutions. Generally, we speak
about T-H-M-C processes and their modelling.

The T-H-M-C processes are generally coupled and a reliable mathematical
modelling should respect at least some of the couplings. In this paper, we restrict
to the modelling of T-M processes with one-directional T-M coupling via the
thermal expansion term in the constitutive relations. Thus the problem can be
divided in two parts. Firtsly, the temperature distribution is determined by the
solution of the nonstationary heat equation, secondly, at given time points the
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linear elasticity problem is solved. The numerical solution of both the problems
leads to a repeated solution of large systems of linear equations and our aim is
to find efficient and parallelizable iterative solution methods.

Mathematically, the thermoelasticity problem is concerned with finding the
temperature τ = τ(x, t) and the displacement u = u(x, t),

τ : Ω × (0, T )→ R, u : Ω × (0, T ) → R3

governed by the following equations

κρ
∂τ

∂t
= k

∑
i

∂2τ

∂xi
2

+ q(t) in Ω × (0, T ) , (1)

−
∑

j

∂σij

∂xj
= fi (i = 1, . . . , 3) in Ω × (0, T ) , (2)

σij =
∑
kl

cijkl [εkl(u)− αkl(τ − τ0)] in Ω × (0, T ) , (3)

εkl(u) =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
in Ω × (0, T ), (4)

together with the corresponding boundary and initial conditions.

2 Numerical Methods

The initial-boundary value problem of thermo-elasticity (1)–(4) is discretized by
finite elements in space and finite differences in time. Using the linear finite ele-
ments and the time discretization, it leads to the computation of vectors τ j , uj

of nodal temperatures and displacements at the time levels tj , j = 1, N, with
the time steps ∆tj = tj − tj−1. It gives the following time stepping algorithm:

find τ0 : Mh τ0 = τ0, u0 : Ah u0 = b0 = bh(τ0),
for j=1,...,N:

find τ j : B
(j)
h τ j = [Mh + θ∆tj Kh] τ j = cj ,

find uj : Ah uj = bj.
end for

Remark: The system
uj : Ah uj = bj (5)

we solve only in predefined time points.
Above, Mh is the capacitance matrix, Kh is the conductivity matrix, Ah is the
stiffness matrix, cj = [Mh − (1 − θ)∆tjKh]τ j−1 + ∆tjφj , φj = θq(tj) + (1 −
θ)q(tj−1), bj = bh(τ j) and τ0 is determined from the initial condition. Here
parameter θ ∈ {0, 0.5, 1}. It means that in each time level we have to solve the
system of linear equations

[Mh + θ∆tjKh]τ j = [Mh − (1 − θ)∆tjKh]τ j−1 + ∆tjφj . (6)
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For θ = 0 we obtain the explicit Euler scheme, for θ = 1 we obtain the backward
Euler (BE) scheme, θ = 0.5 gives the Crank-Nicolson (CN) scheme. In our case
we will use the BE scheme. If we substitute τ j = τ j−1 +∆τ j into (6), we obtain
the system of equations for the increment of temperature ∆τ j ,

[Mh + ∆tjKh]∆τ j = ∆tj(qj
h
−Khτ

j−1), (7)

where qj
h

= q(tj).
To ensure accuracy and not waste the computational effort, it is important

to adapt the time steps to the behaviour of the solution. We use the procedure
based on local comparison of the backward Euler (BE) and the Crank-Nicolson
(CN) scheme [1]. We solve the system (6) only using BE scheme. If this solution
τ j = τ j−1 + ∆τ j is considered as the initial approximation for the solution of
system (6) for θ = 0.5 (CN scheme), then the first iteration of Richardson’s
method presents an approximation of the solution of the system (6) for θ = 0.5.
Thus τ j

CN
∼= τ j − rj , where

rj = (Mh + 0.5∆tjKh)τ j − (Mh − 0.5∆tjKh)τ j−1 − 0.5qj
h
− 0.5qj−1

h
. (8)

The time steps can be controlled with the aid of the ratio η = ‖rj‖
‖τj‖ . If η < εmin

then we continue with time step ∆t = 2 × ∆t, if η > εmax then we continue
with time step ∆t = 0.5×∆t, where εmin, εmax are given values.

For the solution of the linear system Bh∆τ j = (Mh + ∆jKh)∆τ j = fj (7)
we shall use the preconditioned CG method where the preconditioning is given
by the additive overlapping Schwarz method. In this case the domain is divided
into m subdomains Ωk. The nonoverlaping subdomains Ωk are then extended
to domains Ω′

k in the way that overlaping between the subdomains are given
by two or more layers of elements. If B′

kk are the FE matrices corresponding
to problems on Ω′

k, I ′k and R′
k = (I ′k)T are the interpolation and restriction

matrices, respectively, then introduced matrices B′
kk = R′

kBI ′k allow to define
the one-level additive Schwarz preconditioner G,

g = Gr =
m∑

k=1

I ′kB
′
kk

−1
R′

kr.

Note that for the parabolic problems it is proved in [2] that under the assumption
that ∆j/H

2 is reasonably bounded, the algorithms based on one-level additive
Schwarz preconditioning remain numerically scalable. Here ∆j is in order of the
time stepsize and H is the diameter of the largest subdomain.

3 Model Example

The model example comes out from the depository design proposed in [3] (see
Figure 1). The whole depository is very large, but using symmetry we can solve
the problem only on the part of the domain. The model domain contains three
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Fig. 1. The global design of depository

depository drifts (a half of the drift) , each with four 1.32 m diameter, 4.77
m deep deposition holes and one access drift. The heating canisters (0.67 m
diameter, 3.67 m length) simulating the heating from the radioactive waste are
emplaced in the holes. The highest allowable temperature on the surface between
the canister and the bentonit is restricted to 100oC. We solve six variants (A, B,
C, D, E, F ) which differ in the distance dh between the holes (from 2.5 m for the
variant A to 15 m for the variant F ). The whole model domain is situated 800m
under surface. A constructed 3D T-M model of repository is shown in Figure 2.

The computation domain is enlarged with increasing distance between the
holes from dimensions 23.50×58.00×99.77 m with FE grid 145×105×50 nodes
(614250 DOF for the heat problem, 1842750 DOF for the elasticity problem) for
the variant A to dimensions 66.62× 58.00× 99.77 m with FE grid 285× 105×

Fig. 2. Finite element mesh for repository model
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Table 1. Material properties

E ν density conductivity capacity expansion
(MPa) (kg/m3) (W/m0C) (J/kg0C) (1/0C)

granite 66500 0.23 2700 2.7 850 4.4 10−6

concrete 37000 0.30 2800 1.5 880 8.0 10−6

bentonite 30 0.30 2000 1.0 2500 3.0 10−6

steel 210000 0.30 7800 460.0 45 0.0

SNF 210000 0.30 7000 460.0 45 0.0

50 nodes (1496250 DOF for the heat problem, 4488750 DOF for the elasticity
problem) for the variant F .

The thermal source is given by the radiactive waste. The power of SNF in
the canister decays exponentialy in time according to formula determined from
given data by MATLAB

q(t) = 14418.6(e−0.18444(t+tc) + 0.2193e−0.019993(t+tc) + 0.02376e−0.0006659(t+tc))

Here tc presents the cooling time depending on the burn-up value of the fuel. In
our case we suppose two possibilities for the canister power. In the first case the
canister power Cp is 1500 W when disposed (this power is reached after tc = 50.0
years pre-cooling time), in the second case the canister power Cp is 1600 W
when disposed (this power is reached after tc = 42.16 years pre-cooling time).
Canister power is a very important parameter because the canister spacing can
be reduced, if the power decreases. The materials are assumed to be isotropic,
the mechanical properties do not change with the temperature variations.The
thermal conductivity k and thermal expansion α of the rock are also assumed
to be isotropic (see Table 1).

The boundary conditions for the mechanical parts consist of zero normal
displacements and zero stresses on all outer faces except of the upper one. For
the thermal part, we assume zero heat flux on all outer faces except of the bottom
one, where the original rock temperature is given. On the faces of the drifts we
suppose the heat transfer with the parameter H = 7 W/m2 oC, the temperature
of air in the drifts is supposed to be constant in time and is equal to 27oC. The
original temperature of rocks is determined by using geothermal gradient. This
temperature also gives the initial condition.

The computations are done in four subsequent phases:

– the phase of virgin rocks — the initial stresses are determined from the
weights of rocks, the initial temperature is determined using the geothermal
gradient

– the drifts are excavated. The elasticity problem is solved using equivalent
forces on the faces of drifts initiated by the excavation. The nonstationary
heat problem is solved for period of 10 years with the initial condition de-
termined in the phase 1 and with the heat transfer on the faces of drifts

– the deposition holes are excavated. The elasticity problem is solved using
equivalent forces on the faces of holes
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Fig. 3. The temperature on the line parallel with the drifts crossing the center of the
canisters for dh = 2.5, 5.0, and 10.0 meters — the time is 1.6 year (Cp = 1500 W)

Fig. 4. The temperature on the line parallel with the drifts crossing the center of the
canisters for dh = 2.5, 5.0, and 10.0 meters — the time is 1.6 year (Cp = 1600 W)

– the thermoelasticity problem is solved for the period of 200 years with the
initial condition given by the temperature computed in the phase 2.

The highest temperature is encountered after about 1.6 years of deposition for
both the cases (Cp = 1500 W, 1600 W). The results for the first case for the
variants A, B, and D (dh = 2.5, 5.0, and 10.0) are shown in Figure 3. The results
for the second case for the variants A, B and D are shown in Figure 4. Note that
the figures present the behaviour of the temperature on the line parallel with
the drifts crossing the center of the canisters. We can see that in the first case
(Cp = 1500 W) the distance dh = 5.0 m is sufficient to fulfil the restriction for
the temperature on the surface of canister. In the second case (Cp = 1600 W)
we can situate the holes in the distance dh = 10 m.

Remark: The distance between drifts is supposed to be 25 metres. The results
of our tests showed that the canisters deposition in one drift practically do not
influence the temperature in the neighbouring drifts.

From the groundwater solute transport modelling point of view the knowledge
of the stress field is very important. In Figure 5 we present the behaviour of the
shear stress intensity for the first case (Cp = 1500 W).
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Fig. 5. The shear stress intensity on the line parallel with the drifts crossing the center
of the canisters for dh = 2.5, 5.0, and 10.0 meters — the time is 1.6 year (Cp = 1500 W)

Table 2. The numbers of iterations for the domain division in various directions

material homogeneous non-homogeneous

direction x y z x y z x y z x y z x y z x y z

nbr of subdomains 1 1 3 1 3 1 3 1 1 1 1 3 1 3 1 3 1 1

nbr of iterations 153 162 267 354 354 394

nbr of subdomains 1 1 6 1 6 1 6 1 1 1 1 6 1 6 1 6 1 1

nbr of iterations 177 250 346 370 541 434

For the solution of the linear systems (5) and (6) we used the preconditioned
CG methods with preconditioning given by the additive overlapping Schwarz
method. The linear systems were solved in parallel. The parallel computations
were performed on:

– the IBM xSeries 455 computer (symmetric multiprocessor (SMP), 8 proces-
sors) with Intel Itanium2 1.3 GHz 64bit Processor, 16 GB shared memory

– the PC cluster THEA with 8 AMD Athlon 1.4 GHz, 1.5 GB RAM computer
nodes.

The parallel programming uses:

– OpenMP and MPI paradigms on SMP computer,
– MPI paradigm on the PC cluster.

The division of the domain to subdomains influences the efficiency of the pre-
conditioning given by the additive overlapping Schwarz method if the materials
are strong anisotropic or the material parameters have big jumps or the grid is
anisotropic (narrow elements). We tested this efficiency in the variant B. In this
case the averaged hexahedral element has dimensions 0.22× 0.55× 2.04 m and
the material parameters have big jumps on the canisters (see Table 1). Table 2
presents the numbers of PCG iterations for one timestep (∆tj = 10, ε = 10−6) ,
if the division to three or six subdomains in direction x, y or z is done. On the left
part of the table we present results for the homogeneous case (we suppose that
all materials have the same properties as granit). We can see that in this case
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the numbers of iterations correspond to the averaged dimensions of hexagonal
elements. On the right part of the table we present results for the nonhomoge-
nous case. If we use three subdomains, the boundaries of subdomains are not
cutting the canisters and the numbers of iterations correspond to the averaged
dimensions of elements. In the case of division to six subdomains the division in
the direction x does not cut the canisters and the division in the direction y cuts
the canisters directly in the centre. This fact distinctively influences the numbers
of iterations. Therefore it’s necessary to improve the code to enable the using
of irregular division of the domain, which can guarantee that the boundaries of
subdomains will not cut the areas with jumps of material parameters.

4 Conclusion

In the paper, the model problem of geological depository of the spent nuclear
fuel is solved. We compare the results of the solution for various distances of
the deposition holes. We tested the efficiency of the DD preconditioner from the
point of the dependence on the division of the domain.
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Abstract. US EPA Models-3 system is used for calculating the ex-
change of ozone pollution between three countries in southeast Europe.
For the purpose, three domains with resolution 90, 30, and 10 km are cho-
sen in such a way that the most inner domain with dimensions 90 × 147
points covers entirely Romania, Bulgaria, and Greece.

The ozone pollution levels are studied on the base of three indexes
given in the EU Ozone Directive, mainly AOT40c (Accumulated Over
Threshold of 40 ppb for crops, period May-July), NOD60 (Number Of
Days with 8-hour running average over 60 ppb), and ADM (Averaged
Daily Maximum). These parameters are calculated for every scenario and
the influence of each country emissions on the pollution of the region is
estimated and commented.

Oxidized and Reduced Sulfur and Nitrogen loads over the territories
of the three countries are also predicted. The application of all scenarios
gave the possibility to estimate the contribution of every country to the
S and N pollution of the others and detailed blame matrixes to be build.

Comparison of the ozone levels model estimates with data from the
EMEP monitoring stations is made. The calculated data were use to
draw several important conclusions.

1 Introduction

Regional studies of the air pollution over the Balkans, including country-to-
country (CtC) pollution exchange, had been carried out for quite a long time
[2,15,10,11,17,5,6]. These studies were focused on both studying some specific air
pollution episodes and long-term simulations and produced valuable knowledge
and experience about the regional to local processes that form the air pollution
pattern over Southeast Europe.

The present paper will focus on some results which give an impression on the
CtC regional scale pollution exchange (see also [13]). The simulations performed
are oriented towards solving two tasks — CtC study of ozone pollution levels in
the region and CtC study of sulphur and nitrogen loads in the region.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 433–441, 2008.
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2 Modeling Tools

The US EPA Model-3 system was chosen because it appears to be one of the
most widely used modelling tools with proved simulation abilities. The system
consists of three components: MM5 — the 5th generation PSU/NCAR Meso-
meteorological Model [7,12]; CMAQ — the Community Multiscale Air Quality
System [3]; SMOKE — the Sparse Matrix Operator Kernel Emissions Modelling
System [4].

3 Model Configuration and Brief Description of the
Simulations

3.1 Model Domains

As far as the base meteorological data for 2000 is the NCEP Global Analysis
Data with 1◦× 1◦ resolution, it was necessary to use MM5 and CMAQ nesting
capabilities as to downscale to 10 km step for a domain over Balkans. The MM5
pre-processing program TERRAIN was used to define three domains with 90,
30, and 10 km horizontal resolution. They were chosen in such a way that the
finest resolution domain contains Bulgaria, Romania, and Greece, entirely.

3.2 MM5 Simulations

First, MM5 was run on both outer grids (90 km and 30 km resolution) simul-
taneously with “two-way” nesting mode on. Then, after extracting the initial
and boundary conditions, MM5 was run on the finer 10 km grid as a completely
separate simulation with “one-way” nesting mode on. The MM5 model possesses
four dimensional data assimilation option (FDDA) able to relax toward observed
temperature, wind and humidity [14].

3.3 Emission Input to CMAQ

Two inventory files (for 30 and 10 km domains) were prepared exploiting the
EMEP 50 × 50 km girded inventory [16] and its 16.67 km desaggregation de-
scribed in [1]. The grid-values of the 30 km domain were obtained by bi-linear
interpolation over the 50 km EMEP inventory. The values for the inner 10 km
grid were obtained in the same way but over desaggregated inventory. Addi-
tional corrections were included for congruence between both inventories. These
inventory files contain the annual emission rates of 5 generalized pollutants —
SOx, NOx, VOC, NH3 (ammonia), and CO for every grid cell of both domains.

CMAQ input emission files were prepared for the period May 1 – July 31,
2000 for the two inner domains. The inventory files were handled by a specially
prepared computer code E CMAQ that performs two main processes. First, the
pollutant groups were speciated to the compounds, required by CB-IV chemi-
cal mechanism, following the way recommended in [18]. The next procedure in
E CMAQ is the over-posing of proper time profiles (annual, weekly, and daily).
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The methodology developed in USA EPA Technology Transfer Network was
adopted. As far as in the used gridded inventory the type of sources is not speci-
fied, some common enough area sources were chosen from the EPA SCC (Source
Category Code) classification and their profiles were averaged, the resulting pro-
files implemented.

It must be stressed that the biogenic emissions of VOC were not estimated
in E CMAQ and this fact should be taken into consideration when interpreting
model results.

3.4 CMAQ Simulations

From the MM5 output CMAQ meteorological input was created exploiting the
CMAQ meteorology-chemistry interface — MCIP. The CB-4 chemical mech-
anism with Aqueous-Phase Chemistry was used. The CMAQ pre-defined (de-
fault) concentration profiles were used for initial conditions over both domains
at the beginning of the simulation. The concentration fields obtained at the end
of a day’s run were used as initial condition for the next day. Default profiles
were used as boundary conditions of the 30-km domain during all period. The
boundary conditions for the 10-km domain were determined through the nesting
capabilities of CMAQ.

Four emission scenarios were prepared: basic scenario with all emission
sources (scenario All), scenario with Bulgarian emissions set to zero (noBG),
scenario with Romanian emissions set to zero (noRO), and scenario with Greek
emissions set to zero (noGR).

4 Comparison of the Ozone Simulations with
Measurements

The number of background stations monitoring the ozone concentration is quite
limited in the region. There are only 3 such stations belonging to EMEP mon-
itoring network that used to operate all the year 2000. These are the Greek
stations GR02-Finokalia and GR03-Livadi and the station K-puszta, located in
the upper left corner of the 10-km modelling domain, in Hungary.

It occurs that during all the year 2000 two more stations were monitoring
the ozone concentrations in Bulgaria in the frame of a research project . These
stations are BG02-Rojen and BG03-Ahtopol.

Because of the lack of space the plots of measured and modelled hourly ozone
values can not be fully demonstrated here (see Fig. 1 as an example). It can be
stated that the agreement between measurements and simulations is as good (or
as bad) as in many similar studies. The variations of ozone values as calculated
by CMAQ are much more regular than the measurements. The possible reason is
that one and the same mean temporal profile is over-posed on the anthropogenic
emissions and that there are no biogenic emissions. In the future different tem-
poral profiles would be used, at least, for the sources of different categories. And,
of course, biogenic emissions must be accounted for.
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Fig. 1. CMAQ Ozone calculations vs. measurements — Ahtopol station

Generally speaking, CMAQ produces lower concentrations than the measure-
ments almost everywhere with lower diurnal amplitude. The reason for these
shortcomings is in the input data, mainly the emission data. Nevertheless, the
results of calculation contain valuable information about space distribution of
surface ozone and can be used for solving different tasks, as can be seen further.

5 Pollution Exchange in the Balkan Region

5.1 Ozone Pollution Levels and Analysis of the CtC Exchange

High ozone concentrations can cause damages on plants, animals, and human
health. In fact, when the effects from high ozone levels were studied, one should
look not at the ozone concentrations but on some related quantities. The follow-
ing quantities are important: AOT40 — accumulated over threshold of 40 ppb
in the day-time hours during the period from May 1 to July 31 concentrations,
which are damaging crops when they exceed 3000 ppb.hours; NOD60 — number
of days in which the running 8-hour average over ozone concentration exceeds
at least once the critical value of 60 ppb. If the limit of 60 ppb is exceeded in at
least one 8-hour period during a given day, then the day must be classified as
“bad”. People with asthmatic diseases have difficulties in “bad” days. Therefore,
it is desirable not to have “bad” days at all. Removing all “bad” days is a too
ambitious task. The requirement is often relaxed to the following: the number
of “bad” days should not exceed 20. It turns out that in many European regions
it is difficult to satisfy even this relaxed requirement.

The calculated AOT40 fields are given in Fig. 2. As already mentioned they
are scaled by the threshold of 3000 ppb.hours and transformed in percents. It can
be seen from the first plot in Fig. 2, where the scaled AOT40 field obtained by
the All-scenario is presented, that this index is less than the threshold in almost
all land territories. Only over western shore of the Balkan Peninsula values over
100 % can be seen. In the graph that shows the noBG scenario one can see
that switching off Bulgarian sources leads to considerable decrease of this index
not only over the territory of the country itself but over the European part of
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Fig. 2. AOT40C values normalized by the threshold of 3000 ppb.hours. for May-July
2000.

Turkey and northern Greece, i.e. 30–50 % of ozone pollution in these areas is
due to ozone precursors (NOx and VOC) emitted by Bulgarian sources. The
fact that the AOT40 over Romania is almost not influenced by the elimination
of Bulgarian emissions is due to the prevailing NW transport of air masses in the
domain. From its side, Romania contribute essentially to the ozone pollution not
only in Bulgaria and Moldova but even in Turkey and part of northern Greece, as
can be seen from the lower left graph in Fig. 2 (Scenario noRo). The last graph
in Fig. 2 shows the results of scenario noGR. Excluding the emissions over the
Greek territory it decreases the ozone pollution mainly in the country itself. The
decrease in some areas is 50–75 %. Only European Turkey is influenced to some
extent by Greek NOx and VOC pollution.



438 M. Prodanova et al.

Almost the same behaviour of the reciprocal pollution between the three coun-
tries can be observed for the other ozone index NOD60.

5.2 Sulphur and Nitrogen Loads in the Balkan Region and Analysis
of the CtC Exchange

The same scenarios are used for determining the impact of each country in the
sulphur and nitrogen depositions over the region. Apart the concentration, the
CMAQ output contains two main types of files — hourly dry and wet depositions.
Computer code was created able to extract from this CMAQ output the fields
of all species that form S and N loads. They are accumulated in time (as to
produce depositions fields) and space (according to respective countries’ masks)
as to obtain the S and N loads.

Due to the lack of space, the depositions fields will not be presented, here.
The total deposition budget matrixes for oxidized sulphur, oxidized and reduced
nitrogen, are presented in Tables 1–3. The first and most general conclusions
that can be made from a brief view of the fields and tables are the following:

– The loads calculated by the long-term CMAQ simulations are fully consistent
(in terms of the order of magnitude of different deposition types) with the
EMEP evaluations;

– The oxidized nitrogen wet deposition is negligible in comparison to the dry
deposition;

– The total deposition of oxidized sulphur is the biggest one, both as absolute
value and as percents from the sulphur emissions — 348.3 kt(S) and 46.6
% for the whole domain respectively (Table 1). The reduced nitrogen is
next with corresponding values of 60.2 kt(N) and 34.5 % (Table 3) and the
oxidized nitrogen deposition is the smallest — 101.8 kt(N) and 5.8 % from
the total nitrogen emissions (Table 2).

– Almost half of the oxidized sulphur deposition is due to wet deposition (≈
43% for the whole domain); while for the reduced nitrogen the contribution
of the wet deposition is much less — ≈ 30% of the total deposition.

The country to country pollution exchange can be followed from the ta-
bles. They present the emitter-receiver relations for 4 sub-domains in which the

Table 1. Blame matrix for oxidized sulphur, May-July 2005, 1000 t(S)

Emitter all
Receiver BG GR RO other sources

BG 14.772 0.381 3.021 5.838 31.717

GR 3.612 4.230 0.795 6.281 9.058

RO 3.278 0.200 18.203 16.652 28.251

other 10.055 4.246 6.232 64.605 93.376

deposited 31.717 9.058 28.251 93.376 162.401

total emission [S] 72.425 6.708 68.374 180.789 348.297

% Rec/Emit 43.792 33.913 41.318 51.649 46.627
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Table 2. Blame matrix for oxidized nitrogen, May-July 2005, 1000 t(N)

Emitter all
Receiver BG GR RO other sources

BG 1.065 0.011 0.137 0.150 1.375

GR 0.077 0.890 0.000 0.458 1.015

RO 0.108 0.000 1.916 0.481 2.202

Other 0.125 0.114 0.149 4.496 5.584

Deposited 1.375 1.015 2.202 5.584 10.176

total emission [N] 18.317 20.406 44.210 91.430 174.363

% Rec/Emit 7.506 4.976 4.981 6.107 5.836

Table 3. Blame matrix for reduced nitrogen, May-July 2005, 1000 t(N)

Emitter all
Receiver BG GR RO other sources

BG 2.402 0.146 0.873 1.131 3.995

GR 0.351 2.314 0.230 1.549 3.672

RO 0.360 0.010 8.391 2.617 11.487

other 0.882 1.203 1.993 17.653 22.949

deposited 3.995 3.672 11.487 22.949 42.103

total emission [N] 18.317 20.406 44.210 91.430 174.363

% Rec/Emit 21.809 17.996 25.983 25.100 24.147

domain of integration is divided: Bulgaria (BG), Romania (RO), Greece (GR),
and the other countries in the region (other). The impact of each country’s
sulphur and nitrogen emissions to the wet, dry and total depositions in these
countries themselves and in the other countries is clearly demonstrated. The
diagonal elements show the deposition quantity for each country due to its own
sources.

The last three rows of the tables show respectively the total quantity deposited
in the country in the column headers, the total quantity emitted by this country
and the percentage of deposited quantities from the emitted. The last values in
the tables can be treated as the relative part of sulphur/nitrogen that remains in
the domain. The percents vary from 5–7.5 % for oxidized nitrogen trough 25–35
% for reduced nitrogen total deposition up to 34–52 % for oxidized sulphur total
deposition.

The analysis of different scenarios of switching off the emissions from Bulgaria,
Greece or Romania shows, that the impact is most prominent on the sulphur
or nitrogen loads in the respective country. The impact on the neighbouring
countries however can also be significant. For example it can be seen that the
exclusion of Bulgarian sources leads to substantial decrease of oxidized sulphur
loads in northeast Greece and European Turkey. The exclusion of Romanian
sources also leads to substantial decrease of oxidized sulphur loads in northeast
Bulgaria.
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6 Conclusions

The main conclusions that can be made from this tentative study of the trans-
boundary transport and transformation of air pollutants over the Balkans for
the summer of year 2000 are the following:

1.) The comparison of the simulated results with measured data from the back-
ground stations in the region showed reasonable agreement and the loads
calculated by the long-term CMAQ simulations are fully consistent (in terms
of the order of magnitude of different deposition types) with the EMEP eval-
uations, which is quite an encouraging result.

2.) Enriching the number of background stations in the region will soundly con-
tribute to understanding the mechanisms of regional scale transport and
transformation of pollutants over Southeast Europe and to more reliable
evaluation of CtC pollution exchange. The model results will be better ver-
ified by using such an enriched network of measurement stations.

3.) The emission inventories in the Balkan region need to be significantly more
detailed both in spatial resolution and especially in temporal evolution —
annual and diurnal course. Proper evaluation of the natural biogenic emis-
sions is also very important for reliable ozone level simulations.
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Abstract. Large scientific applications are usually developed, tested
and used by a group of geographically dispersed scientists. The prob-
lems associated with the remote development and data sharing could be
tackled by using collaborative working environments. There are various
tools and software to create collaborative working environments. Some
software frameworks, currently available, use these tools and software to
enable remote job submission and file transfer on top of existing grid
infrastructures. However, for many large scientific applications, further
efforts need to be put to prepare a framework which offers application-
centric facilities. Unified Air Pollution Model (UNI-DEM), developed by
Danish Environmental Research Institute, is an example of a large scien-
tific application which is in a continuous development and experimenting
process by different institutes in Europe.

This paper intends to design a collaborative distributed computing
environment for UNI-DEM in particular but the framework proposed
may also fit to many large scientific applications as well.

Keywords: distributed computing, grid computing, grid services, mod-
elling, large scale air pollution models.

1 Introduction

Large scientific applications are mostly developed, tested and used by the groups
of scientists in geographically dispersed locations. It requires a framework for
scientists to effectively communicate, develop and share data and experiments.
E-science, as a newly emerging research area, proposes tools and software which
people could use to create collaborative working environments by utilising grid
infrastructures.

Web platforms (so called web portals), with their flexibility, accessibility, and
platform independence, are the ultimate choice for many collaborative environ-
ments as the user interface. With the recent progress on grid computing, web
services and grid services emerge to provide statefull web applications that could
be used to offer a wide range of tools that are used to create such frameworks.
However, current web portals are mostly written to provide generic services
to submit jobs on remote resources or transfer data between different resources.
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Although it is relatively sufficient for some applications, some need a more appli-
cation centric approach to create a collaborative working environment. Further
efforts need to be put to facilitate the share of the data by offering standard
data handling models, workflow creating abilities, a simple software versioning
approach to keep track of the application, a facility to handle the modularisation
of the application hence conceptually plug and play the modules of the appli-
cation to improve the experiment development environment and many other
application oriented functionality like visualisation and verification of the data
for the case of UNI-DEM.

Large-scale air pollution models are used to simulate the variation and the con-
centration of emissions into the atmosphere and can be used to develop reliable
policies and strategies to control the emissions [9,11]. The Unified Danish Eule-
rian Air Pollution Model (UNI-DEM model), developed by the Danish National
Environmental Research Institute, simulates the transport and distribution of air
pollutants in the atmosphere. UNI-DEM, as a complex simulation software, has
high throughput and high performance computing requirements. As it uses and
produces large sets of data, the establishment of a distributed, access controlled
data server is essential as well. These requirements could be addressed with dis-
tributed technologies, specifically grid computing as certain toolkits define a set
of tools on security, discovery, data transfer and distributed job submission for
such complex systems. Grid computing also helps to target the collaborative
issues as scientists on different domains would like to collaborate on the devel-
opment of UNI-DEM or to carry out further studies on model code. Many portal
systems already use an underlying grid infrastructure successfully to enable a
collaborative working environment for geographically distributed scientists.

This paper looks at the overall design of such a collaborative working envi-
ronment framework to further develop UNI-DEM by a group of geographically
distributed scientists. Although the framework is designed for UNI-DEM, it could
easily be generalised to many scientific applications. It takes into account the
high throughput and high performance computing demands of UNI-DEM. As
UNI-DEM is a data centric code, which uses and produces huge amount of data,
its data control and access system sits at the centre of the design. A modular
approach to the UNI-DEM code is also analysed to improve the experiment de-
velopment environment by using the concepts of distributed computing technolo-
gies. The UNI-DEM specific requirements like visualisation and the verification
of the data should correspondingly be part of the framework. The whole system
design is put together for an experimental, collaborative working environment.

2 Requirement Analysis

There are a set of requirements that should be met for a collaborative working
environment framework to provide the minimum facilities. Those requirements
are as follows for UNI-DEM but could be as general as fitting to many other
scientific applications:
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– The framework should operate on top of a multi domain grid infrastructure
of resources, to satisfy the high throughput and high performance computing
requirements of UNI-DEM.

– Design of a data server to enable data sharing as well as listing, writing and
reading of data. It should also have the data access control system to define
and implement the sharing.

– A software versioning system to keep track of the changes on the source code
providing the change information to the users.

– High level, easy to use interface for non-computational scientists.
– A simple workflow system to integrate job submissions, data access and other

application centric functionality.
– Meta scheduler with an integrated resource broker to schedule the job on a

remote resource automatically.
– An optional visualisation integration (embedded to the portal interface or

suggesting a local visualisation).
– Definition of a verification schema for UNI-DEM data.

The requirements as mentioned above drive the need to use distributed com-
puting technologies. Grid computing [4] is an ideal candidate to target all these
requirements as it was coined to provide a heterogeneous but a unique infras-
tructure for loosely coupled systems.

2.1 Computational Model

The computational model looks at the details of how the computations are car-
ried out. UNI-DEM is a parallel code with two versions; MPI and OpenMP.
Many scientific applications like UNI-DEM have to run many times simultane-
ously (parametric studies) to carry out experiments on the code, initial data,
or to assess the output data. Additionally, high throughput demand for UNI-
DEM comes from the climatological studies where model runs should cover long
periods of time. Also the development of an ensemble system requires a lot of
compute power as several instances of the model have to run.

In addition to high throughput requirements, UNI-DEM is limited by high
performance capability of the compute resources [1]. A typical high resolution,
3D version run of a UNI-DEM (over a period of a year) takes about 134878
seconds on 64 processor of a Blade Cluster. This run-time could be a problem
when there are time constraints hence the model needs to be distributed over
different domains.

The computational model of the framework consists of the heterogeneous
platforms with grid computing capabilities. This requires the installation of a
grid middleware on the resources. Although several different grid middleware are
available, the one used in this study is Globus Toolkit 4.0 (gt4) [3,5]. It is proved
to be working fine with the overlying interface, web portals, which provide the
user interface to the virtual organisation.
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Fig. 1. A generic application prototype fitting to the framework

2.2 Application Model

Another important feature to improve the collaboration is to modularise the
application. Two levels of modularisation could be defined; process based modu-
larisation where pre-processing, computation and post-processing of the applica-
tion could be wrapped up into services. Although this approach provides a good
level of modularisation, it is often not sufficient to analyse the model physics
in detail. The computational part of the application code is usually much more
intensive then pre and post processing parts so a deeper level modularisation
should be achieved.

This framework aims the type of the applications which falls on the category
of Figure 1. For some scientific applications, this could be easily achieved by
identifying the independent parts of the code and wrapping those independent
parts into services. But for some applications like UNI-DEM, all physical mod-
ules are tightly coupled to each other and need to exchange messages on different
levels of computations. At this level, a good understanding of the application
code is required as certain computational pieces of the code could still be modu-
larised. Modularised model code or pieces of model code could be made available
to other scientists who may use these codes in their experiments. The modular
approach provides a quick and efficient way of testing new segments of the code
where the module could be replaced by a different piece of code.

Web and grid services could provide the technical foundation to achieve a
modular model. As an example, the Linear Algebraic (LA) computations which
are part of the computations in UNI-DEM, could be modularised into a grid
service. Studies could be carried out by changing the method of the LA Grid
service from standard LA methods to Monte Carlo LA methods [2]. A modular
approach to application requires an integrated workflow system to be in place
to create automated job sequences.

2.3 Data Model

UNI-DEM, like many other environmental models, use and produce a lot of data.
Observations provide the initial conditions of the real situations and the accuracy
of the model heavily relies on this observation data. The higher the quality
of the data, the better the results of the model. As the model computations
are suggested to be distributed over different domains, the data could not be
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Fig. 2. A generic overview of the data model where data is organised into private, group
and public segments on data server where access is controlled by user certificates

kept on a single domain any more. It should be accessible by all users (in a
controlled manner) and all computational resources. This requires the setup of
a data server, with a security and access control system.

The collaboration between the scientists could happen on different levels.
The most apparent one is the collaboration on data level. Many different runs
of the code means there is a lot of data produced and sharing this between the
scientists requires strict definition of a sharing protocol. The data server should
be segmented to keep private data, group data and public data, where access
to each of them is controlled and granted with user credentials. This type of
collaboration fits well with the security system of grid computing frameworks.

The data model lies in the core of the framework design. The organisation
of the data reflects the sharing method and must be associated with metadata
definitions. The data is categorised into 3 different groups; private, group and
public data analogy to file permissions on Unix/Linux systems. Private data is
only accessible by the owner of the data, group data is accessible by the group
the owner belongs to and the public data is accessible by anyone on the virtual
organisation as shown in Figure 2. Each piece of data is labelled with a metadata
that contains the identifying information like the changes on application code (for
example version control number) and input parameters of the run. This simple
access control system provides an excellent database that logically identifies the
accessible piece of data per user. Once integrated with the portal system, any
user could check the previous runs of the application, which are accessible to
this user not to duplicate an identical run. The data model suggested here could
be applied to the application code as well where data is replaced with different
versions of the application code or modules accessible by granted users.

UNI-DEM runs over a large geographical area. Even finer resolution of UNI-
DEM may not be sufficient to analyse smaller scale areas especially on urban
level. There are mathematical models suggested [10] to downscale the UNI-DEM
for urban areas. Although UNI-DEM may not run for urban scale areas as it is
now, but it could provide data for other air pollution models which are running
at this scale [10]. Additionally, UNI-DEM uses wind data from atmospheric
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Fig. 3. A generic level representation of visualisation and verification functionality on
user interface

models like MM5 Community Model [6]. The wind data from MM5 could be
used as an input data in UNI-DEM. The data server suggested could solve many
integration problems as all data could be transferred by using the data server.
More decoding and encoding software need to be installed on data server to
convert different data formats between the models.

2.4 Visualisation and Verification

Visualisation of UNI-DEM data gives a lot of information to scientists as it shows
the distribution of the emissions on a geographical map. The verification helps to
value the output results. From the computational point of view, the application
must be rerun each time a change has been performed and the results should
be verified by comparing to some reference data. The reference data could be
collection of observations which are interpolated to the grid points or results of
another run which proved to be correct enough for scientists. In the ideal case,
visualisation and the verification software should be installed on data server as
both need the output data and additionally, verification needs reference data.
Portlets as part of the web portal of UNI-DEM take care of the invocation of the
related software on the server and displays the results back as shown in Figure 3.

3 Technology and Software

Web portals, integrated with grid services, provide easy and flexible way to
control and share information by utilising the distributed resources. The portal
should have the following functionality:

– Portal login interface.
– Credential management interface to download, upload and renew certificates

from a credential server.
– Resource management where users could select or monitor the state of the

resources where application is installed or complied to be able to run.
– Workflow submission interface to configure the jobs.
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Fig. 4. Conceptual level design and interactions of the software components

– Job control interface to monitor and interact the running jobs.
– Data transfer functionality. Database access to download or upload data to

local computer or to the database.
– Visualisation interface to run visualisation process and visualise the gener-

ated images.
– Verification interface to carry out verification of the output results by using

reference data.

There are web portal frameworks which successfully use grid infrastructures and
provide many functionality mentioned above on a generic level. GridSphere por-
tal framework [7] is one of them and it offers generic portlets to submit and con-
trol jobs, transfer data between resources and resource monitoring. P-GRADE
web portal [8] is built on top of GridSphere framework and provides additional
functionality like workflow management. The GridSphere portal framework is
used and additional functionality specific to the application like collaboration,
visualisation and verification functionality will be added by using self contained
portlets. The overall design has the following software components and relations
which are shown in Figure 4. Note that only one resource is shown on Figure 4
just for illustration. In real life cases, there are many resources distributed over
different domains.

4 Conclusion

Many large scientific applications are products of collaborative multi-institu-
tional efforts. Collaboration between geographically dispersed scientists are not
easy due to problems associated with application and data sharing. However,
collaborative working environments built on distributed resources and servers
could help a lot on the development, testing and using of scientific applications.

In this paper, we show a framework of a collaborative working environment
for a large scale unified air pollution model (UNI-DEM) by using distributed
computing concepts and technologies. We implemented the relevant infrastruc-
ture containing the application and data servers, and also enabled the resources
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on the grid infrastructure. Furthermore, UNI-DEM has been deployed on the
resources. The fundamental job submission portlet has been developed and cus-
tomised to the requirements of UNI-DEM application. The methods of the col-
laboration on the data level have been defined to enable a grid aware sharing
mechanism. The job submission parameters and UNI-DEM job configuration file
provide the necessary meta-data to access and use the model output data for
granted users. Automatic transfer of files between resources and the data server
have been setup however the implementation of sharing policies are currently in
progress. Data collaboration is also crucial for the integration of UNI-DEM with
different models.

In the future, we are looking at the further development of the UNI-DEM por-
tal by introducing application versioning system and portlet. This requires the
definition of the metadata associated to each version of the application whenever
the application is modified. Data sharing rules apply to application versions to
grant user access. Visualisation, verification, application based grid services are
the possible research and development areas to achieve a complete collaborative
UNI-DEM application.
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Abstract. The system MM5-CMAQ-EMIMO-MICROSYS produces re-
liable air quality forecasts for urban areas with street level detail over
the Internet. In this contribution we will show the special example ap-
plied to Las Palmas (Canary Islands, Spain). Additionally, the MM5-
CMAQ-EMIMO has been used to know the air quality impact of several
industrial plants such as combined cycle power and cement plants. Ad-
ditional runs are performed in parallel without the emissions of the dif-
ferent chimneys forming the industrial complex (up to 5 scenarios in our
experiences for electric companies and cement industrial plants). The dif-
ferences ON1-OFF and so on, show the impact in time and space of the
different industrial sources. The system uses sophisticated cluster tech-
nology to take advantage of distributed and shared memory machines in
order to perform the parallel runs in an efficient and optimal way since
the process should operate under daily basis. We will show the method-
ology and results of these applications also in two industrial complex in
the surrounding area of Madrid City.

Keywords: CFD, air quality modeling, MM5, CMAQ, turbulence, fluid
dynamics, software tools.

1 Introduction

New advances on air quality modeling have been produced during the last years.
In particular applications for operational services by using state-of-the-art mod-
els over industrial plants and urban areas. Up to now, these applications were
limited by the highest spatial resolution of the air quality mesoscale models
which received boundary and initial data from the meteorological global mod-
els. Nowadays, we have made a step forward going down up to 1-10 m spatial
resolution at urban scale to understand, visualize and analyze the detailed con-
centrations found in the urban canopy with the complex building structure. Ur-
ban canopy is dominated by turbulence on very local scales and the turbulence
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parameterization in our classical RANS (Reynolds-Averaged Numerical Simula-
tions) simulations can include aspects which can be visualized by using the LES
(Large-eddy simulations, where large eddies are producing the differences with
RANS or those models with much more computational cost, such as the Direct
Numerical Simulations (DNS) — no turbulence model is included — and the
whole range of spatial and temporal scales of the turbulence must be resolved.
We are still far from operational implementations of DNS models and even for
LES models. Since our objective is tom provide some information related to the
existence of so called “hot spots” in CFD modeling and by considering that the
boundary and initial conditions of these models are essential aspects on such a
matter, we are implementing in diagnostic mode an adapted application of the
MIMO model (University of Karlsruhe, 2002) with a cellular automata model
(UPM, 2003) which receives boundary and initial conditions from the MM5-
CMAQ-EMIMO (NCEP/EPA/UPM) mesoscale air quality modeling systems.
So that we are covering and linking global modeling systems, operating under
daily basis, and microsimulations — represented by the so called MICROSYS
CFD modeling tool.

In addition to these aspects new operational applications in industrial plants
are running and producing operational services since 2005, July and January,
2007. These complex systems could evaluate the impact of several urban strate-
gic emission reduction measures such as reduction of private traffic, increase of
public transportation, impact on introduction of new fuel cell vehicles, etc. Also,
they could be used for analysis of pollution concentrations at different heights
(buildings) and on different areas of urban neighborhoods. Air dispersion in ur-
ban areas is affected by atmospheric flow changes produced by building-street
geometry and aerodynamic effects. The traffic flow, emissions and meteorology
are playing also an important role. Microscale air pollution simulations are a
complex task since the time scales are compared to the spatial scales (micro) for
such a type of simulations. Boundary and initial conditions for such a simula-
tions are also critical and essential quantities to influence fundamentally the air
dispersion results. Microscale Computational Fluid Dynamical Models (CFDM)
are playing an increasing role on air quality impact studies for local applications
such as new road and building constructions, emergency toxic dispersion gases
at urban and local scale, etc. Microscale air dispersion simulations are applied to
predict air-flow and pollution dispersion in urban areas [8]. Different combina-
tions and applications appear in the literature as in Reference [9] by integrating
a Lagrangian model and a traffic dynamical model into a commercial CFD code,
Star-CD to simulate the traffic-induced flow field and turbulence.

In this contribution we have applied the microscale dispersion model MIMO
[10] to simulate different emission reduction scenarios in Madrid (Spain) re-
lated to the vehicle traffic conditions. The MIMO CFD code has been adapted
and incorporated into a mesoscale air quality modeling system (MM5-CMAQ-
EMIMO) to fit into the one-way nesting structure. MM5 is a meteorological
mesoscale model developed by Pennsylvania State University (USA) and NCAR
(National Center for Atmospheric Research, USA) [4]. The CMAQ model is the
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Community Multiscale Air Quality Modeling System developed by EPA (USA)
[1] and EMIMO is the Emission Model [6]. MM5 is a well recognized non-
hydrostatic mesoscale meteorological models which uses global meteorological
data produced by global models such as GFS model (NCEP, USA) to produce
high resolution detailed three dimensional fields of wind, temperature and hu-
midity which are used in our case as input for the photochemical dispersion model
CMAQ [5]. In addition of MM5 output data, EMIMO model produces for the
specific required spatial resolution, hourly emission data for different inorganic
pollutants such as particulate matter, sulphur dioxide, nitrogen oxides, carbon
monoxide and total volatile organic compounds VOC’s. The VOC’s are split
according to SMOKE (Sparse Matrix Operator Kernel Emissions) [2,3,7]. The
CFD and mesoscale models solve the Navier-Stokes equations by using differ-
ent numerical techniques to obtain fluxes and concentrations at different scales.
Mesoscale air quality models cover a wide range of spatial scales from several
thousands of kilometers to 1 km or so. In this contribution we have applied
the MM5-CMAQ-EMIMO models over Madrid domain to obtain detailed and
accurate results of the pollutant concentrations at this spatial resolution and
the MIMO CFD model over a 1× 1 km domain with several spatial resolutions
(2–10 m) and different vertical resolutions. MM5-CMAQ-EMIMO data serves as
initial and boundary conditions for MIMO modeling run.

The MM5-CMAQ-EMIMO modeling system has been used to provide de-
tailed initial and boundary conditions to a system called MICROSYS which is
composed by the MIMO CFD microscale dispersion model and CAMO which is
a cellular automata traffic model. The results show that the air quality model-
ing system offers realistic results although no comparison with eddy-correlation
measurement system has been performed in the area. The tool can be used for
many air quality impact studies but in particular for traffic emission reduction
strategies. In Figure 1 we observe the spatial architecture for the application of
the MM5-CMAQ-EMIMO mesoscale air quality modeling system. In Figure 2 we
show a detailed diagram of the EMIMO modeling system. EMIMO is currently
operating with the so called Version 2 which includes the CLCL2000 with 44
different landuse types with 100 m spatial resolution. EMIMO 2.0 also uses the
CIESIN 30′′ (CIESIN, 2004), population database and the Digital Chart of the
World 1 km land use database to produce adequate emission data per 1 km grid
cell per hour and per pollutant. In order to apply the EMIMO CFD model, we
need detailed information related to the building structure in the 1 km grid cell.
Figure 3 shows an scheme showing the nesting between global models and urban
applications. Figure 4 shows a GIS vector file for Las Palmas de Gran Canaria
(Cary Islands, Spain) with an area of 1×1 km where one of our applications has
been implemented operationally since January, 2007. The height of the buildings
is included in this file. A cellular automata traffic model (CAMO) has been de-
veloped. CAMO — which has been included into the EMIMO modeling system
— is based on transitional functions defined in a discrete interval t as follows:

s(t + 1) = p(s(t), a(t))
u(t) = v(s(t))
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Fig. 1. MM5-CMAQ-EMIMO architecture for this application

where s(t) is a defined state, s(t + 1) is the defined state after one step, a(t)
is an input symbol and u(t) is an output symbol. We have used the Moore
neighborhood with 8 different surrounding cells where each cell — representative
of a vehicle — can move on. The whole system is focusing on Las Palmas de
Gran Canaria (Canary Islands, Spain) with 7 areas with 1 × 1 km each one.
The structure of the system is shown in Figure 5. We have a regular grid and
a variable spacing grid area shown in the Figure 5. In this particular case the
horizontal spatial resolution is set to 10 m and the vertical spatial resolution
varies from 0 to 167 m with 10 m the regular vertical spatial resolution up to
100 m in height.

2 Results

The system has been implemented to produce operational air quality forecasts for
seven areas with 1×1 km spatial resolution each one for 72 hours. The operational
mesoscale air quality system — MM5-CMAQ-EMIMO, OPANA V3 — which was
operating since 2005 had a urban spatial resolution of 1 km over an area of 16×16
km and two mesoscale domains covering up to 180 × 180 km over the Canary
Islands with 9 km spatial resolution and a second domain over the Gran Canaria
island with 3 km spatial resolution, was used to provide boundary conditions to
the new seven 1× 1 km domains where MICROSYS was applied with the CAMO
model. The full new system is called OPANA V4. The system should run on a
daily basis over the 72 hours. The MICROSYS model is running on diagnostic
mode for 2 minutes each hour and then using the boundary conditions produced
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Fig. 2. EMIMO model basic architecture

Fig. 3. From global models to urban applications

in forecasting mode by OPANA V3. The full system performs under a daily basis
on a unique PC computer platform for 16–20 hours CPU time. Figure 6 shows an
example of the operational web site where the system is producing daily data. The
user can access to all the information, including different GIS capabilities taken
from the city data base, time series, zooming capabilities, etc. Figure 7 shows an
example in a point (10 m resolution) of a street in Las Palmas where the O3 values
can be access in a forecasting mode (72 hours).
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Fig. 4. One of the sub-domains with 1×1 km in Las Palmas de Gran Canaria (Canary
Islands, Spain) where the MM5-CMAQ-EMIMO-MICROSYS air quality modeling sys-
tem has been implemented for this experiment

Fig. 5.

In addition to this application, we have installed an operational system in
a cluster platform to obtain the impact of two industrial plants in forecasting
mode. ACECA (South of Madrid Community) — a thermal and combined power
plant with 4 emitters in the area — and Portland Valderrivas with five scenarios
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Fig. 6. OPANA V4 Las Palmas web site

also in forecasting mode in the south of Madrid Community. The system has
been also implemented in Madrid urban area where it has been used as part
of research tool (not operational forecasting system) to analyze the impact of
different traffic emission scenarios. Similar implementation has been done in
Helsinki (Finland) and Marylebone (London, UK). These cases can be illustrated
in http://www.eu-oscar.org/ as results of the OSCAR EU FP5 project.

3 Conclusions

The MM5-CMAQ-EMIMO modeling system has been used to provide detailed
initial and boundary conditions to a system called MICROSYS which is com-
posed by the MIMO CFD microscale dispersion model and CAMO which is a
cellular automata traffic model. The system is running operationally for Las
Palmas (Canary Islands, Spain) since January, 2007. Additional a mesoscale air
quality modeling system, MM5-CMAQ-EMIMO, has been put in operational
service to produce air quality forecasts for several scenarios produced by switch-
ing on and off the emissions of different chimneys on ACECA (thermal and
combined power plant located in the South of Madrid Community) and Port-
land Valderrivas (Cement company located in the south of Madrid Community).
Both systems are in operation over cluster parallel platforms since July, 2005 and
January, 2007, respectively.

http://www.eu-oscar.org/
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Abstract. We consider the problem of computer simulation of ultra-fast
semiconductor carrier transport. The mathematical description of this
problem includes quantum kinetic equations whose approximate solv-
ing is a computationally very intensive problem. In order to reduce the
computational cost we use recently developed Monte Carlo methods as
a numerical approach. We study intra-collision field effect, i.e. effective
change of phonon energy, which depends on the field direction and the
evolution time. In order to obtain results for different evolution times in
a reasonable time-frame, we implement simulation on the computational
grid. We split the task into thousands of subtasks (jobs) which are sent
to different grid sites to be executed. In this paper we present new results
for inhomogeneous case in the presence of electric field, and we describe
our grid implementation scheme.

Keywords: Grid computing, Ultra-fast carrier transport, Monte Carlo
methods, Wigner function, Grid performance.

1 Introduction

The Monte Carlo Methods for quantum transport in semiconductors and semi-
conductor devices have been actively developed during the last decade [4,12,9,10].
These Monte Carlo calculations need large amount of computational power and
the reason is as follows: if temporal or spatial scales become short, the evolution
of the semiconductor carriers cannot be described in terms of the Boltzmann
transport and therefore a quantum description is needed. Let us note that in
contrast to the semiclassical transport when the kernel is positive, the kernel in
quantum transport can have negative values. The arising problem, sometimes
referred to as the “negative sign problem”, leads to additional computational
efforts for obtaining the desired solution. That is why the quantum problems are
very computationally intensive and require parallel and Grid implementations.

On the other hand, the intrinsically parallel aspect of Monte Carlo appli-
cations makes them an ideal fit for the grid-computing paradigm. For more
information about Grid as a new computational infrastructure see [5].

Development of the grid infrastructure motives development of different grid
implementation schemes for these algorithms. This paper presents our grid im-
plementation scheme which uses not only the computational capacity of the grid
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but also the available grid services in a very efficient way. With this scheme
we were able to obtain new estimates about important physical quantities. The
paper is organised as follows: section 2 describes very briefly the problem and
the algorithms, section 3 presents the grid implementation scheme, section 4
contains the new estimates and performance analysis.

2 Background (Algorithms for Ultra-Fast Carrier
Transport)

We consider algorithms for solving Wigner equation for the nanometer and
femtosecond transport regime. In the homogeneous case we solve a version of
the Wigner equation called Levinson (with finite lifetime evolution) or Barker-
Ferry equation (with infinite lifetime evolution) [8,7]. Another formulation of
the Wigner equation considers inhomogeneous case when the electron evolution
depends on the energy and space coordinates [11]. The problem is relevant e.g.
for description of the ultra-fast dynamics of confined carriers. Particularly we
consider a quantum wire, where the carriers are confined in the plane normal to
the wire by infinite potentials. The initial condition is assumed both in energy
and space coordinates.

The mathematical models that we consider include:

– Homogeneous case (one-band semiconductors):
• Levinson and Barker-Ferry equations without an eclectic field;
• Levinson and Barker-Ferry equations with an applied electric field;
• Both equations with finite temperature and an applied electric field.

– Inhomogeneous case (quantum wire — more realistic case): we solve the
above mentioned quantum equations with additional terms.

A set of Monte Carlo and Quasi-Monte Carlo algorithms was developed to solve
the problems arising from the mathematical models under consideration [8,6,1].
All algorithms were integrated in a Grid application named SALUTE (Stochastic
ALgorithms for Ultra-fast Transport in sEmiconductors). The description of the
first version of SALUTE can be found in [2,3].

The numerical results that we present in this paper are for the inhomogeneous
case with applied electric field (see figures in the Numerical tests section). We
recall the integral form of the quantum-kinetic equation, [6]:
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Here, fw(z, kz, t) is the Wigner function described in the 2D phase space of the
carrier wave vector kz and the position z, and t is the evolution time.

F = eE/�, where E is a homogeneous electric field along the direction of the
wire z, e being the electron charge and � — the Plank’s constant.

nq′ = 1/(exp(�ωq′/KT )− 1) is the Bose function, where K is the Boltzmann
constant and T is the temperature of the crystal, corresponds to an equilibrium
distributed phonon bath.

�ωq′ is the phonon energy which generally depends on q′ = q′
⊥ + q′z = q′

⊥ +
(kz − k′

z), and ε(kz) = (�2k2
z)/2m is the electron energy.

F is obtained from the Fröhlich electron-phonon coupling by recalling the
factor i� in the interaction Hamiltonian, Part I:
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where (ε∞) and (εs) are the optical and static dielectric constants. The shape
of the wire affects the electron-phonon coupling through the factor

G(q′
⊥) =

∫
dr⊥eiq′

⊥r⊥ |Ψ(r⊥)|2 ,

where Ψ is the ground state of the electron system in the plane normal to the
wire.

In the inhomogeneous case the wave vector (and respectively the energy) and
the density distributions are given by the integrals

f(kz, t) =
∫

dz

2π
fw(z, kz, t); n(z, t) =

∫
dkz

2π
fw(z, kz, t). (2)

Our aim is to estimate these quantities, as well as the Wigner function (1) by
MC approach.

3 Grid Implementation

The evolvement of the grid implementation scheme of SALUTE was motivated
by the development of the SEE-GRID1 infrastructure which we use. In this
section we first describe the grid infrastructure, then we show the preliminary
and present implementation schemes.
1 SEE-GRID2 (South Eastern European Grid enabled e-Infrastructure Development-

2) initiative is co-funded by the European Commission under the FP6 Research
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3.1 SEE-GRID Infrastructure

The SEE-GRID infrastructure integrates computational and storage resources,
provided by the project partners, into a pilot grid infrastructure for South East-
ern Europe. Currently there are more than 30 clusters with a total of more
than 500 CPUs and more than 10 TB of storage. The peculiarities of the re-
gion are that the network connectivity of many of these clusters is insufficient,
which implies the necessity to avoid network-hungry applications and emphasize
computationally intensive applications, that make efficient use of the available
resources. It also imposes the need of fault-tolerant implementations.

The first phase of the deployment of the SEE-GRID infrastructure used the
LCG middleware. The services and APIs, available in LCG middleware, moti-
vated the development of the first simpler scheme of SALUTE.

The second phase of the deployment of the SEE-GRID infrastructure was
built using the gLite middleware. The gLite middleware provides Web Service
APIs for most of its services, and provides new types of services, like the gLite
WMS, gLite FTS, AMGA, etc. It also improved the reliability and scalability of
the other services.

– Each of the SEE-GRID clusters has the mandatory services:
• Computing Element (CE) — provides user acces to the Grid resources;
• Worker Nodes (WN) — execute the jobs, perform calculations;
• Storage Element (dCache, DPM or classic SE) — reliable data storage;
• MON box (Monitoring and accounting) — monitors the current Grid

status and reports complete jobs and resources used.
– The Worker Nodes provide the computational resource of the site, and the

Storage Element provides the storage resources.
– The set of services, that are not tied to the specific site are called core

services. In SEE-GRID the core services are distributed among partners.
They include
• VOMS (Virtual organisation management system)
• MyProxy
• R-GMA registry/schema server (distributed data-base)
• BDII (provides comprehensive information about the resources)
• WMS (distributes and manages the jobs among the different grid sites)
• FTS (file transfer service)
• AMGA (metadata catalog

Infrastructures contract # 031775 towards sustainable grid-related activities in
the SEE region. The SEE-GRID2 consortium consists of thirteen contractors from
SE European countries and CERN: GRNET (Greece), CERN, IPP-BAS (Bul-
garia), ICI (Romania), SZTAKI (Hungary), TUBITAK (Turkey), INIMA (Albania),
UOB (Serbia), UKIM (FYROM), RENAM (Moldova), RBI (Croatia), FEE-
UoBL (Bosnia-Herzegovina), UOM (Montenegro). More information is availed on
http://www.see-grid.eu.
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3.2 Grid Implementation Scheme

Using the experience gained with the first scheme and the new services and
APIs, available in SEE-GRID 2, we developed a new grid implementation scheme
outlined below.

In the new scheme we incorporated the use of the FTS and AMGA services,
available in the gLite, and we were able to include the estimation of several
new physical quantities, which increased to total amount of data to be gener-
ated, stored, processed and visualized. We increased the spacial resolution of
all graphs, since we had more computational resources available. Here are the
details:

1. On the User Interface (UI) computer the scientist launches the Graphical
User Interface (GUI) of the application. The job submission, monitoring
and analysis of the results is controlled from there. The GUI is written using
PyQt and pyopengl for the 3D visualization, and the python bindings for the
grid functions (mainly the wmproxymethods module provided by gLite).

2. The Web service computer (WS) provides a grid-enabled secure gateway to
the MySQL database, so that no direct mysql commands are run by the user
or from inside the grid jobs.

3. The AMGA (ARDA Metadata Catalog) is used to hold information about
the results obtained so far by the user — for example input parameters,
number of jobs executed, execution date etc.

4. The user selects input parameters and queries the AMGA server to find if
data for these parameters is already present or not.

5. If a new run is necessary, the user submits request to the WS computer for
calculation.

6. From the GUI the jobs are sent to the Workload Management System (WMS)
and information about them is stored at the MySQL database computer via
WS invocation.

7. The WMS sends the job to the selected sites.
8. When the job starts, it downloads the executable from the dCache storage

element. The executable is responsible for obtaining the input parameters
from the WS, performing the computations, and storing the results in the
local Storage Element. After finishing the store operation, it calls the WS
computer in order to register the output.

9. The jobs are monitored from a monitoring thread, started from the GUI,
and information about their progress is displayed to the user.

10. Another thread run from the GUI is responsible for collecting the output
results from the various Storage Elements to the local dCache server. For
each output file a request for transfer is sent to the File Transfer Service.

11. The FTS is used in order to limit the number of files that are transferred
simultaneously, because of the limited bandwidth. In this way we also avoid
scalability limitations of the middleware and we do not overload the Storage
Elements.

12. After a file has been transferred to the dCache, it is registered in the MySQL
database (by WS invocation).
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Fig. 1. Graphical User Interface (GUI) for submission and monitoring of SALUTE
jobs, and accumulation and visualization of their results

13. A special computational job is run at a local WN and it is responsible for
gradual accumulation of the outputs of all jobs into one final result. It checks
the MySQL database for new results and if they are available at the dCache
server, it retrieves them locally and performs the accumulation. At regular
intervals the accumulated results are registered to the dCache and made
available for the user.

We utilized several programming languages and technologies: Java and tomcat
for the web services, mysql as a database back end, python with the Qt and
OpenGL bindings for the GUI, MPI for parallel execution, SPRNG for the ran-
dom number generation, etc.

The new GUI (see Figure 1) allows the user to control the whole process
of job submission, monitoring, and collection of results. Partial results can be
viewed in 3D view, and from there the user can see if the accuracy is going to
be enough, or more jobs need to be submitted. One can also search for older
results and compare them, taking the information from the metadata catalogue.
This system has been used to submit up to 5000 jobs, and since it offloads most
of the work to the gLite service nodes in SEE-GRID infrastructure, it has not
shown performance problems. This gives us the advantage that the GUI does not
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have to be running all the time while the simulation is going on. By using Grid
authentication and via the metadata catalogue we can have several scientists
working jointly on similar problems, without duplicating computations.

4 Numerical Tests and Grid Performance Analysis

The problems arising when we solve the Wigner equation using Monte Carlo
approach are due to the large statistical error. This error is a product of two
factors: standard deviation and sample size on the power one half. The standard
deviation increases exponentially with time, so in order to achieve reasonable
accuracy, we must increase considerably the sample size. This implies the need
of computational resources.

Using the grid and above described grid implementation scheme, we were able
to obtain new results about important physical quantities: Wigner function, wave
vector, electron density, and energy density. The results presented here are for
inhomogenious case with applied electric field. The new Graphical user interface
gives additional possibilities for analysing the results. On the Figures 2, 3, and
4 one can see how Wigner function changes when the number of jobs successfully

Table 1. The approximate average CPU time per job, number of jobs and total CPU
time for different evolution times. The number of the trajectories is fixed on N =
2000000 for each job.

t Number of Jobs CPU time per job Total CPU time

20 fs 5 1 h 5 h

100 fs 100 1 h 20 min 133 h 20 min

180 fs 2000 2 h 20 min 4666 h 40 min

Fig. 2. The Wigner function solution at 20 fs presented in the plane z×kz. The electric
field is 15[kW/cm] along to the nanowire.
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Fig. 3. The Wigner function solution at 100 fs presented in the plane z × kz. The
electric field is 15[kW/cm] along to the nanowire.

Fig. 4. The Wigner function solution at 180 fs presented in the plane z × kz. The
electric field is 15[kW/cm] along to the nanowire.

executed on the grid increases with time. By using the SEE-GRID infrastructure
we were able to obtain the results for Figure 4 within 48 hours, when on a single
computer one would need approximately 195 days (see Table 1). The quantum
effect can be seen — there is no symmetry when electric field is applied. Because
of the nature of Monte Carlo computations it is not necessary for the user to wait
until all jobs are completed. In such case the user can cancel the unnecessary
jobs. Normally, the execution times of the jobs at the different sites are similar,
and the delay in starting is caused by lack of free Worker Nodes. Thus our new
scheme allows the user to achieve the maximum possible throughput.
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Abstract. The problem domain of Parameter Study covers a wide range
of engineering and scientific tasks which can be easily processed parallel.
However, the research community users, who would like to benefit from
the supercomputing power of a Grid are not familiar with the required
distributed computing techniques. For this reason, the presented Salève
development framework aims to free this limit by providing a general
solution for PS tasks by inserting an abstraction layer between the user
application and the Grid middleware. We design a new Salève plugin for
the gLite middleware of the EGEE Grid and discuss the authentication
issues.

Keywords: Grid Application Development, gLite, Parameter Study.

1 Introduction

The increasing demand for computing resources in various research and engineer-
ing activities makes the use of distributed computing technologies inevitable. Al-
though this field can be proud of important results risen in the past decade (for
a survey see [3]), the real application of high performance computing paradigms
in everyday work can be highly challenging. In addition, the research community
users who would like to benefit from the supercomputing power of a Grid are
not familiar with the required techniques.

For this reason, the presented Salève development framework [6] aims to free
this limit by hiding the technological details from the end-user and providing
a general solution for parameter study (PS) tasks. The problem domain of PS
covers a wide range of the engineering and scientific tasks such as data analysis
in high energy physics or in astronomy, Monte Carlo methods etc. An indepen-
dent PS computation generally defines a parameter space which has to be fully
traversed to obtain the desired result. We suppose that the parameter space can
be partitioned into subdomains where the final result is simply calculated from
the subresults given by covering the subdomains, respectively. The independence
property is essential to our case: we need to be able to process the subdomains
independently, therefore the execution of the task can be easily paralleled.

After developing a computationally intensive but paralleled application, a
researcher probably intends to submit it to a Grid. Salève now supports the
submission of jobs to the EU supported EGEE Grid. The Enabling Grid for

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 470–475, 2008.
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E-sciencE (EGEE) project was initiated by CERN and aims to provide a pro-
duction quality Grid infrastructure for academic and industrial researchers [2].
The EGEE users can access Grid resources only through Virtual Organizations
(VO) which is a group of Grid users who e.g. plan to share some data or sim-
ply have similar interests. In order to offer a transparent access to the EGEE
infrastructure, Salève hides the communication with the gLite middleware, the
engine making the whole Grid run [4].

Salève’s plugin-based architecture allows easy adaptation of a new Grid
middleware or a local scheduler. In this paper we present the plugin mecha-
nism of Salève through the design of a new plugin for gLite, and we also propose
a new method for authentication between the Salève server and the client ap-
plication. In Section 2 we introduce the working of the Salève system from the
user aspect, and Section 3 gives an outline of Salève’s client-server architecture
and the security issues. In Section 4 we show the gLite plugin for Salève, and in
Section 5 we present our goals to reach in the future.

2 Capabilities of Salève

In this section we give a brief summary of the operation of the Salève system
through the phases of a PS task. First, the PS application written in C program-
ming language has to be transformed to the Salève client. One of our main goal
is to make this step as simple as possible. At present, the user needs to modify
the source code slightly, and then link the Salève client library to the program
producing a single executable application. The partition method of parameter
space has to be implemented arbitrarily by the user, however it is aided by the
logic of the Salève client library.

The second step is starting the client program which, by default, performs
the calculations locally (without a server), just like the original program. When
provided with an URL of a Salève server, the client submits its own binary code
along with the required input data to the server, and waits for the subresults.
In the third phase the server creates a job for every subdomain, and dispatches
these jobs to a Grid or to a local scheduler. When the jobs are done, the server
returns the subresults to the client as the fourth phase. Finally, after receiving
the subresults, the client computes locally and then returns the final result.

There are several typical scenarios of Salève usage that we illustrate in Fig-
ure 1. The most simple involves no Salève server but local resources of the user’s
desktop machine. In this case, the client code acts almost exactly like the orig-
inal sequential code, except that it takes advantage of multiple processors for
parallel computation of subdomains if possible.

In the second approach (II–IV. cases on Figure 1), the processing is carried
out by a Salève server. By default, the client submits itself and its input data
and waits for the result from the server. During this phase what we called the
third phase above, the client can be interrupted and resumed later to reattach
to the server from another machine, and eventually retrieve the result data on
the other client machine. Thus we are able to exploit the high availability and
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Fig. 1. Salève architecture and usage scenarios

location-independence of the Salève services, and eliminate the risks of job check-
pointing on the desktop computer.

The server can execute the job locally, which can be useful if it is a multi-
processor machine with much higher computing performance than that of the
desktop computer running the client program. In addition, the server can pass
on the task to an advanced distributed computing resource, e.g. a batch system
or a Grid middleware. We emphasize that the way the Salève server uses these
resources is fully transparent to the client, i.e. no recompilation nor reconfigu-
ration is required if the server switches from one batch system or middleware
to another. Furthermore, no thorough knowledge of distributed technology is
necessary from the user.

3 The Internals of the Salève Server

The main components of the server are shown in Figure 2 which are the commu-
nication component and the plugins. The component responsible for the com-
munication with the clients is a collection of SOAP web services [7]. Providing
interfaces based on web services might be a commonly accepted practice in Grid
environments in the near future. For the SOAP protocol implementation the
highly portable gSOAP [5] toolkit has been used. We mention that the input
and output data transfers are realized via HTTP messages.

We call the other important group of components the plugins. Salève’s plugin
mechanism has been designed in order to handle the diverse types of schedulers
and middlewares (see Figure 2). For each distributed technology a lightweight
plugin has to be developed, thus avoiding a radical redesign of the server ar-
chitecture. The core Salève server already contains support for server-side local
execution, and for Condor [1], which is one of the most widespread batch systems
in the research community. The functionality of the server can be extended by
adding new plugins to keep up with the new technologies. For the time being
only one plugin can be handled by a server instance thus deploying a different
plugin needs replacing the previous one.
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Fig. 2. The components of the Salève server

In a multi-user environment the security issues are crucial, particularly the
authentication of the Salève client. We propose to use HTTP over SSL instead
of the HTTP plain text version, so the client can authenticate herself or himself
with a certificate signed by a trusted authority (e.g. a server-side certificate
authority). Moreover the user can avoid typing in a password each time starting
the client application.

On the other hand, server has to authenticate itself towards the Grid as well.
Currently this is the responsibility of the corresponding plugin, without involving
the client or the user in this process. If we follow this approach, no modification
is required on the client side whenever a new server plugin is deployed.

4 The gLite Plugin

Writing a new plugin for the Salève server is relatively simple. The core of the
server is implemented in C++ with high level object-oriented design. Developing
a plugin consists of extending a base class and implementing functions for sub-
mitting a job and checking its status in the corresponding middleware. There is
also a generic, plugin-implemented method of handling input and output data.

Besides the core server, a plugin extension for the gLite middleware has been
developed in order to help the researchers to exploit the potential of the Euro-
pean Grid. For the most part, the design of the plugin was straightforward, but,
since this is a pilot plugin, we have left the most important question open: the
problem of authentication. In the following part, we outline the actual working
mechanism.

The gLite middleware uses a certificate-based authentication mechanism, with
the users and resources grouped into Virtual Organizations (VOs) built on the ne-
cessity of collaboration. So as to submit jobs, a proxy certificate must be generated
using the user’s private key (certificate). The lifetime of this proxy certificate is
short to prevent damages in case of being compromised, therefore the proxy has
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to be periodically renewed. The user never sends her or his private certificate to
anyone but the proxy can be forwarded to a service for authentication purposes.

In the current solution, the server needs to have access to the Grid resources
directly, i.e. the server must be the member of a VO and have its own certificate.
The proxy renewal is accomplished by the server automatically, and the clients’
jobs are run under this single Grid user of the server. This means that the client
does not have to deal with any detail of gLite: from its own view, the execution
is exactly the same as in the case of a server-side local job or a Condor job.

However, a finer grain of access control among different clients of one Salève
server should be developed on the server side. Additionally, the server needs to
be the member of a VO, but the policies of the currently existing VOs might not
allow several people to use the same user certificate, mainly because it would be
difficult to find the person responsible for a damaging action. We have a future
plan to give a better solution for this problem detailed in Section 5.

5 Future Work

As mentioned in Section 4, integrating the authentication in the server plugin
independently from the client leads to difficulties. It might be better to release
the server from playing a role in the authentication, and then the client would
send with the input data a valid certificate. The certificate sent could be a proxy,
but the client side proxy generation could harm the client’s lightweight property.

Another important point is to make even less work to adapt the traditional se-
quential programs to Salève. A major step could be in this direction the creation
of the webstream interface. The present state of bulk file transfer implementa-
tion is not always satisfactory. It is only possible to retrieve complete files after
the communicating partner has finished writing the whole data. There are situa-
tions however, where the files should be streamed on the fly with minimal delay.
The future implementations of Salève will contain the support for webstreams
to support on the fly streaming, which can be used in the same manner as other
input/output stream objects of C++. Webstreams would allow better integra-
tion of the Salève client into the native C++ code, and the migrator would need
less work and knowledge to make the program Salève-compatible.
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Abstract. Grids include heterogeneous resources, which are based on
different hardware and software architectures or components. In corre-
spondence with this diversity of the infrastructure, the execution time of
any single job, as well as the total grid performance can both be affected
substantially, which can be demonstrated by measurements.

In need to effectively explore this issue, we decided to apply micro
benchmarking tools on a subset of sites on the EGEE infrastructure,
employing in particular the lmbench suite, for it includes latency, band-
width and timing measurements.

Furthermore we retrieved and report information about sites character-
istics, such as kernel version, middleware, memory size, cpu threads and
more. Our preliminary conclusion is that any typical grid can largely ben-
efit from even trivial resource characterization and match-making tech-
niques, if we take advantage of this information upon job scheduling.

These metrics, which in this case were taken from the South Eastern
Europe VO of EGEE, can provide a handle to compare and select the
more suitable site(s), so that we can drive the grid towards maximum
capacity and optimal performance.

1 Introduction and Outline

Grid computing emphasizes on the sharing heterogeneous resources. Those can
be based on varying hardware/software architectures and computer components
and may be located at different sites belonging to multiple administrative do-
mains. They are interconnected by a network and a middleware which both have
open standards and this is where their commonality ends.

The objective of this work is to document how the grid enviroment hetero-
geneity can affect a job running on a grid environment, so we send the same
benchmarking program over different grid sites of the South Eastern Europe
Virtual Organization. We contemplate that if those metrics are consistent over
time we could reach better performance of the grid, simply by profiling the
current infrastructure and tools.

The effects of Grid Heterogeneity were been measured from a user point of
view. Various aspects of the WN enviroment can influence benchmarking mea-
surements, including hyperthreading, deamon and rogue processes, other users’
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jobs, etc. We understand that this is an effect we can’t isolate and the measure-
ments are indeed objective and representative for any given grid job.

A glossary concerning Grid can be found on the EGEE-II Technical Pages on
egee-technical.web.cern.ch/egee-technical/documents/glossary.htm.

2 Related Work

Lmbench has been extensively used for profiling Linux kernels by its own develop-
ers [3]. Indeed, such benchmarking techniques have already been demonstrated
to be of interest [1]. The current -static- Information System-based practices
should be replaced by -dynamic- characterization of grid resources and can be
greatly advanced in at least some cases [6].

A similar approach was made by the developers of the Gridbench [7], which is a
tool for evaluating the performance of Grids and Grid resources through bench-
marking. Measurements were taken from the CrossGrid testbed for resources
characterization. Lately more tests have been done on the EGEE infrastructure,
with more conclusive results [8].

3 Issues and Methodology

The current grid provides insufficient information for sites’ characteristics, which
results in longer queue and job execution times and, indirectly, to more failures.
The information available currently on the Information System is total memory
of a node, OS distribution name and version, processor model and total cpus per
site. This information is not always complete and the data that provide technical
specifications, such as processor model, total memory and total cpus per site are
far from optimal in selecting among sites.

Benchmarks are standardized programs or detailed specifications of programs
designed to investigate well-defined performance properties of computer systems
according to a widely demonstrated set of methods and procedures. For many
years, benchmarks have been used to characterize a large variety of systems
ranging from CPU architectures and caches to file-systems, databases, paral-
lel systems, Internet infrastructures and middleware. Computer benchmarking
provides a commonly accepted basis for comparing the performance of differ-
ent computer systems in a fair manner, so it appears appealing to use them for
resource metrics.

Operating Systems, like Linux, include tools that provide us with technical
information regarding cpu speed, detailed model, vendor and threads, total and
available memory for system and swap space. In addition to that, we are able
to collect and supplement information on total and available size for disk and in
some cases the model of the hard disk, linux distribution, kernel version and mid-
dleware version and also the number of users for the current VO per node. This
information collectively can both document the heterogeneity of the grid, as well
as provide input for processes that have particular needs for their environment.

egee-technical.web.cern.ch/egee-technical/documents/glossary.htm
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In this paper we see real results of production sites, by use of the lmbench
benchmarking suite which is a set of microbenchmark tools, and a collection of
system information based on linux tools, mostly driven by customized scripts
for the purpose of this work, which provide extra data and a detailed study of
interactions between the operating system and the hardware architecture, e.g.
in disk throughput.

LMbench [5], is a suite of micro benchmarking tools that measure a variety
of important aspects of system performance. It is written in a portable ANSI-C
code using POSIX interfaces that makes it possible to run on a wide range of
systems without modification. Those micro-benchmarks report either latency or
bandwidth of an operation or data pathway which is the most significant perfor-
mance issues. We used lmbench-3.0-a4 released [4] for its better benchmarking
techniques and more micro-benchmarking tools.

4 The Results

A script based on the python language has been developed, in order to man-
age the tools, and get the results from the sites in an organized manner; the
results were exported in csv format and, combined with data from the Infor-
mation System, the outcome helped to generate the charts and tables below.
More charts and tables can be found in the technical report which is posted
on arxiv [2]. Full result measurements can be found on the university’s site
http://www.fme.aegean.gr/research/physics/index.html.

In the sites ce101.grid.ucy.ac.cy, wipp-ce.weizmann.ac.il and ce.ipp.acad.bg
we observed an internal heterogeneity. Those sites were using two different types
of hardware for nodes and the results as being an average of those are less
valid. We don’t know, also, the exact number of machines from each type, so
our uncertainty is even greater. In the future, this aspect could be addressed
by the feature of Subclusters, which is supported in the GLUE schema, but
unfortunately not by the current gLite-based systems.

Furthermore, even for the rest of the sites that have coherent results, we can
hardly have any guarantee for their internal homogeneity or consistency; for,
we have obtained no information on systems’ structure and their evolution over
time.

It is possible to observe that a substancial percentage of sites use the latest
linux distributions 1(a) and kernel versions 1(b) and a take advantage of smp-
capable kernel versions which can manage multiple execution queues and process
threads in a satisfying manner. Most sites have upgraded to the latest middleware
version as of March 2007.

The amount that we counted were about 1900 cpus on about 600 nodes. Cpus
are mostly Intel with four cpus 1(e) and a small percentage of AMD processors.
Each cpu, hyperthreaded or not, on each node can use full system memory or
share it with other cpus on the same node.

Nodes are based on Intel Xeon 1.6GHz, Intel Xeon 3.4GHz and Intel P4
2.66GHz processors and there are few with AMD and other Intel models 1(f).

http://www.fme.aegean.gr/research/physics/index.html
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(a) Distribution Per Site (b) Kernel Version Per Site

(c) Total Ram per Node*Cpu (d) Total Swap per Node*Cpu

(e) CPUs Number per Site (f) CPU Models



480 I. Kouvakis and F. Georgatos

Fig. 1. Basic Number Operations

The majority of the nodes are based on 4096 or 2048 MB of system Ram 1(c)
making this share better and job running faster. On half of the nodes, the swap
memory 1(d) is greater than the physical memory but there are many sites
that have less physical than swap memory. The overall picture hints that some
standardization in real and virtual memory organization aspects of Worker Nodes
is missing.

The variety of hardware resources is certainly a good reason for the different
job timings. If a job is based on operations such as addition, division, multipli-
cation or modulo for float, double, integer (see Fig. 1) or 64bit integer numbers
then the total time for completion of the job is based on the timings of those
operations. Those timings differ significantly from site to site and are an appro-
priate handle for selecting a more suitable site for specific jobs.

In fact, it appears that performance differences are huge enough that a con-
tinuous and extremely exhaustive grid benchmarking system imposing a total
10% overhead on the total resources of the grid, even if it could only provide an
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Fig. 2. File And VM System Latencies Integer Operations

average 20% improvement upon job scheduling -on the RB or WMS - it would
still be benefial for the grid system as a whole, as well as nearly any individual
grid job.

Still, it should be possible to rip most the benefits of the technique with only
0.1% overhead, by doing selective benchmark scheduling at the moments that
interesting results could occur, i.e. reconfiguration of clusters, and only do some
rare regular runs for validation purposes.

Also, there are jobs that use local storage for temponary data manipulation
and those need better latencies in creating / deleting files. It is possible to find
examples of sites with low-end processors or low-ram that still have the best
timings for those jobs. For reference, we suggest comparing Fig. 1 and 2.

5 Conclusions

We observed that there are important differences in sites’ characteristics, and
provided concrete output of some typical benchmark results.
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Most sites do typically have internal homogeneity, i.e. most large sites include
the same kind of Worker Nodes, which helps us categorize them depending on the
measurements. Some percentage of the sites still present internal heterogeneity,
which we suggest as a reseach topic for future work.

Timings of the various microbenchmarks are presented in nanoseconds, and
even when they appear very small according to the measurements, once they
occupy a repetitive part of a grid job’s process they can have an important and
highly-impacting factor: A job that could be executed in a site in a time period
T, in some other site could be executed in the half time, T/2; ignoring at this
point the communication overheads.

Also, in the special case that a grid job can be further parallelized, each part
could be sent in the most suitable site depending on the nature of the subprocess,
and then the time of individual subjobs will be also decreased, and consequently
the total time as well.

Finally, it is impossible for each user to know or measure the characteristics
of each site. Therefore some mechanism must exist that allows the matchmaking
to happen in an automatic way. There is some ongoing discussion if the best way
to implement this would be through a job description technique (i.e. in the .jdl
file), or at the global scheduling stage (i.e. RB or WMS), or both. The latter of
course is advantageous, if it is combined with an Information System that can
provide such benchmarking results; then it becomes possible for the middleware
to identify the sites that are best for a specific job, assuming all other issues
equal. For once thing, resource ranking is deemed necessary [8].

We hope that this information will be used for further cluster performance re-
search and that it will help future system administrators choose better hardware
and/or software components during the deployment of new clusters.

In fact, a new era begins where instead of brute-force usage of resources, we
will be able to load-balance grids according to their true capabilities, just as is
envisaged in power, transportation and communication systems.
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Abstract. Recently we have proposed an approach to utilizing agent
teams as resource brokers and managers in the Grid. Thus far we have
discussed the general overview of the proposed system, how to efficiently
implement matchmaking services, as well as proposed a way by which
agents select a team that will execute their job. In this paper we focus
our attention on processes involved in agents joining a team.

1 Introduction

In our recent work we have discussed how teams of software agents can be utilized
as resource brokers and managers in the Grid. Thus far we have presented an
initial overview of the proposed approach [7], studied the most effective way
of implementing yellow-page-based matchmaking services [6], and considered
processes involved in agents seeking teams to execute their jobs [5]. The aim of
this paper is to start addressing the question: how agent teams are formed?

To this effect, we start with an overview of the proposed system, consisting
of the basic assumptions that underline our approach, followed by a UML Use
Case Diagram. In the next section we discuss issues involved in agent to agent-
team matchmaking. The paper is completed with UML-based formalization of
the main process involved in agent joining an existing team, and report on the
status of the implementation.

2 System Overview

Let us start by making it explicit that in our work we follow these who claim
that software agents will play an important role in design, implementation and

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 484–491, 2008.
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Fig. 1. Use Case diagram of the proposed system

long-term upkeep of large-scale software systems (see e.g. [9]). Second, our work
assumes that software agents will be crucially involved in the future development
of the Grid. While these two assumptions are not uncontroversial, arguments
supporting them can be found, among others, in [8,10]. The latter assumption
is further supported by the body of research devoted to combining software
agents and the Grid; summarized in [5]. Finally, we view the Grid as a global
infrastructure (rather than a local / laboratory-based Grid). As a result, we deal
with a situation similar to the P2P environment, where no centralized control
over individual Grid nodes is exerted.

As a result of these assumptions we have functionalized the Grid as an envi-
ronment in which workers (in our case agent workers) that want to contribute
their resources (and be paid for their usage), meet and interact with users (in
our case agent users) that want to utilize offered services to complete their tasks
and (in [7]) proposed a system based on the following tenets:

– agents work in teams (groups of agents)
– each team has a single leader—LMaster agent
– each LMaster has a mirror LMirror agent that can take over its job
– incoming workers (worker agents) join teams based on individual criteria
– teams (represented by LMasters) accept workers based on individual criteria
– decisions about joining and accepting involve multicriterial analysis
– each worker agent can (if needed) play role of an LMaster
– matchmaking is yellow page based [11] and facilitated by the CIC agent [3]

Combining these propositions resulted in the system represented in Figure 1
as a Use Case diagram. Let us now focus our attention on interactions between
the User and its representative: LAgent and agent teams residing in the system
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(remaining information can be found in [7]). Let us assume that the system is
already “running for some time”, so that at least some agent teams have been al-
ready formed. As a result, team “advertisements” describing: (1) what resources
they offer, and (2) characteristics of workers they would like to join their team are
posted with the Client Information Center (CIC ). Let us also note that the User,
can either contribute resources to the Grid, or utilize resources available there.
Interestingly, both situations are “Use Case symmetric” and involve the same
pattern of interactions between agents representing the User and the system.

User who wants to utilize resources in the Grid communicates with its lo-
cal agent (LAgent) and formulates conditions for executing a job. The LAgent
communicates with the CIC to obtain a list of agent teams that satisfy its prede-
fined criteria. Next, the LAgent communicates with LMasters of the remaining
teams and utilizes the Contract Net Protocol [1] and multicriterial analysis [4]
to evaluate obtained proposals. If the LAgent selects a team to execute its job,
a contract is formed. If no such team is found (e.g. if nobody is willing to exe-
cute a 10 hour job for 5 cents), the LAgent informs its User and awaits further
instructions (for more details see [5]).

The remaining part of the text will be devoted to the situation when User
requests that its LAgent joins a team and works within it (e.g. to earn extra
income for the User).

3 Selecting Team to Join

The general schema of interactions involved in LAgent selecting the team to join
is very similar to that described above. First, the User specifies the conditions of
joining, e.g. minimum payment for job execution, times of availability etc. Then
she provides its LAgent with the description of resources offered as a service, e.g.
processor power, memory, disk space etc. The LAgent queries the CIC which
agent teams seek workers with specified characteristics. Upon receiving the list
of such teams, it prunes teams deemed untrustworthy (e.g. teams that did not
deliver on promised payment) and contacts LMasters of the remaining teams (if
no team is left on the list, the LAgent informs its User and awaits further in-
structions). Negotiations between the LAgent and the LMasters take form of the
FIPA Contract Net Protocol [1]. The summary of this process is depicted as a
sequence diagram in Figure 2. For clarity, this sequence diagram is simplified and
does not include possible “negative responses” and/or errors. Note that register-
ing with the CIC takes place only once — when a new LAgent joins the system
(or when it wants to start anew, i.e. to erase bad reputation). All subsequent
interactions between the CIC and a given LAgent involve only checking cre-
dentials. The sequence diagram includes also processes involved in “mirroring”.
In our system we assume that the LMaster has its mirror, the LMirror agent.
The role of this agent is to become the LMaster in the case when the current
LMaster “disappears”. Let us note that it is only the LMaster that has com-
plete information about team members, jobs that are executed (and by whom),
etc. Therefore, disappearance of the LMaster would imemdiately “destroy the
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Fig. 2. Sequence diagram of interactions when an agent is seeking a team to join

team”. In an attempt to avoid such a situation the LMaster shares all vital
information with the LMirror. Obviously, it is possible that both the LMaster
and the LMirror “go down” simultaneously, but our goal is only to introduce
some degree of resilience (not to build a fault tolerant environment). Since this
subject is out of scope of this paper it is omitted from further considerations.

3.1 Representing Conditions of Joining

Let us now discuss representation of (1) resources that the LAgent brings to the
team, and (2) its conditions of joining. Before we proceed, let note that in an ideal
situation, an all-agreed “ontology of the Grid” (that would include both the re-
sources and the economical model) would exist. Unfortunately, while there exist
separate and incompatible attempts at designing such an ontology, currently they
are only “work in progress”. Therefore, we focused our work on designing and im-
plementing agent system skeleton, while using simplistic ontologies (and thus all
proposals presented below should be viewed with this fact in mind). Obviously,
when the Grid ontology will be agreed on, our system can be easily adapted
to utilize it. In [7] we presented our ontological representation of computational
resources. Here, we describe parameters used to negotiate conditions of joining.

Currently we utilize three parameters of joining: (1) price per work-hour, (2)
work time—specific times of the day when the resource is to be available, and (3)
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length of contract—time interval that a given LAgent is offering to be a member
of a given team. While the contract holds for a limited time, we assume that if
both sides are satisfied, it can be extended for subsequent (and possibly longer)
time periods.

What follows is an instance of joining conditions that ontologically depicts a
computer: (1) with an Intel processor running at 3 GHz, (2) that offers to users
256 Mbytes of RAM and (3) 20 Gbytes of disk space, and that is offered to
the team under the following conditions: (4) it is available every night between
23:50 and 8:15, and (5) wants to sign a contract for 7 days. Note that payment
conditions are not specified (they are a part of the response of the LMaster).

(cfp
:sender (agent-identifier :name proteus@bach:1099/JADE)
:receiver (agent-identifier :name zerg@chopin:1099/JADE)
:content
((action

(agent-identifier :name zerg@chopin:1099/JADE)
(take-me

:configuration (hardware
:cpu 3.0
:memory 256
:quota 20)

:conditions (condition
:availability (every-day
:when (period

:from 00000000T23500000
:to 00000000T08150000))

:contract-duration +00000007T000000000))
:language fipa-sl0
:ontology joining-ontology
:protocol fipa-contract-net

)

This type of an information is used in two situations. First, each team looking
for members advertises the resources it is looking for. Such an advertisement is
an instance of an ontology, where parameters with numerical values (e.g. pro-
cessor speed or available disk space) are treated as minimal requirements, while
parameters that describe necessary software are hard constraints that have to be
satisfied. Note that descriptions of sought workers include only resource param-
eters, but they do not include specific offers related to, for instance, payments
for working for the team. In this way, when the LAgent requests list of teams
that look for members, information about its own resources is used as a filter.
For querying ontologically demarcated information we use SPARQL query lan-
guage [2]. Therefore when the LAgent representing the above described computer
communicated with the CIC, the following SPARQL query is executed.

PREFIX Grid: <http://Gridagents.sourceforge.net/Grid#>
SELECT ?team
WHERE {

?team Grid:needs ?machine .
?machine Grid:hasCPU ?cpu ;

Grid:hasMemory ?mem ;
Grid:hasQuota ?quota .

FILTER ( ?cpu <= "3.0"^xsd:float ) .
FILTER ( ?mem <= "256"^xsd:integer ) .
FILTER ( ?quota <= "20480"^xsd:integer ) .

}
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Second, when the LAgent issues a CFP (arrow 5 in Figure 2), the complete
information describing resources and conditions of joining is included in the CFP
and is used by the LMaster to prepare an offer. Let us note that specific offers are
based on: available resources, overall availability to do the job, etc. Furthermore,
note that each time a given LAgent issues a CFP it may specify different resource
as: (1) the same LAgent may represent User ’s different machines, or (2) for a
single machine at one time available disk space may be 5 Gbytes, while at another
time 25 Gbytes (e.g. depending on the number of stored MP3 files).

3.2 Negotiations

Let us now focus our attention on negotiations. The first step is the LAgent send-
ing a CFP (arrow 5 in Figure 2) containing resource description and conditions
of joining (see ontology snippet above). Upon receiving the CFP each LMaster
contacts the CIC to make sure that this particular LAgent is registered with the
system (arrows 6 and 7 in Figure 2). To somewhat improve safety of the system
we assume that only LAgents that are registered with the CIC can join agent
teams.

On the basis of the CFP, LMasters prepare their response. First, CFPs that
do not satisfy hardware / software requirement are refused (e.g. worker that
does not have Maple, cannot join a team that requires Maple). Second, each
LMaster utilizes its knowledge about past jobs to establish base price per hour
and base system that matches it. Currently, this price is split between the three
components that exist in our ontology (processor speed: Pb, memory: Mb, disk
space: Db). As a result we obtain processor cost Pc, memory cost Mc and disk
cost Dc (such that the base cost Bc = Pc + Mc + Dc). This information is used
to estimate the “value” of the new worker in the following way, (assume that the
new worker has processors speed P , memory M and disk space D):

Cost = α
( P

Pb
Pc +

M

Mb
Bc +

D

Db
Dc

)
, (1)

Where α ∈ [0, 1] denotes the overhead charged by the LMaster. Obviously, this
model is extremely simplistic, but our goal was not to build a complete econom-
ical model of the Grid (for this, one would need a Grid ontology), but to specify
a replaceable function that can be used in our system skeleton.

Responses from LMasters can have the following forms: (1) refusal (an ACL
REFUSE message), (2) lack of response in a predefined by the LAgent time, (3)
a specific offer (an ACL PROPOSE message). The LAgent awaits a specific time
for responses and then finds the best of them (currently the response contains
only the proposed price; as soon as a more complicated response is to be used a
multicriterial analysis has to be applied). If the best available offer is above its
own private valuation an agent team is selected to be joined (arrow 9 in Figure 2).
If no acceptable offer is received, User is informed and LAgent awaits further
instructions. Note that, the final confirmation is depicted as arrow number 11
in Figure 2. According to the Contract Net Protocol, since the LAgent was the
originator of the negotiations, it has to be the receiver of the final confirmation.



490 W. Kuranowski et al.

Fig. 3. GUI of the LMaster agent

3.3 Implementation

Currently we are implementing the above described processes. Note that they
cannot be implemented without additional mechanisms involved in agent team
management (that were omitted here due to the lack of space). To illustrate the
state of our implementation, in Figure 3, we present the GUI of the LMaster
agent. Most important informations, in the context of this paper, are (1) the
Workers requirements box and (2) the My Workers box. The first one specifies
that this LMaster is interested in workers that have 2 processors running at
between 1.5 and 2.0 GHz, minimal memory of 512 Mbytes and disk space of
1 Gbyte. At the same time we can see that this LMaster is currently managing
a team of 4 workers.

The Other configuration box represents options related to agent team manage-
ment. We can see there that this LMaster will accept no more that 10 workers,
as well as a number of parameters used to monitor which worker agents are
down and thus will not continue executing their jobs. Finally, the Ping statistics
box provides statistical results of monitoring sessions. Describing these (already
working) mechanisms is outside of scope of this paper.

4 Concluding Remarks

The aim of this paper was to discuss processes involved in an agent joining a team,
conceptualized within the framework of the proposed earlier agent-team-based
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Grid resource brokering and management system. Processes described in this pa-
per, while relatively simplistic, can be easily augmented to a more robust ver-
sion. Currently we are proceeding with implementation of the above described
processes. This involves also development of agent team management tools that
have been briefly mentioned in Section 3.3.
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Abstract. This paper introduces a novel algorithm which approaches
dictionary compression without the preliminary knowledge of the gram-
matical rules. Any type of languages except for incorporating ones can be
processed by this solution in an effective way. The algorithm cuts words
derived from the same stem into base word, prefix and suffix groups from
which a hierarchical dictionary is constructed allowing spell checking,
possible stem determination, and efficient distributed parallel pattern
matching. By eliminating the severe redundancy in the word’s simple
treerepresentation, the compression ratio can be significantly better than
by using conventional techniques.

1 Introduction

Nowadays, with the spread of different embedded systems, the need of an effi-
cient, transparent dictionary compression is becoming more intense. The devel-
opment of input methods is evolving from the unaccustomed formal commands
to the natural human language. This is mainly caused by the fact that the
amount of digitally exchanged information is accelerating in a tremendous rate.
This information mainly consists of three parts: audio, video and text. In most
cases the problems of audio and video compression have been extensively ana-
lyzed and partially solved by the industry due to the demanding public need.
Since the demand for natural language support in electronic equipments is also
increasing, it is indispensable to develop an effective method to compress and
store languages.

Describing languages has several difficulties [2,3]. First, every language has
its own specialities, which means that the structure of the languages is diverse,
meanwhile the grammar varies a lot too. Second, the words derived from a stem
can not be determined by the grammatical rules and the grammatical category
of the stem only, the meaning has to be taken into account too [4]. This renders
a grammatical rule based generative algorithm nearly useless. Third, the size of
the uncompressed dictionary is extreme(5–40 GB), and it would be desirable to
use the dictionary in an environment where the resources are limited. This means
that the dictionary has to be compact enough to fit into the device, and has to be
accessible through a low-cost methods, since the available computation resources
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are limited too. These contradictionary requirements have to be simultaneously
met in order to create a viable and widely usable system.

The main aim of this paper is to solve the problems of currently used dictio-
nary compression methods, and provide a distributed multi-language dictionary
which in the first step facilitates word level storage, but can be extended to
support sentence level rules. The algorithm is able to extract the grammatical
or meaning based rules from the input. This eliminate the dictionary’s direct
dependency form the generative grammatical rules. These extracted rules does
not have to be consistent, but the more consistent they are, the better the com-
pression is. This construction allows high quality spellchecking, possible stem
determination, and efficient parallel pattern matching which is difficult in tradi-
tional generative language compression.

The report can be divided into four parts. In the first section, the general prob-
lems and requirements are introduced, while the second gives a brief overview
of the grammatical environment. The third part explains the compression and
matchmaking algorithm, and how it can be applied in the described environ-
ment. In the last part we analyze the results of the measurements in case of the
Hungarian language, which has one of the most complex grammatical structures
among the languages of the world.

2 Environment

Before introducing the compression algorithm, I would like to describe the dif-
ferent features of the languages, which are relevant to dictionary compression.
In typology, there are four categories: isolating, flecting, agglutinating and in-
corporating. None of the languages belong strictly to one of these categories. For
example, English is mainly isolating, but partly shows agglutinating character-
istics due to French influence.

In isolating languages, grammatical forms are expressed by separate words in
the neighborhood of the original word. For example in ”I jump over”, both I
and over are connected to the verb jump. In contradiction to this, agglutinating
languages like Hungarian attach affixes to the words like ”ÁtUgrOm”, in which
”Át” means over and ”Om” means that I perform the jumping ”Ugr” action.
Flecting behavior means that the stem changes, for example ”I sing, I sang and
I have sung.”, and incorporating behavior means the incorporation of the affix
into the stem.

In every language, when words are altered, the allowed extensions are regu-
lated not only by the grammatical category of the original word, but the meaning
also. This causes that the compression algorithm can not depend only on the
grammatical rules of a given language.

So far, most of the dictionary compression programs are based on the English
language which is mainly isolating, with minimal stem alterations. However,
these algorithms cannot give an optimal solution in languages showing different
characteristics. For example, in agglutinating languages, the number of words
derived from a stem can be 105 times more than in isolating languages.
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Now that we have a basic understanding of the different features of the lan-
guages, I am going to describe how this novel algorithm is able to cope with all
these problems and requirements.

3 The Algorithm

This section is divided into three parts: the first describes how a group of words
can be converted into a compact structure. The second outlines how this struc-
ture can be added to the database, while the third depicts how the information
can be retrieved from the database.

3.1 Chopping the Words

Let W denote a subset of derived words from one stem. Let us assume that the
size of this set is N , and the words in this set are noted by ω1, ω2, · · · , ωN . Let
ωi,j be the i-th word’s j-th character, and let |ωi| be the length of the i-th word.
Let us define ∗ as the operation of concatenation, so ωi = ωi,1 ∗ωi,2 ∗ · · · ∗ωi,|ωi|.
Let us define the base word (from this point forward B) the longest character
sequence which is included in all the ωi words. If this is epsilon, then word
chopping stops and all of the original words should be considered as separate
words derived from a different stem. If B is not ε, then the decomposition of the
i-th word is ωi = pi ∗B ∗ si.

Let us call the parts before the base word prefixes (from this point onward
P ), and the parts after the base word suffixes (from this point onward S). Let
|P | be the number of different prefixes, and |S| the number of different suffixes.
Let us define P , S and the W vectors as follows:

P =
[
p1, p2, · · · , p|P |

]
, ∀i �= j : pi �= pj (1)

S =
[
s1, s2, · · · , s|S|

]
, ∀i �= j : si �= sj (2)

W = [ω1, ω2, · · · , ωN ] (3)

Decomposition Theory: Let us find the minimal F2×M size matrix, which is
defined in the following way:

F2×M =

[
F [1, i] ⊆ {1, 2, · · · , |P |}
F [1, i] ⊆ {1, 2, · · · , |S|}

]
(4)

and met the following two requirements:

− for ∀i, j ∈ F [1, i] , k ∈ F [2, i]∃m : P [i] ∗B ∗ S [k] = W [m] (5)

− for ∀m ∃i, j ∈ F [1, i] , k ∈ F [2, i] : P [i] ∗B ∗ S [k] = W [m] (6)

This informally means that all original and no other words can be generated
by concatenating the appropriate (defined by the F matrix) prefix, base word
and suffix. The following example illustrates these matrices.



Parallel Dictionary Compression Using Grid Technologies 495

leg

���������

������������������� legesleg

��������� ε

���������������������

�����������

��
��

��
��

�

en ebb ebben ε

leg, legesleg

����������

���������������� ε

������������

									





















en ebb ebben ε

leg, legesleg ε

�����������

��
��

��
��

ebb, ebben en ε

p′

1 = {leg, legesleg}

��
��
��

p′

2 = {ε}

�������������

��
��
��

s′1 = {ebb, ebben} s′2 = {en, ε}

Fig. 1. Prefix and suffix combinations using graphs

W =
{

kék,kéken,kékebb,kékebben, legkékebb,
legkékebben, legeslegkékebb, legeslegkékebben

}
B = kék P =

[
ε leg legesleg

]
S =

[
ε ebb ebben en

]
(7)

F =
[
{2, 3} {1}
{3, 4} {1, 2, 3, 4}

]
(8)

It is clear that neither the F [1, i]∩F [1, j], nor the F [2, i]∩F [2, j] set has to
be empty, but the compression rate becomes higher if the intersections of these
sets are minimized. In the following section we go through the different steps
needed to produce these decomposed sets in F .

Word decomposition

1. Finding the longest base word: We denote the length of the shortest (L) and
longest (R) word in W by L an R respectively. Let us find one of (I chose
the one to head of L) the longest character sequence of which is included by
all words of W . The cost of this is O (N) +O

(
N (L+1)

2 R
)

= O (NLR)

2. Finding the minimal number F [1, i] and F [2, i] set pairs: Let us define the
G (P, S,E) bipartite graph, where P =

{
p1, p2, · · · , p|P |

}
, S = {s1, s2, · · · ,

s|S|
}
, and let (pi, si) ∈ E if ∃ω ∈ W that pi ∗ B ∗ si = w. This means that

the two set of vertexes should be the prefixes and suffixes, and only those
should be connected which form a valid word by adding the prefix before,
and the suffix after the base word. Let us define N (X) as the neighbors of
the X set of vertexes, where X ⊆ P or X ⊆ S. Let us define x1 and x2

vertexes as combinable if (x1, x2) ⊆ P or (x1, x2) ⊆ S and N (x1) = N (x2).
Let us combine the P and S vertexes, that � ∃x1, x2, that {x1, x2} ⊆ P or
{x1, x2} ⊆ S and N (x1) = N (x2). This procedure is illustrated on Fig. 1.

These procedures can be effectively executed if we create a K|P |×|S| matrix,
in which the rows are the prefixes and the columns are the suffixes. It should
contain 1 on the [i, j] element, if (pi, sj) ∈ E, otherwise 0. Let us combine the
identical columns and rows in the matrix, which is illustrated on table 1. The
cost of this combination is O

(
|P |2 + |S|2

)
.
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Table 1. Combining prefixes and suffixes using matrices

en ebb ebben ε

leg 1 1
legesleg 1 1

ε 1 1 1 1

en ebb ebben ε

leg,legesleg 1 1
ε 1 1 1 1

en,ε ebb ebben
leg,legesleg 1 1

ε 1 1 1

en,ε ebb,ebben
leg,legesleg 1

ε 1 1

As there are many zeros in the matrix, this solution could be further acceler-
ated if a list of edges is used. As a result we get a graph, the vertexes of which
can not be combined any more. In the next step, we determine the size of the F
matrix and the elements itself.

Let us define a new G′ (P ′, S′, E′) bipartite graph, where P ′ is the combined
prefixes and S′ is the combined suffixes. Let T (X ′) denote the original uncom-
bined vertexes of G, where X ′ ∈ P ′ or X ′ ∈ S′. Let us find the maximal vertex
matching using the Hungarian method. PM is defined as those vertexes in P ′,
which are included in the maximal matching, and SM is defined as those ver-
texes in S′, which are included in the maximal matching. Let PM = P ′ \ PM

and SM = S′ \SM , and let U (X) denote a set of vertexes, which can be reached
through odd length alternating paths from the X set of vertexes. Let Popc be
those vertexes in P ′, which can not be reached from SM , and let Sopc be those
vertexes in S′, which cannot be reached from PM . These definitions are illus-
trated on Fig. 2.

Since edges represent words, our original goal was to determine the minimal
number of vertexes needed to cover all edges. This minimal set can be constructed
if we add either Popc or Sopc vertexes to the U (PM )∪U (SM ) vertexes. The size
of this set determines the second dimension’s size of the F . Assuming that the
minimal points are v1, v2, · · · , vM we can determine the elements of the F matrix.

if vi ∈ P ′, then F [1, i] = T (vi) and F [2, i] = N (T (vi)) (9)
if vi ∈ S′, then F [1, i] = N (T (vi)) and F [2, i] = T (vi) (10)
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Fig. 2. Minimal vertex coverage in bipartite graphs
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The determination of the F matrix in our original example is illustrated on the
last graph on Fig. 1. If we choose the Popc set, then the two coverage points are
p′1 and p′2. Since v1 = p′1 and the only neighbor of p′1 is s′1, then F [1, 1] = {2, 3}
and F [1, 2] = {3, 4}. The second coverage point is v2 = p′2 whose neighbors are
s′1 and s′2, causing that F [2, 1] = {1} and F [2, 2] = {1, 2, 3, 4}.

The full cost of this procedure is: O
(
L2N

)
+O

(
|P|2 + |P|2

)
+O (|E| |P|).

The dictionary database: The database consists of prefixes(Pi), suffixes(Si)
and base words(B) which are represented with a variable branching tree. A prefix
is a path from a leaf to a root in Pi, while a suffix is constructed from a root to
a leaf in Si. Let PRE be the forest of the Pi trees, and let SUF be the forest of
the Si trees. Let PREi be the i-th tree in PRE, and SUFi be the i-th tree in
SUF . Let DIC be the words stored in the dictionary, and let Bb1,b2,··· ,bj denote
the last node in the B tree on the b1, b2, · · · , bj path. Let Bb1,b2,··· ,bj (END)
be true if the b1 ∗ · · · ∗ bj word is valid, then ω ∈ DIC ⇔ ∃i, j, k, that ω =
p1 ∗ · · · ∗ pi ∗ b1 ∗ · · · ∗ bj ∗ s1 ∗ · · · ∗ sk and ∃Bb1,b2,··· ,bj and Bb1,b2,··· ,bj (END) or
∃Ppi,pi−1,··· ,p1 and ∃Ssi,si−1,··· ,s1 .

Adding the created compact structure to the database: After we have
executed the word decomposition, we have a set of Pi, Si and a B variable
branching trees. Let us merge the Pi with PRE and Si with SUF , which means
that if PRE already contains one of the Pi prefix then the tree in PRE is used
instead of Pi. After the merging the affixes, B should be combined with BASE
and the already merged prefixes and suffixes should be connected to the last node
of B. By this procedure the compact structure is integrated into the database.

4 Applying Grid Technology

In the last section we have introduced the algorithm. Since the data needed to
be processed is enormous, this algorithm should be applied in a parallel way.
The set of data can be cut into word groups, in which every word is derived
from the same stem. These datasets are transformed into the compact structure
using separate gLite[1] grid jobs. After a certain number of these results are pro-
cessed over the grid, they are inserted into an empty database. These databases
are recursively combined into each other resulting in one single database. It is
clear that since the number of these word groups is huge, the problem can be
interpreted as a parameter sweep problem. Meaning that the problem can be
fully parallelized, and the outputs produced by the parallel processing can be
easily merged together.

5 Measurement Results

This section presents our compression measurement results in the Hungarian
language. We have processed 78000 word groups which had the total uncom-
pressed size of 19.8 GB. After the compression, we have created two different
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output formats: the first is XML, the second is a zipped format of this XML. It
is trivial that the XML with its long labels contains a lot of simple redundancy,
which can be eliminated with a run length based compression like LZW. The
XML output was 65 MB, but after compression, it is only 318 KB, which is
extremely low. This measurement is illustrated on Fig. 3. The compression ratio
is approximately 1 : 105 if only 78000 word groups (40% of all the word groups)
are processed. The compression ratio in the case of XML and the binary output
is illustrated on Fig. 4.

It is visible that the compression ratio decreases linearly on a double logarith-
mic scale graph. If we fit a power law using the least squares method on the com-
pression dataset, we get xml(x) = 2.8 ·1021x−0.77 and bz2(x) = 3.7 ·10−2x−0.66,
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which means that if the language contains 250000 words, then the size of the
dictionary will be less than 1 MB. We also measured the cost of searches and
pattern mattchings in the database. We found that the cost of the search only
depends on the depth of the tree, which is allways less than the longest word, and
in pattern matching the cost mainly depends on the number of result returned
by the search.

6 Conclusions

By exploiting the structural redundancy of the data, any language can be ef-
ficiently compressed. The algorithm provides both a compact and searchable
structure, and takes the needs of most embedded systems into account. By elimi-
nating the dictionary’s direct dependency from the generative grammatical rules,
the algorithm is able to cope with the most serious problems of the currently
used dictionary compression methods, which is that the derived words can only
be determined if the meaning of the word is also considered. It also provides
a powerful tool in the hand of linguists to analyze or compare the temporal
changes in languages or individual texts.
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Abstract. We present a novel global algorithm for parallel computers,
suitable to solve nonlinear boundary value problems depending on one
parameter. The existing scanning and solution following algorithms are
extended by a gradient method which is performed on an artificial po-
tential created from the equation system. All three components of the
algorithm can be parallelized and thus used in a GRID network. We
validate our algorithms on a few small examples.

1 Introduction

Engineers need a lot of computing power to solve problems about the behaviour
of the reinforced concrete beams on the influence of several forces [1]. These
problems can often be described as boundary value problems (BVP). In this
paper we present a novel method to handle these problems.

The boundary value problems can be traced back to finding the solutions of
a non-linear equation system in a multidimensional space. These solutions are
always a collection one dimensional objects (lines). Once a small part of one of
them is found it can be followed in both directions which is the first component of
our algorithm [4]. We use two methods to find pieces of the solution: a stochastic
and a gradient one [5]. The latter is a new method in this field and is performed on
a non-negative potential obtained by the transformation of the equation system,
where the solutions are the minima of the potential with zero values.

The gradient extension does not make the algorithm scan the entire space much
faster instead it can deliver the solutions much faster than the scanning algorithm.
However, in principle we have to scan the whole space to find all solutions.

The aim of this work is to present the gradient algorithm. We implement the
simplest possible solution to demonstrate the power of the new algorithm. As
the dimension of the GRS [1] gets higher and the scanning of the whole GRS
would need exponentially large times. The gradient algorithm with some extra
calculation need helps to deliver the solutions earlier.

2 Boundary Value Problem

If we get the deformations of the beam as an integration along the length, so
position, forces and moments are known at one end of the beam, we are talking

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 500–507, 2008.
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about an initial value problem (IVP). Most of the cases, the position and/or
forces and/or moments are given in both end of the beam, which transfers it to
a boundary value problem (BVP).

We will illustrate our method on the example of the axially compressed, uni-
form, elastic cantilever beam, illustrated in Fig. 1. The ordinary differential
equation describing the shape of the beam in terms of the slope α as a function
of the arclength s was first described by Euler:

EIα′′ + P sinα + Q cosα = 0. (1)

The vertical force Q will be used as a small imperfection parameter which is con-
stant during the loading process. The trajectories of this equation are uniquely
determined by the three scalars α(0), α′(0), and P (the former ones being ‘true’
initial conditions, the latter one a parameter, Q is treated as a constant). How-
ever, we are not interested in all trajectories, only the ones which meet the
boundary conditions α(0) = 0 and α′(L) = 0, which express zero slope at the
left end and zero curvature at the right end of the beam respectively.

If we denote x1 ≡ α′(0), x2 ≡ P , the scalars xi are called global coordinates,
the space spanned by [x1, x2] will be called Global Representation Space (GRS)
of the BVP and we denote its dimension by D. In these problems there are D−1
equations to be solved which results in a line (one dimensional object) as the set
of solutions. The function we have to solve is f1 : α′(L) = 0. This example is a
simple one, in case of more complex problems GRS can have more dimensions,
some of them exceed even the 20th dimension!

In order to solve globally a BVP in moderate dimensions, our algorithm dis-
cretizes the GRS into hypercubes and splits up the cubes into simplices (that
are triangles in two dimensions and tetrahedron in three dimensions) [2]. The
original IVP (Eq. 1) is solved in each apex of the simplex, and the solution,
if any is determined for each side by a linear interpolation algorithm. Solution
points of all the simplex sides are taken as the global results of the BVP.

An acceleration for simplex algorithm is the path-continuation extension: If
we find a solution anywhere in the GRS, we suppose that this solution con-
tinues in two ways (as it is said, solutions are one-dimensional objects), so we
examine the neighbouring cubes of the solution provider cube to find the solu-
tions sooner. Simplex algorithm extended by path-continuation method is called
hybrid algorithm.

The parallel version of the hybrid algorithm [3] is implemented in the follow-
ing way: The space is divided into large primary hypercubes (consisting of lD
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hypercubes) which are handled by a slave processes in order to reduce the com-
munication need among processes. The primary hypercubes are not distributed
arbitrarily to the slaves but a weighting is applied. If a solution was found to
leave a primary hypercube on a specific side the neighbouring primary hypercube
is marked with the maximum weight. On the other hand primary hypercubes
with the most unchecked neighbours have higher weights in order to scan more
distant hypercubes earlier and thus find the solutions earlier.

As number of dimensions increase, size of GRS increases exponentially. Hybrid
algorithm is good enough for problems with dimensions not higher than about
6. Problems with higher dimensions cannot be handled by this algorithm.

3 Gradient Method

There is more information in the functions than it is used by hybrid algorithm.
The main new idea is that we construct a potential which has minima at the
solutions:

U(p, x1, x2, . . . , xn) =
n∑

i=1

cif
2
i (p, x1, x2, . . . , xn), (2)

where ci denote positive constants. The above construction ensures that the
value of U is always non-negative and zero values indicate the solution. Thus a
gradient method may be used to find these points.

The gradient algorithm is implemented to step from every point to the neigh-
bouring hypercube in the direction of the largest gradient. It stops if it would
leave the examined parameter space or if it found a local minimum, where the
U is smaller than in the neighbouring hypercubes. The primary hypercube with
the found local minima is marked with high weight for the hybrid algorithm
irrespect of the value of U .

4 Implementation and Problems

The aim of the present work is to justify the effectiveness of the gradient al-
gorithm without any further optimizations. There are many aspects that may
render this algorithm useless. Since we have no a priori knowledge about the
above potential it may contain too many local minima making the gradient al-
gorithm useless. The different components of fi are in general of different unit
and thus can be of different magnitude which might introduce anomalies. In the
followings we note other optimization or implementation possibilities in parallel
with the present simplest choice of realization.

We have a parallel algorithm where the balance between different slave types
must be synchronized. This requires an elaborate weighting of the unchecked
primary hypercubes as well as a fine tuning of the slave types. We show here
that even the dumbest choice can deliver a considerable performance increase.
At the beginning we let the gradient algorithm run a few times (1 − 10 in our
simple examples) and then we mark with high weight the primary hypercubes
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found as local minima by the gradient algorithm to be the first candidates for
the hybrid algorithm then we switch back to the old algorithm.

The same simplicity is followed in choosing the initial points for the gradient
algorithms which is done randomly. Since many gradient runs may find the same
solution in the future it would be important that the starting points are well
distributed in the GRS. In higher dimensions methods of determining attraction
zone by some negative gradient algorithm might be also helpful.

The role of the ci coefficients is to bring the values of the fi of different units
in the same magnitude. This can be done e.g. by an initial scan of the space
where we calculate f in m points and set

ci =

⎛⎝ 1
m

m∑
j=1

(
f

(j)
i

)2

⎞⎠−1

(3)

Since there might be huge differences among quarters of the GRS the coef-
ficients should be calculated for the perimeter of each gradient run. An other
possibility is to let ci evolve in time as the gradient algorithm advances but in
this case one has to care about the algorithm making cycles. In our case the best
choice was to take the simplest possibility: ci ≡ 1.

We chose that the gradient method is stepping into the neighbouring hyper-
cube in the direction of the largest gradient. This might be inappropriate in
more complex problems where a conventional gradeint method should be used.

In summary the only difference compared to the hybrid algorithm is to run
a few gradient algorithm slaves at the beginning and then switch back to the
old algorithm with the found local minima being the first to be scanned by the
simplex method.

The extra calculation of the gradient algorithm increases the overall computa-
tion need of the algorithm but the solutions may be found earlier. We also note
that the gradient algorithm has much less computation need than the scanning
one. The gradient algorithm generates the function values in the neighbouring hy-
percubes of the actual point. There are 2D such points. On the other hand to test
whether a hypercube contains a solution the simplex algorithm has to calculate
the functions at the corners which means 2D function calls. It is also important to
note that in the case of the gradient algorithm we do not check all the hypercubes
of the primary hypercube but we follow the gradient which means again in aver-
age lD−1 factor advantage for the gradient method, where l is the linear size of
the primary hypercube. This means that the gradient method can be considered
instantaneous compared to the scanning algorithm in high dimensions.

5 Results

As we already mentioned the aim of the gradient algorithm is not to scan the
GRS in less time but to find the solutions earlier than the stochastic algorithm.
We chose to measure the time by calculating the number of function calls needed
to find a primary hypercube with a solution in it. Measuring the time would be
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Fig. 2. Circle problem (a) The continuous line shows the solution curve the squares
indicate the local minima found by the gradient algorithm, the area of the squares is
proportional of its occurrence in the 100 runs. (b) The variation of S in time for both
the gradient and hybrid algorithm. The inset shows the variation of the efficiency with
the percentage of the found solutions.
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Fig. 3. Cantilever beam with Q = 0.1. Graphs are same as in Fig. 2.

misleading as more complicated problems have functions with heavy computa-
tion need which requires most of the evaluation time while the simple examples
presented here spend relatively more time for communication etc. Therefore we
measure the time in 1000 function calls and denote it by τ . The time is measured
independently for each slave.

In all test cases we did the following procedure: Two series of runs were done,
one with the gradient algorithm and the other one with the hybrid algorithm.
Each series consisted of 100 runs with different random seeds. We present the
averaged results.

We note by S(τ) the ratio of the found primary hypercubes with solutions
compared to the total one. The efficiency of the gradient algorithm is defined
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Fig. 4. Cantilever beam with Q = 2.0. Graphs are same as in Fig. 2.
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Fig. 5. Cantilever beam with |Q|=P (three-dimensional GRS). (a) The continuous line
shows the solution curve the points indicate the local minima found by the gradient
algorithm (occurrence is not shown!). (b) Graph is same as in Fig. 2 (b).

by the ratio of the time needed to find S part of the solutions with the hybrid
algorithm and with the gradient: G ≡ τhybr(S)/τgrad(S).

The first test we performed is not a real problem. The function was chosen
to be x2 + y2 = 10 which corresponds to no real BVP. The GRS space was set
to the [−10 : 10] × [−10 : 10] space the size of the primary hypercube is 1.5.
The solution is a circle with

√
10 radius (see Fig. 2. (a)). A single gradient algo-

rithm was run at the beginning and only one slave was working. The efficiency
is 1.5 − 2. The time evolution of S for the gradient algorithm is quite linear
indicating a scenario where the gradient algorithm found a solution and then
the path following algorithm completed it. The hybrid algorithm has a curved
shape indicating an exponential distribution of the time when the first point of
the solution was found. The time gain very well corresponds to the average time
needed for the hybrid algorithm to find the first solution.

The second example consist of the already illustrated cantilever problem with
a very small imperfection parameter Q = 0.1. The resulting GRS with the
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Fig. 6. (a) The surface plot of the square root of the potential of the cantilever problem
with Q=2. The monotonic square root function was taken to visually enhance the view
of the potential. The local minimum is shown with a black point. (b) Visualization of
the potential in the 3 dimensional problem. The size of the balls is proportional to the
square root of the potential. The solution is shown with a thick black line.

solution is presented on Fig. 3. Five gradient algorithms were run prior to the
hybrid algorithm and both ran on 5 slaves simultaneously. Due to the small
imperfection the solution line is cut into two distinct parts. The ratio of the
primary hypercubes with solution is lower than before (5.7% instead of 8%). In
spite of this the efficiency [Fig. 3 (b)] is less than in the previous example. This
is due to the fact that the solutions are relatively long lines which takes a long
time to follow. This process can only be done by one or two slaves and the others
are free to look for new solution in a stochastic way. This example emphasizes
the importance of the well planned parallelization of the algorithm.

We present the third example on Fig. 4 which is different from the previous
one only in the imperfection parameter Q = 2 and the number of slaves which
was set to 2. The efficiency changes only little: It gets worse for small S but
gets better for large S. Where the low number of slaves does not let for a free
scanning of GRS while the others are following a solution. On Fig. 4 (a) we can
see that a local minimum with no solution at the point (4.7,−8.4). It is also
visible on the surface map of the potential on Fig. 6 (a). It has a considerable
attraction range but with sufficient gradient runs the solutions are found with
very high probability.

The last example we analyze here is a three dimensional one. The imperfection
parameter is no longer a constant but may change on condition that its absolute
value equals to |Q|=P . The GRS is 3 dimensional in this example with Q being
the third dimension. The problem was run on two slaves. The solution probability
is 0.6%. The position of the solution is shown on Fig. 5 and 6 (b). It consists of
three disjunct branches. The figure 5 also shows the local minima found by the
gradient algorithm where it is obvious that it nicely finds the solution as well as
other local minima lines. In spite of these false local minima the algorithm is very
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efficient and needs about 3 times less function calls than the hybrid algorithm to
find the majority of the solution, which shows that the efficiency of the gradient
algorithm compared to the hybrid one increases rapidly with the dimension of
the GRS.

6 Conclusion

In this paper we introduced a gradient algorithm to find the solution of bound-
ary value problems faster than by the existing scanning and solution following
hybrid algorithm. We showed that even the easiest implementation of this algo-
rithm brings a considerable time gain. This is achieved despite the fact that the
gradient runs do not deliver solutions but just alter the weighting of the primary
hypercubes of the discretized GRS. We also showed that in high dimensions the
computation need of the gradient algorithm is negligible.

On the other hand we showed that this dump implementation lack many
feature that could make the algorithm run faster. We expect the most efficiency
gain by developing a starting point choosing mechanism and a much better
weighting of the primary hypercubes in parallel with an elaborate selection of
slave types.
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Abstract. The work presented in this paper has been motivated by sci-
entific necessity (primarily of the local scientific community) of running
various (stochastic) simulations (in cluster/Grid environments), whose
results often depend on the quality (distribution, nondeterminism, en-
tropy, etc.) of used random numbers. Since true random numbers are
impossible to generate with a finite state machine (such as today’s com-
puters), scientists are forced either to use specialized expensive hard-
ware number generators, or, more frequently, to content themselves with
suboptimal solutions (like pseudorandom numbers generators). Quan-
tum Random Bit Generator Service has begun as a result of an attempt
to fulfill the scientists’ needs for quality random numbers, but has now
grown to a global (public) high-quality true random numbers service.

1 Introduction

1.1 On Random Number Generation

The random numbers, which are (by their definition) nondeterministic and ruled
by some prescribed probability distribution, can only be (as it is generally ac-
cepted) extracted from observation of some physical process that is believed to
exhibit nondeterministic behavior. Various randomness extraction methods have
been used in the past and different processes were being observed, but these usu-
ally could be grouped into either (1) measurements of macroscopic effects of an
underlying noise ruled by statistical mechanics (e.g. quantum noise manifested
as electronic shot noise or quantum effects in optics [13,8], thermal noise [1],
avalanche noise, radioactive decay [16], atmospheric noise [4], etc.), or (2) sam-
pling of a strictly nonlinear process (or iterated function system) that inherently
exhibits chaotic behavior and intrinsical sensitivity to initial conditions (which
are generally unknown or unmeasurable) and as such is considered to be random
for practical purposes (e.g. chaotic electronic circuits like phase–locked loops [3],
or chaotic mechanical systems [10], etc.). The only scientifically provable ran-
domness (nondeterminism) sources, at the present state of the art, are quantum
systems. Contrary to those, classical physics systems (including chaotic ones)
only hide determinism behind complexity.

A cheap alternative to complex true random number generators (in terms of
speed of generation or resource requirements, but on account of randomness) are
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algorithmic generators implemented on a digital finite state machines outputting
pseudorandom numbers, i.e. deterministic, periodic sequences of numbers that
are completely determined by the initial state (seed). Entropy of an infinite pseu-
dorandom sequence is finite, and upward limited with entropies of the generating
algorithm and the seed. This is not the case with infinite true random numbers
sequences.

Regardless of the randomness acquisition method used, random number se-
quences are often post-processed [7] to remove bias, shape probability distribu-
tion, remove correlation, etc.

1.2 The Need for Random Numbers

Random numbers seem to be of an ever increasing importance — in cryptogra-
phy, various stochastic numerical simulations and calculations (e.g. Monte Carlo
methods), statistical research, various randomized or stochastic algorithms, etc.
and the need for them is spanning a wide range of fields — from engineering to
physics to bioinformatics. The applications usually put constraints on properties
of input random numbers (probability distribution, bias, correlation, entropy, de-
terminism, sequence repeatability, etc.). Consequently, these constraints dictate
the choice of a random number generator.

If the quality of simulation or calculation results would be substantially af-
fected, or dominated, by the (lack of) randomness of input random number
sequences, then the true random number hardware generator should be used.
And that imposes additional project costs, of both financial and time resources.

2 The Random Numbers Service

To ease and simplify the acquisition of high quality true random numbers for our
local scientific community, we have developed the Quantum Random Bit Gener-
ator Service (QRBG Service for short), which is based on the Quantum Random
Bit Generator [13]. This service is now publicly available on the Internet, from
[11]. Design requirements for the Service were:

– true randomness of data served (nondeterminism and high entropy),
– high speed of data generation and serving,
– high accessibility of the service (easy and transparent access),
– great robustness of the service, and
– high security for users that require it.

The development of the QRBG Service is still a work in progress, but all re-
quirements except the last one have been hitherto implemented and tested. If we
exclude the security requirement from the list above, it can be said that QRBG
Service tops currently available random number acquisition methods (including
existing Internet services like [9,4,16]) in at least one of the remaining categories
(to the best knowledge of the authors).
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Fig. 1. The structure of the Service

To ensure the high quality of supplied random numbers (true randomness) and
the high speed of serving, we have used the Quantum Random Bit Generator (de-
scribed in Section 2.1) and a carefully designed server (described in Section 2.2).
The server design also gives the Service its robustness, which, in turn, acts as an
important factor in service accessibility, namely its temporal availability. Trans-
parent access to random data, or access modes availability is achieved through
multiple client connectors developed (described in Section 2.3 and Section 2.4),
including “black-box” C/C++ libraries and web service (SOAP) access, but also
more user-friendly Mathematica and MATLAB add-ons. To facilitate high se-
curity, an SSL wrapper is being implemented and tested which will enable the
encryption of transferred random data with user certificates.

The structural overview of the Service is depicted in Fig. 1. Implementation
details of the Service components are given in the following sections.

2.1 Randomness Source

As a source of random numbers, an array of Quantum Random Bit Generators
(QRBGs) is being used. The QRBG device was designed and developed at the
Rudjer Bošković Institute, in the Laboratory for Stochastic Signals and Process
Research, and is still in its prototype phase [13].

QRBG is a fast, nondeterministic and novel random number generator whose
randomness relies on intrinsic randomness of the quantum physical process of
photonic emission in semiconductors and subsequent detection by the photo-
electric effect. The timing information of detected photons is used to generate
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binary random digits — bits, with efficiency of nearly 0.5 bits per detected ran-
dom event. Device consists of a light source (LED), one single–photon detector
and fast electronics for the timing analysis of detected photons providing random
output numbers (bits) at (currently) 16 Mbit/sec. By using only one photode-
tector (in contrast to other similar solutions) there is no need to perform any
fine-tuning of the generator, moreover, the method used is immune to detector
instability problems, which fosters the autonomous work of the service (with-
out the usually required periodic calibrations of the generator). For the purpose
of eliminating correlations, a restartable clock method is used for time interval
measurement.

The collection of statistical tests (including NIST’s “Statistical Test Suite
for Random and Pseudorandom Number Generators for Cryptographic Appli-
cations” and DIEHARD battery of strong statistical randomness tests) applied
to random numbers sequences longer than 1 Gb produced with this quantum
random number generator presents results which demonstrate the high quality
of randomness resulting in bias1 less than 10−4, autocorrelation2 consistent with
zero, near maximal binary entropy and measured min–entropy near theoretical
maximum. For much more details on these and other performed tests results,
see [12].

2.2 QRBG Core Service

The core of the QRBG Service has been written as a native Microsoft Windows
NT (XP / 2003 Server) stand-alone multithreaded server application with a
graphical user interface, in the C++ programming language with the support of
the standard Microsoft Foundation Classes library.

All application components (servers, database and device access layers, user
interface and logging, client authentication and quota management) communi-
cate using a thread-safe notification message based queue-like structure which
enables decoupling and asynchronous work of independent components (refer
to Fig. 1). The flow of random data from randomness generator(s) to end–users
could be seen as standard FIFO buffer–centric producer(s) – buffer – consumer(s)
problem, and solved accordingly. However, to maximize aggregate throughput,
transition from a FIFO to randomly accessed buffer has to be made. This enables
asynchronous buffer writers and readers, and thus not only greatly improves the
overall performance, but also transfers the scheduling problem of equally prior-
itized readers (end–users) from the application to the operating system.

Hardware Access Layer. The QRBG device connects to a computer via
USB 2.0 interface. This enables connecting several QRBG devices and achieving
random numbers acquisition speeds much higher than those of a single device
(16 Mbps), since the USB standard allows connecting of up to 127 devices onto
one host controller and upstream speed of up to 480 Mbps.

1 Defined as b = p1 − 0.5, where p1 is probability of ones.
2 Defined in [5].
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QRBG hardware access (layer) is implemented as a dynamic link library that
communicates directly with the QRBG device driver. Random data from all the
input devices in the array3 are being constantly read (at maximum speed) and
stored into the application cache buffer. All status messages are dispatched into
the application notify queue.

Application Cache Buffer. To optimize data transfer for speed, a Buffer class
has been implemented with the behavior similar to that of malloc (the stan-
dard C library memory allocation routine). Namely, the complete buffer storage
space is split into blocks of variable size. Each block can be either: loaded or
empty (state flag), and at the same time: ready or busy (access flag). The state
flag specifies whether the block contains random data or it’s empty, and the
access flag tells if some reader or writer thread is allowed to access the block.
Interface of the Buffer component features two sets of grasp/release methods
— for loaded and empty block: graspEmpty(size,...), releaseEmpty(...),
graspLoaded(size,...) and releaseLoaded(...). All of these methods work
with block descriptors only. When a loader thread wants to copy data from
QRBG device(s) into the buffer, it “grasps” an empty block in the buffer, copies
the data, and then “releases” the block. Whenever a reader thread needs ran-
dom data, it similarly “grasps” an loaded block (with random data), serves the
data, and then “releases” the block (which is after that considered empty). The
Buffer component takes care of joining consecutive free or loaded blocks. Also, it
transfers data between randomly accessed (and faster) and sequentially accessed
(and slower) parts of the buffer, when needed.

TCP/IP Core Server. When a user (directly, or indirectly through some of
the QRBG extension services) requests random data from the QRBG Service,
it is served (over TCP/IP network protocol) by the QRBG Core Server. Upon
connection attempt, if a client is allowed to connect (IP is allowed and server isn’t
overloaded), communication begins. The communication protocol is inspired by
the Simple Authentication and Security Layer protocol [14] but is extremely
simplified — only two binary messages are exchanged. First, the client sends
a request packet (with requested operation, login credentials and other data
specific for requested operation — usually number of requested random bytes).
Server responds with status message followed by a requested amount of random
data (if the user was authenticated and his download quotas weren’t exceeded)
and closes the connection. Users’ login credentials and all usage statistics are
stored in a MySQL database through the QRBG Database Access Layer.

Due to random data caching, the data transfer rates achieved with QRBG
Core Server (on a mid-range Microsoft Windows XP computer), exceed 45 MiB/s
in loopback configuration and 11 MiB/s on a 100 Mbps local network. With
empty cache, transfer rate falls bellow QRBG Device theoretical speed limit,
adding some 20–30% overhead.
3 Due to a high price of a single QRBG device, we currently have only one device in

the array.
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Fig. 2. The application’s user interface (from left to right: statistics box, main window,
settings dialog and log output.)

HTTP Status Server. While the Service is running, various statistics are
collected concerning the clients connected, quantity and quality of data generated
and served, etc. Simple HTTP server is running on the same address as the Core
Server is and it enables users to inspect the status of the Service from their web
browsers.

Administration User Interface. Configuration and administration of the
Service is performed locally, through its graphical user interface. Screen capture
of application windows is given in Fig. 2.

2.3 Extension Services

Additional features, new protocol support and other extensions of the QRBG
Core Service can be easily implemented as QRBG Extension Services. Two such
extensions are developed.

Web Service Wrapper. Provides SOAP protocol extension [15] of the ba-
sic QRBG Service. The web service is implemented in a standard fashion and
executes in a stand-alone web server. Various random data fetching methods
(getByte, getInt, getFloat, etc.) simply relay user requests to the QRBG Core
Service and return SOAP–encoded results to the user. Slowdown due to relaying
is irrelevant (non-significant), since web services are inherently slow. The only
purpose of implementing the web service wrapper was to simplify connectivity
to the Service from environments that have natural support for the web ser-
vices (this could extend the QRBG usage to high-level web and similar scripting
applications).

Secure Access Wrapper. Provides SSL protocol extension of the QRBG Core
Service. Like the web service wrapper, it relays user requests, but in addition
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enables on–demand content encryption. Also, user authentication is carried out
using certificates and challenges, a much more secure method than Core Service’s
username/password authentication. We, however, do not expect too heavy usage
of the secure access, since it (1) will slow down transfer, and (2) won’t provide
absolute security for sensitive cryptography (which can only be achieved with a
local quantum random number generator). A foreseen primary usage is on behalf
of the users that already have certificates in their cluster/Grid environments and
whose Virtual Organization becomes an authorized user of the QRBG Service.
The secure wrapper is still under testing.

2.4 End–User Interface

To maximally simplify the acquisition of high-quality random numbers, we have
tried to make the access to the QRBG Service as transparent as possible from
as many platforms/environments we could. The work in this segment is in no
way over, and many more clients (service connectors) are still to be written.

Basic Access. A simple C++ class for transparent access to the QRBG Service
has been developed. It features the acquisition of standard data types and a
local cache of user–defined size. Since it is written in a standard, widespread
language, it compiles cross–platform (Windows/Linux, 32/64–bit) and makes a
good starting point for both users and developers. To illustrate the simplicity
of its usage, we quote here a complete code segment that acquires a 100 double
precision floating point numbers uniformly distributed on interval [0, 1〉.
QRBG random;
random.defineUser("username", "password");
double x[100];
random.getDoubles(x, 100);

Command-line Utility. Based on the C++ client, a powerful and option–rich
cross–platform command–line tool has been written. It is intended primarily,
although not exclusively, for Linux users. A GUI–enabled version was written
for Windows users.

QRBG Toolbox for MathWorks MATLAB. For the users of this powerful
engineering platform we have also developed seamlessly integrateable QRBG
extension. Its main function, qrand, has a syntax similar to the MATLAB built–
in rand function, with notable semantic difference — it returns a matrix of true
random numbers (64-bit floats from [0, 1〉), and not pseudorandom numbers.

> qinit(‘username’, ‘password’);
> m = qrand(5, 5);

QRBG Add-on for Wolfram Mathematica. Similar to the client examples
above, we also developed a Mathematica add-on based on C/C++ MathLink
Software Developer Kit [17].
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3 Conclusions and Future Work

We have presented a solution for the problem of simple acquisition of high qual-
ity true random numbers — an online random number service. While using a
fast nondeterministic quantum random number generator and writing a robust
and scalable, performance–tuned application around it, we were driven by re-
quirements of true randomness delivery, fast serving, high access transparency
and high service availability.

The development of the QRBG Service is still a work in progress, and future
work will include: extending access transparency by creating more client access
modes (connectors), testing and opening a secure wrapper of the Service, and
opening the Service to a wider public.

References

1. Intel 80802 Firmware Hub chip with included thermic noise based RNG,
http://www.intel.com/design/software/drivers/platform/security.htm

2. VIA C3 CPU with included chaotic electronic system based RNG,
http://www.via.com.tw/en/initiatives/padlock/hardware.jsp

3. Bernstein, G.M., Lieberman, M.A.: Secure random number generation using
chaotic circuits. IEEE Trans. Circuits Syst. 37, 1157–1164 (1990)

4. Haahr, M.: Random.org — An atmospheric noise based online true random num-
bers service, http://random.org/

5. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Semi-numerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1997)

6. MathWorks MATLAB Documentation: MATLAB’s interface to DLLs
7. Proykova, A.: How to improve a random number generator. Computer Physics

Comm 124, 125–131 (2000)
8. Quantis: Quantum random number generator, http://www.idquantique.com/
9. Quantis: Quantum RNG online service, http://www.randomnumbers.info

10. Silicon Graphics: Method for seeding a pseudo-random number generator with a
cryptographic hash of a digitization of a chaotic system (also known as Lavarand).
U.S. Patent 5732138
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Abstract. This paper presents a hierarchical and easy configurable
framework for the implementation of distributed evolutionary algorithms
for multiobjective optimization problems. The proposed approach is
based on a layered structure corresponding to different execution environ-
ments like single computers, computing clusters and grid infrastructures.
Two case studies, one based on a classical test suite in multiobjective op-
timization and one based on a data mining task, are presented and the
results obtained both on a local cluster of computers and in a grid en-
vironment illustrates the characteristics of the proposed implementation
framework.

1 Introduction

Evolutionary algorithms proved to be adequate metaheuristics in solving multi-
objective optimization problems. However, for complex problems characterized
by a large number of decision variables and/or objective functions they need
large populations and a lot of iterations in order to obtain a good approximation
of the Pareto optimal set. In order to solve this problem, different variants for
parallelizing and distributing multiobjective evolutionary algorithms (MOEAs)
have been proposed in the last years [3,4,7]. Choosing the appropriate variant
for a particular problem is a difficult task, thus simultaneously applying different
variants and combining their results could be beneficial. The huge computational
power offered today by grid infrastructures allows the use of such strategies which
could be beneficial especially when the human knowledge on the problem to be
solved or on the method to be applied is lacunar.

The approach proposed in this paper is developed in order to be used either
on a cluster or in a grid environment and is based on the idea of using one or
several colonies of populations. Each colony consists of a set of populations and
can be characterized by its own strategies for assigning a search subspace to
each population and for ensuring the communication between populations. The
results obtained by all colonies are to be collected and combined in order to
obtain the global approximation of the Pareto optimal set and/or Pareto front.
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The paper is organized as follows. Section 2 presents a brief overview of exist-
ing distributed variants of MOEAs. The hierarchical approach and the particu-
larities of the cluster and grid layers are presented in Section 3. In Section 4 two
case studies are presented, one involving a classical test suite in MOEAs analy-
sis, and the other one related to a data mining task, the problem of attributes’
selection.

2 Distributed Versions of Multiobjective Evolutionary
Algorithms

Most evolutionary algorithms for multi-objective optimization use a population
of elements which are transformed by recombination and mutation during a given
number of generations. At each generation all objective functions are evaluated
for all elements of the population and the non-dominance relationship between
them is analyzed. In the case of a minimization problem involving r objective
functions, f1,...,fr an element x ∈ D ⊂ Rn is considered non-dominated if there
does not exist another element y ∈ D such that fi(y) ≤ fi(x) for all i ∈ {1, ..., r}
and the inequality is strict for at least one function. The non-dominated elements
of the population represent an approximation of the Pareto optimal set. Both
the evaluation of elements and the analysis of the nondominance relationship
are high cost operations. These costs can be reduced by dividing the population
in subpopulations and by evolving them in parallel. In order to design such a
distributed variant of a MOEA some key issues should be addressed: the divi-
sion of the search space, the communication between subpopulations and the
combination of the results obtained by all subpopulations.

The division of the search space can be made before starting the evolution
(apriori division rule) or dynamically during the evolution (dynamic division
rule). In the last years different strategies have been proposed, most of them
being based on dynamic division rules [4,7]. Dynamic division rules usually in-
volve some operations aiming to periodically reorganize the structure of the
search space. In some cases this operations could be costly by themselves, as for
instance in [7], where a clustering step involving the elements of all subpopu-
lations is executed, or in [4], where all subpopulations are gathered and their
elements are sorted. On the other hand, applying apriori division rules (e.g. di-
viding the decision variables space in disjoint or overlapping regions) does not
usually involve supplementary costs.

The communication between subpopulations plays a critical role in the behav-
ior of a distributed MOEA. The main components of a communication process
are: the communication topology, the communication policy and the communica-
tion parameters. The communication topology defines the relationship between
subpopulations and the most common variants are: fully connected topology
(each subpopulation is allowed to communicate with any other subpopulation)
and neighborhood based topologies like the ring topology (a subpopulation Si

can communicate only with subpopulations Si−1 and Si+1, in a circular manner).
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The communication policy refers to the manner the migrants are selected from
the source subpopulation and the way they are assimilated into the destination
subpopulation. The migrants can be randomly selected from the entire popula-
tion or just from the non-dominated subset (elitist selection). The assimilation
of the migrants can be realized by just replacing an element of the target sub-
population with the immigrant (the so-called pollination [3]) or by sending back
an element to the source subpopulation in order to replace the emigrant (plain
migration [9]). The communication topologies and policies can be combined in
different manners leading to a large number of strategies.

The parameters influencing the behavior of the distributed variant are: the
communication frequency (number of generations between consecutive migration
steps) and the migration probability (the probability of an element to be selected
for migration).

Besides the large number of parallel implementations of MOEAs, grid im-
plementations have been also recently reported. In [6] is proposed a Globus
based implementation of a Pareto archived evolution strategy characterized by
remotely executing a number of sequential algorithms on different grid machines
and storing the approximated fronts which satisfy some quality criteria. In [5] is
presented a grid-enabled framework which allows the design and deployment of
parallel hybrid meta-heuristic, including evolutionary algorithms.

3 The Hierarchical Approach

The existence of different MOEAs distribution strategies on one hand and of
different architectures on which such algorithms can be executed, on the other
hand, motivated us to search for an easy configurable framework for the exe-
cution of distributed MOEAs. The approach we propose is based on a layered
structure, as illustrated in Figure 1, allowing the execution either on a single
computer, on a cluster of computers or in a grid infrastructure.

Collecting the results

Colony 1 Colony 3
Colony 2

Independent colonies

GRID layer

S1

S3

S4

One unstructered/ structured population

S2

Sequential algorithm

P1 P2

P3

Colony of communicating populations

CLUSTER layer

Fig. 1. The layered structure corresponding to the hierarchical approach



A Hierarchical Approach in Distributed Evolutionary Algorithms 519

The first layer corresponds to the evolution of either a single unstructured
population which explores the entire decision space or to a structured popula-
tion consisting of communicating subpopulations. From an implementation point
of view this would correspond to a sequential implementation on one processor.
Using a structured population could be beneficial by increasing the population
diversity and reducing the cost of the selection step even in the case of a sequen-
tial implementation.

The second layer corresponds to a colony of populations which evolve inde-
pendently but which periodically change some information during a migration
step. From an implementation point of view this layer would correspond to a
parallel variant executed on a cluster of computers (each processor deals with
the evolution of one or several populations from the colony).

The third layer corresponds to the evolution of several independent colonies
of populations each one being executed in a location of the grid environment.
Unlike the populations in a colony, the colonies are loosely coupled in order to
deal with the heterogeneous character of the grid infrastructure. In the current
implementation the only communication between the colonies is in the end of the
evolution process where the results are collected from all of them. Since the same
problem is solved on each colony this induce a certain level of redundancy. In
order to reduce the redundancy, each colony can be based on a different MOEA
and on different distribution strategies.

The cost of communication between (sub)populations is highly dependent on
the layer, thus the communication strategy should be adequately chosen for each
layer. There are two main communication processes involved: a periodical com-
munication corresponding to migration stages and a final communication step
corresponding to the collection of the partial results obtained by all processes.

Since the aim of the final communication step is just to collect the results,
a natural way to implement it is: all processes send their results to a master
process which collect them and construct the final result. These partial results
are sets of non-dominated elements having almost the same number of elements
as the population. If the final results produced by p populations of size m are
collected through a message passing interface, the cost of this communication
is O(pmL), L being the size of each element (which depends on the number of
decision variables and objective functions).

In the first layer an intensive periodical communication between subpopula-
tions can be applied, including strategies based on gathering and redistributing
the entire population. If the evolution of a colony of populations is executed in
parallel on a cluster of computers there could be different approaches in imple-
menting the periodical communication when using a message passing interface.
Let us consider the case of a colony consisting of p populations. For instance, in
the case of random pollination (each population sends some elements to other
randomly selected populations), a direct implementation strategy could lead to a
number of messages of O(p2) to be transferred between p processes. In the case of
plain migration, when for each immigrant a replacing element is sent back to the
source population the number of messages is twice as in the case of pollination.
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The number of messages can be significantly reduced (O(p)) if all processes send
their migrants to a master process which distribute them to the target processes.
If each message containing migrants is preceded by a short message containing
their number, the total number of messages is at most 4(p − 1). The number
of messages transmitted between processors is even smaller in the case of ring
topologies (2p). The length of messages containing migrants depends on the size
of each element, L, on the population size, m, and on the migration probability,
pm. The averaged length of the messages containing migrants is mpmL(p−1)/p.

For the grid layer at least two scenarios can be identified: (i) in each grid
location a sequential job corresponding to one colony is executed; (ii) a parallel
job involving a message passing interface in the grid infrastructure is executed.
In the first case there is no direct communication between colonies, the jobs
launched in the grid environment are independently executed (as in [6]) and
they send their results through files transfer to the location which initiated the
jobs. In the second case low frequency periodical migration should be applied
between colonies in order to limit the communication between different sites.

4 Experimental Results and Discussion

The experiments were conducted for the first from the above mentioned scenarios
and the behavior of the proposed approach was tested in two distinct contexts:
(i) one problem — several strategies; (ii) one strategy — multiple subproblems
(e.g. data subsets).

4.1 Case Studies

In the first case we used the test suite from [10], characterized by two objective
functions, and we applied different MOEAs (e.g. Nondominated Sorting Genetic
Algorithm [1] and Pareto Differential Evolution [9]) with different parameters
and distribution strategies for different colonies. Both algorithms use similar
selection operators based on computing non-domination ranks and crowding
factors.

The second case study is related to the problem of attributes subset selection
which consists in identifying, starting from a training set, the most relevant at-
tributes. Such a problem can be solved by assigning to attributes some weights
which optimize three criteria [8]: intra-class distance (to be minimized), inter-
class distance (to be maximized) and an attribute-class correlation measure (to
be maximized). Interpreting this optimization problem as a multiobjective one,
the result will be a set of attributes weights, each one leading to a ranking of at-
tributes, where the first attributes are the most relevant ones. The final ranking
can be obtained by averaging the rankings corresponding to all elements of the
approximated Pareto set. Since the estimation of the attribute-class correlation
measure is quadratic with respect to the number of elements in the training set,
the evaluation of each element of the population is costly. A natural approach is
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to split, by using a proportional sampling strategy, the data set in smaller sub-
sets, and to apply a MOEA independently for each subset. The results obtained
for all subsets are combined in order to construct the final ranking.

4.2 Results in a Cluster Environment

The tests corresponding to the cluster layer were based on a parallel imple-
mentation using mpiJava and were conducted on a local heterogeneous cluster
of 8 nodes (Intel P4, 6 CPUs at 3.0 GHz and 2 CPUs at 2.4 GHz) connected
through optical fiber and a Myricom switch at 2 Gb/s. The evolutionary process
involved a colony of c populations to be executed on p processors. Since c ≥ p
each processor deals with a subcolony of c/p populations. Therefore, different
communication strategies can be applied between the populations in the sub-
colony assigned to one processor and between populations assigned to different
processors. Figure 2 illustrates the influence of the communication strategy and
that of the problem complexity on the speedup ratio in two cases: when the time
needed for collecting the results is ignored and when this final communication
time is taken into account. The reported results were obtained in the case of 24
populations each one having 20 elements which evolve for 250 generations by
using a NSGA-II algorithm [1] and communicate every 25 generations. It follows
that for simple test problems (e.g. ZDT2 from [10] with n = 100) the cost of the
final communication step (involving long messages) is significant with respect to
the cost of other steps, leading to low speedup ratios, while for real problems
(e.g. attribute selection in the case of a set of real medical data consisting of
177 instances, each one with n = 14 attributes) the final communication cost
does not significantly alter the speedup ratio. The decrease in the speedup ratio
when 8 processors were used is generated by the heterogeneous character of the
processors.
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Fig. 2. Speedup ratios when the final communication time is ignored (left) and when
the final communication time is taken into consideration (right)
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4.3 Results in a Grid Environment

The experiments concerning the grid layer were conducted on the European
SEE-GRID infrastructure by using up to 24 nodes with Intel P4 at 3.0 GHz, 1
GB RAM and 100 GB HDD. The tests consisted in launching several sequential
and parallel jobs corresponding to different instances of MOEAs. The code was
ported on remote sites using gLite. Each MOEA instance is described in a user
configuration file specified in the job description. The results generated by dif-
ferent jobs at different sites are transferred through files back to the site which
launched the jobs.

The first case study involved 24 sequential jobs corresponding to 24 variants
based on two MOEAs, four communication strategies, four variants of search
space division and some different values of the specific parameters. All Pareto
fronts were compared by using the coverage ratio measure [2] which allows iden-
tifying the best result (in our example it was the NSGA-II with one population
of 200 elements and a recombination probability of 0.9; the worst behavior corre-
sponds to the same strategy but for a recombination probability of 0.2). Besides
the tests involving sequential jobs, experiments with parallel codes executed on
clusters from the SEE-GRID virtual organization were also conducted. The pos-
sibility of using a larger number of processors than that in the local cluster (e.g.
24 instead of 8) led to a significant decrease of the running time of the evolu-
tionary process. This simple case study illustrates the opportunity offered by
the computational grid to efficiently conduct experimental designs when we are
looking for appropriate strategies for a given problem.

The second case study was related to the attribute selection problem and
involved a set of 2000 synthetic data corresponding to two classes and having
10 attributes. First attribute is just the class label, the next five attributes are
randomly generated starting from different distributions for the two classes (e.g.
random values generated according to the normal distribution with different pa-
rameters for the two classes) and the last four attributes are randomly generated
from the same distribution for both classes. Thus a correct ranking would be:
first attribute, attributes 2–6, attributes 7–10. Three variants were analyzed: the
data were uniformly split in 5, 10 and 20 subsets leading to 5,10 and 20 jobs,
respectively. The rankings obtained are: (1,3,5,6,2,4,7,8,9,10) in the case of 5
subsets, (1,6,3,5,2,4,8,7,9,10) in the case of 10 subsets and (1,3,6,5,4,2,7,8,9,10)
in the case of 20 subsets. All results are in concordance with the generated
data. Concerning the quality of the obtained Pareto front the best results were

Table 1. Coverage ratios (CS) corresponding to Pareto fronts for the data set split in
5,10 and 20 subsets and the corresponding average running time of executing the jobs
in the grid environment

CS 5 jobs 10 jobs 20 jobs Average time (s)

5 jobs 0.0 0.0322 0.002 4485.15± 64.77
10 jobs 0.563 0.0 0.031 1041.95± 194.42
20 jobs 0.912 0.764 0.0 374.71± 70.12
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obtained by the variant using 20 subsets. This is illustrated by the coverage ratio
measures presented in Table 1(CS(F1, F2) denotes the ratio of the elements in
F2 which are dominated by elements in F1) .

5 Conclusions

The hierarchical approach in distributing MOEAs leads to an easy configurable
framework allowing the execution either on computational clusters or in a grid
infrastructure. Two situations when the grid infrastructure can be efficiently
exploited were identified: experimental design of evolutionary algorithms when
a large set of strategies should be applied to the same problem and distributed
attributes selection for large sets of data when one method can be applied to
different data subsets.
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Abstract. When a WSN is deployed in a terrain (known as the sensor
field), the sensors form a wireless ad-hoc network to send their sens-
ing results to a special station called the High Energy Communication
Node (HECN). The WSN is formed by establishing all possible links be-
tween any two nodes separated by at most RCOMM , then keeping only
those nodes for which a path to the HECN exists. The sensing area of
the WSN is the union of the individual sensing areas (circles of radius
RSENS) of these kept nodes.The objective of this problem is to maximize
the sensing area of the network while minimizing the number of sensors
deployed. The solutions are evaluated using a geometric fitness function.
In this article we will solve a very large instance with 1000 preselected
available locations for placing sensors (ALS). The terrain is modelled
with a 287 × 287 point grid and both RSENS and RCOMM are set to
22 points. The problem is solved using simulated annealing (SA) and
CHC. Every experiment is performed 30 times independently and the
results are averaged to assure statistical confidence. The influence of the
allowed number of evaluations will be studied. In our experiments, CHC
has outperformed SA for any number of evaluations. CHC with 100000
and 200000 evaluations outperforms SA with 500000 and 1,000,000 eval-
uations respectively. The average fitness obtained by the two algorithms
grows following a logarithmic law on the number of evaluations.

1 Introduction

Nowadays, the trend in telecommunication networks is having highly decentral-
ized, multinode networks. From small, geographically close, size-limited local
area networks the evolution has led to the huge worldwide Internet. This same
path is being followed by wireless communications, where we can already see
wireless telephony reaching virtually any city in the world.

Wireless networks started as being composed by a small number of devices
connected to a central node. Recent technological developments have enabled
smaller devices with computing capabilities to communicate in the absence of
any infrastructure by forming ad-hoc networks. The next step in wireless com-
munications begins with ad-hoc networks and goes towards a new paradigm:
Wireless Sensor Networks (WSN) [1].

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 527–535, 2008.
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A WSN allows an administrator to automatically and remotely monitor al-
most any phenomenon with a precision unseen to the date. The use of multiple
small cooperative devices yields a brand new horizon of possibilities yet offers a
great amount of new problems to be solved.

We discuss in this paper an optimization problem existing in WSN: the layout
(or coverage) problem [6,4]. This problem consists in placing sensors so as to get
the best possible coverage while saving the number of sensors as low as possible.
A genetic algorithm has already been used to solve an instance of this problem
in [4]. In this paper we define a new instance for this problem, and tackle it using
some metaheuristic techniques [7,5,3] and solve a large dimension instance.

This work is structured as follows. After this introduction, the WSN layout
problem (WSN problem for short) will be presented, and its formulation de-
scribed in Section 2. Section 3 explains the optimization techniques employed
for solving this problem. Then in Section 4 the experiments performed and the
results obtained are analyzed. Finally, Section 5 shows the conclusions and future
work.

2 WSN Problem

In this section we describe the layout problem for WSN, then present the for-
mulation employed for its resolution.

2.1 Problem Description

A Wireless Sensor Network allows to monitor some physical set of parameters
in a region known as the sensor field. When a WSN is placed in the sensor field,
every sensor monitors a region of the field; ideally the complete network is able
to monitor all the field by adding all the pieces of information together. It is the
duty of the designer to establish what is the sensor field that the WSN has to
monitor.

A node sensing area (the area that a single sensor can sense) can be modelled
with a circle whose radius RSENS -or sensing radius- indicates the sensing range
of the sensor. The value of this range is determined by both the magnitude that
is sensed and the sensor itself (hardware employed). Similarly, RCOMM , the
communication radius of a sensor, defines the circle where any other sensor can
establish a direct communication link with it. The value of this range depends
on the environment, the radio hardware, the power employed and other factors.

When a WSN is deployed in the sensor field, the sensors form a wireless ad-
hoc network in order to communicate their sensing results to a special station
called the High Energy Communication Node (HECN). The data can then be
analyzed by the HECN processor, or be accessed by the network administrator.
Any sensor unable to transmit its sensing data to the HECN is useless. The
sensing information is not sent through a direct link to the HECN, but rather a
hop by hop communication is employed. Thus, for any node to be useful, it has
to be within communication range of another useful node.
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Fig. 1. Available sites in the problem instance (left), random solution (right)

The sensing area of the WSN is the union of the individual sensing areas
of all the useful nodes. The designer wants the network to cover the complete
sensing area, or, if this is unfeasible, to cover as much of it as possible. On the
other hand, the number of sensor nodes must be kept as low as possible, since
using many nodes represents a high cost of the network, possibly influences the
environment, and also provokes a high probability of detection (when stealth
monitoring is desired).

The problem of designing the layout for a WSN can be defined as an exten-
sion of an existing problem: the radio network design problem (RND) [2]. The
objective of this problem is to maximize the sensing area of the network while
minimizing the number of sensors deployed.

2.2 Problem Formulation

For this work we employ a square terrain as the sensor field, and use a discrete
model to represent it. This model is a 287× 287 point grid as in [2], where every
point can be either monitored or not.

Sensor nodes can only be placed in some of those field points. If a sensor can
communicate with the HECN, then a discretized circular area around its location
is considered to be monitored. The available field points for placing the sensors
are given as an ordered list (the Available Location Sites, ALS for short) that
constitutes the specific problem instance. Figure 1 shows a graphical example of
a WSN instance (left) and a solution layout with its underlying topology (right).

The WSN problem can be reduced to selecting from the list of available points
a subset of locations that form the optimal sensor network. The list is ordered so
that any bit string of the same length a the ALS represents a solution attempt
to the problem (the ’1’s in the string indicating the chosen locations).
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t:= 0;
Initialize(T,Sa);
while not end condition(t,Sa) do

while not cooling condition(t)
Sn := Choose neighbor(Sa);
Evaluate(Sa,Sn);
if Accept(Sa,Sn,T) then

Sa := Sn;
end if
t := t+1;

end while
Cooldown(T);

end while

Fig. 2. Pseudocode for SA

From the previous definition of the problem, a fitness function that combines
both objectives is employed [2] (Equation 1). The objective is to maximize the
fitness value of the solution.

f(x) =
Coverage(x)2

Nb. of sensors(x)
, Coverage(x) = 100 · Covered points

Total points
(1)

3 Optimization Techniques

In this section, we describe the two techniques used to solve the problem: simu-
lated annealing and CHC.

3.1 SA Algorithm

Simulated annealing is a trajectory based optimization technique. It was first
proposed by Kirkpatrick et al. in [5]. SA is a fairly commonly used algorithm
that provides good results and constitutes an interesting method for comparing
results and test other optimizing methods. The pseudocode for this algorithm is
shown in Fig. 2.

The algorithm works iteratively and keeps a single tentative solution Sa at
any time. In every iteration, a new solution Sn is generated from the old one,
Sa, and depending on some acceptance criterion, it might replace it.

The acceptance criterion is the true core of the algorithm. It works as follows:
both the old (Sa) and the new (Sn) solutions have an associated quality value
— determined with a fitness function. If the new solution is better than the old
one, then it will replace it. If it is worse there is still some chance that it will
replace it. The replacing probability is calculated using the quality difference
between both solutions and a special control parameter T named temperature.

The acceptance criterion ensures a way of escaping local optima by choosing
solutions that are actually worse than the previous one with some probability.
That probability is calculated using Boltzmann’s distribution function:

P =
2

1 + e
fitness(Sa)−fitness(Sn)

T

(2)
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t:=0;
Initialize(Pa,convergence count);
while not ending condition(t,Pa) do

Parents := Selection parents(Pa);
Offspring := HUX(Parents);
Evaluate(Offspring);
Pn := Elitist selection(Offspring,Pa);
if not modified(Pa,Pn) then

convergence count := convergence count-1;
if (convergence count == 0) then

Pn := Restart(Pa);
Initialize(convergence count);

end if
end if
t := t+1;
Pa := Pn;

end while

Fig. 3. Pseudocode for CHC

As iterations go on, the value of the temperature parameter is progressively
reduced following a cooling schedule, thus reducing the probability of choosing
worse solutions and increasing the biasing of SA towards good solutions. In
this work we employ a geometric rule, such that every k (Markov chain length)
iterations the temperature is updated as T (n + 1) = α · T (n), where 0 < α < 1
is called the temperature decay.

3.2 CHC Algorithm

The second algorithm we propose for solving the RND problem is Eshelman’s
CHC (Cross generational elitist selection, Heterogenous recombination, and Cat-
aclysmic mutation), a kind of Evolutionary Algorithm (EA) surprisingly not used
in many studies despite it has unique operations usually leading to very efficient
and accurate results [3]. Like all EAs, it works with a set of solutions (population)
at any time. The algorithm proceeds iteratively, producing new solutions at each
iteration, some of which will be placed into the population replacing others that
were previously included. The pseudocode for this algorithm is shown in Fig. 3.

The algorithm CHC works with a population of individuals (solutions) that
we will refer to as Pa. In every step, a new set of solutions is produced by select-
ing pairs of solutions from the population (the parents) and recombining them.
This selection is made in such a way that individuals that are too similar can not
mate each other, and recombination is made using a special procedure known as
HUX (Half Uniform crossover). This procedure copies first the common infor-
mation for both parents into both offspring, then it translates half the diverging
information from each parent to each of the offspring. This is done in order to
preserve the maximum amount of diversity in the population, as no new diver-
sity is introduced during the iteration (there is no mutation operator). The next
population is formed by selecting the best individuals among the old population
and the new set of solutions (elitist criterion).

As a result of this, at some point of the execution, population convergence
is achieved, so the normal behavior of the algorithm should be to stall on it.
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A special mechanism is used to generate new diversity when this happens: the
restart mechanism. When restarting, all of the solutions except the very best
ones are significantly modified. This way, the best results of the previous phase
of evolution are maintained and the algorithm can proceed again.

4 Tests and Results

In this section we describe the experiments and present the results obtained
using the two algorithms described in Section 3. The results are then ana-
lyzed rigorously in order to determine the statistical confidence of the observed
differences.

The instance solved in this work is a very large instance (1000 available lo-
cations), specially if compared with the previously existing work [2] where the
biggest instance had only 349 available locations. The sensor field is modelled
by a 287× 287 point grid. All sensors behave equally and both their sensing and
communication radii are set to 22 terrain points. The ALS is formed by 1000
locations randomly distributed over the sensor field following a uniform distri-
bution. Figure 1 illustrates the instance of the problem, and shows a random
solution for this instance using 167 sensors and covering 56.76% of the sensor
field. The low quality achieved by random search, the NP nature of the problem,
and its high dimensionality clearly suggest the utilization of metaheuristics.

The models and parameters employed in our problem instance are summed
up in Table 1.

The problem is solved using simulated annealing (SA) and CHC. The same
instance of the problem is used for both algorithms, and a parameter tuning is
made to get good results from them (the values of the parameters can be seen
in Table 2). We will analyze the algorithm’s effectiveness for solving the prob-
lem by inspecting the fitness obtained. The influence of the number of solution
evaluations will also be studied by running several experiments with both algo-
rithms using increasingly higher number of allowed evaluations. The number of
evaluations will range from 100, 000 up to 1, 000, 000.

For every experiment the results are obtained by performing 30 independent
runs, then averaging the fitness values obtained in order to ensure statistical
confidence. Table 3 summarizes the results obtained for this study. Analysis of
the data using Matlab’s ANOVA/Kruskal-Wallis test plus Multcompare function
has been used to get statistical confidence on the results with a confidence level

Table 1. Models and parameters

Concept Model
Sensor Field 287 × 287 point grid
ALS 1000 points, uniform distribution
Solution Bit string (1000 bits)
RSENS 22 points
RCOMM 22 points
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Table 2. Parameters of the algorithms

Algorithm CHC
Population size 100
Crossover HUX
Cataclysmic mutation Bit flip with prob. 35%
Incest threshold 25% of instance size
Selection of parents Random
Selection of next generation Elitist
Algorithm SA
Mutation Bit flip prob. 1/Length
Markov-Chain length 50
Temperature decay 0.99
Initial temperature 1.05

Table 3. Fitness results

Evals. 50,000 100,000 200,000 300,000 400,000 500,000 1,000,000
SA 74.793 76.781 78.827 79.836 80.745 81.602 84.217
CHC 75.855 83.106 87.726 89.357 90.147 90.974 92.107

of 95%. A minimum mean square error approximation function is calculated
(from a list of standard functions) to estimate the relation between the average
fitness value and the allowed number of evaluations, for both SA and CHC.

From the results in Table 3 we can state that the average fitness obtained with
either SA or CHC improves when the number of evaluations is increased. In the
first case (SA) the average fitness goes from 74.793 for 50, 000 evaluations to
84.217 for 1, 000, 000 evaluations. In the second case (CHC) it goes from 75.855
to 92.107. Analysis of the data shows that the increment of the fitness values is
meaningful for both algorithms when the difference in number of evaluations is
bigger than 100, 000.

When it comes to comparing the two algorithms, CHC outperforms SA. The
average fitness value obtained for any number of evaluations is greater using
CHC than using SA. The analysis of the data confirms that CHC’s results are
significantly better than SA’s for any number of evaluations except 50, 000, for
which they are equivalent. Furthermore, the executions using CHC have outper-
formed the ones using SA that performed five times more solution evaluations.
CHC with 100, 000 and 200, 000 evaluations has outperformed SA with 500, 000
and 1, 000, 000 evaluations respectively (though analysis couldn’t show the sig-
nificance at 95% confidence). CHC with 200, 000 and 500, 000 evaluations is sig-
nificantly better than SA with 500, 000 and 1, 000, 000 evaluations respectively.

The improvement obtained augmenting the number of evaluations is sublineal
and is best modelled for this range of values using a logarithmic function for both
SA and CHC. Figure 4 shows the average fitness obtained by both algorithms
in the different experiments as well as the mathematical models calculated for
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Fig. 4. Results obtained with SA and approximation (left), results obtained with CHC
and approximation (right)

them. Equations 3 and 4 show the mathematical models for the fitness values
obtained using SA and CHC respectively.

SAfitness(evals) = 3.556 · log(evals/100, 000 + 0.287) + 75.733 (3)
CHCfitness(evals) = 3.155 · log(evals/100, 000− 0.459) + 85.867 (4)

5 Conclusions

We have defined a coverage problem for wireless sensor networks with its in-
nate connectivity constraint. A very large instance containing 1, 000 available
locations has been solved for this problem using two different metaheuristic
techniques: simulated annealing and CHC.

CHC has been able to solve the problem more efficiently than SA. In our ex-
periments CHC has been able to reach high fitness values with an effort (number
of performed solution evaluations) less than five times smaller than the effort
required by SA to reach that same fitness. The average fitness obtained by any
of the algorithms improves if the allowed number of evaluations per execution is
increased within the range employed for our experiments (50, 000 to 1, 000, 000
evaluations), however their growths are sublineal. Mathematical models for this
dependence have been calculated for both algorithms, resulting in logarithmic
functions modelling SA’s and CHC’s fitness growth.

In future work the effect of the relation between sensing and communication
radii will be studied. We also plan to redefine the problem so as to be able to
place the sensors anywhere in the sensor field (instead of only in the available
positions), and also take into account the power constraints existing in WSN
(much harder than in other systems).
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Abstract. This work presents the performance comparison of two con-
ceptually different approaches for a mixed model non-permutation flow-
shop production line. The demand is a semi-dynamic demand with a
fixed job sequence for the first station. Resequencing is permitted where
stations have access to intermediate or centralized resequencing buffers.
The access to the buffers is restricted by the number of available buffer
places and the physical size of the products. An exact approach, using
Constraint Logic Programming (CLP), and a heuristic approach, a Ge-
netic Algorithm (GA), were applied.

Keywords: Semi-dynamic demand, Constraint Logic Programming,
Genetic Algorithm, Non-Permutation Flowshop, Mixed model assembly
line.

1 Introduction

Mixed model production lines consider more than one model being processed on
the same production line in an arbitrary sequence. Nevertheless, the majority of
publications are limited to solutions which determine the job sequence before the
jobs enter the line and maintain it without interchanging jobs until the end of the
production line, known as permutation flowshop. In the case of more than three
stations and with the objective function to minimize the makespan, a unique
permutation for all stations is no longer optimal. In [23] and [16] studies of the
benefits of using non-permutation flowshops are presented.

Various designs of production lines, which permit resequencing of jobs, exist
[13,12,6,24]. Resequencing of jobs on the line is even more relevant with the
existence of an additional cost or time, occurring when at a station the succeeding
job is of another model, known as setup-cost and setup-time [1].

The case of infinite buffers is basically a theoretical case in which no limitation
exists with respect to the number of jobs that may be buffered between two
stations. Surveys on heuristics treating the case of infinite buffers are presented
in [17] and [22]. Approaches which consider a limited number of buffer places for
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c© Springer-Verlag Berlin Heidelberg 2008



Semi-dynamic Demand in a Non-permutation Flowshop 537

the flowshop problem are studied in [5,25,21,20,28,14,3]. In [4] and [18] limited
resequencing possibilities are considered for jobshop problems.

The introduction of resequencing possibilities generally leads to additional
costs, caused by additional equipment to be mounted, like buffers, but also ex-
tra efforts in terms of logistics complexity may arise. In the case in which there
exist jobs with large and small physical size, the investment for additional rese-
quencing equipment can be reduced by, e.g., only giving small jobs the possibility
to resequence. Consequently, only small resequencing buffer places are installed.
Following this concept, in a chemical production line where the demand of cus-
tomers is different, only resequencing tanks that permit to resequence the request
of a small customer order are used.

In what follows, the problem is formulated in more detail, and the exact
and the heuristic approaches are explained. Thereafter promising results are
presented for medium and large sized problems, which demonstrate the relevance
of the proposed concept, followed by the conclusions.

2 Problem Definition

This paper considers a mixed model non-permutation flowshop with the possi-
bility of resequencing jobs between consecutive stations. The jobs (J1, J2, ..., Jj ,
..., Jn) pass consecutively through the stations (I1, I2, ..., Ii, ..., Im) and after
determined stations, off-line buffers Bi permit to resequence jobs. The buffer
provides various buffer places (Bi,1, Bi,2, ...) and each buffer place is restricted
by the physical size of the jobs to be stored. As can be seen in figure 1a, job J2

can be stored in buffer place Bi,1 as well as in Bi,2. Whereas, the next job J3

can be stored only in buffer place Bi,2, because of the physical size of the job
exceeding the physical size of buffer place Bi,1, see figure 1b.

J3

Ii-1

J4

a)

b)
Ii

J3
Ii+1

J2

J1

Ii+1

Ii

J2

J3

Ii-1

J3

Bi,2

Bi,1

Bi,1

Bi,2

Fig. 1. Scheme of the considered flowshop. The jobs Jj pass consecutively through
the stations Ii. The buffer Bi permits to temporally store a job with the objective of
reinserting it at a later position in the sequence. a) Job J2 can pass through any of
the two buffer places Bi,1 or Bi,2 of buffer Bi. b) Job J3 can pass only through buffer
place Bi,2, due to its physical size.
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The buffers are located off-line, in a first step accessible from a single sta-
tion (intermediate case). Then, for an additional benefit, a single resequencing
buffer is used, accessible from various stations (centralized case). The objective
function is the weighted sum of the makespan and the setup-cost, where there
is no weight associated with the setup-time though this is indirectly included
in the calculation of the makespan. An exact approach, using Constraint Logic
Programming (CLP) and a heuristic approach, using a Genetic Algorithm (GA),
were applied to the problem under study.

3 Approaches

3.1 Exact Approach: CLP

The concept of CLP can be described as a powerful extension of conventional
logic programming [11]. It involves the incorporation of constraint languages and
constraint solving methods into logic programming languages [26].

The formulation used here is explained in more detail in [7] and was imple-
mented in OPL Studio version 3.7. Apart from job and station precedences,
the CLP formulation determines the jobs which are to be taken off the line
for the purpose of resequencing, given that a free buffer place is available and
that the physical size of the job does not exceed the physical size of the buffer
place. The formulation also includes computational enhancements like imposing
the start time of jobs and the reduction of the size of the variables and con-
siders the intermediate as well as the centralized location of the resequencing
buffers.

3.2 Heuristic Approach: GA

The concept of Genetic Algorithms (GA) can be understood as the application
of the principles of evolutionary biology, also known as the survival of the fittest
[9,10]. Genetic algorithms are typically implemented as a computer simulation
in which a population of chromosomes, each of which represents a solution of
the optimization problem, evolves toward better solutions. The evolution starts
from an initial population which may be determined randomly. In each gener-
ation, the fitness of the whole population is evaluated and multiple individuals
are stochastically selected from the current population, based on their fitness
and modified to form a new population. The alterations are biologically-derived
techniques, commonly achieved by inheritance, mutation and crossover. Multi-
ple Genetic Algorithms were designed for mixed model assembly lines such as
[2,15,29,27].

The heuristic used here is a variation of the GA explained in [19]. The genes
represent the jobs which are to be sequenced. The chromosomes υ, determined
by a series of genes, represent a sequence of jobs. A generation is formed by R
chromosomes and the total number of generations is G. In the permutation case,
the size of a chromosome is determined by the number of jobs, the fraction Π . In
the non-permutation case, the chromosomes are L + 1 times larger, resulting in
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the fractions Π
′

1, ..., Π
′

L+1, being L the number of resequencing possibilities. In
both cases, special attention is required when forming the chromosomes, because
of the fact that for each part of the production line every job has to be sequenced
exactly one time.

The relevant information for each chromosome is its fitness value (objective
function), the number of job changes and the indicator specifying if the chromo-
some represents a feasible solution. A chromosome is marked infeasible and is
imposed with a penalty. This situation arises if a job has to be taken off the line
and no free resequencing buffer place is available or the physical size of the job
exceeds the size limitation of the available resequencing buffer places. When two
solutions result in the same fitness, the one with fewer job changes is preferred.
In [8] the detailed formulation can be found.

4 Performance Study

The performance study considers a medium sized problem with 10 stations and
up to 10 jobs. This is applied to the exact (CLP) as well as to the heuristic
approach (GA). The second instance uses a large problem with 5 stations and
up to 100 jobs where the heuristic approach (GA) is applied only.

4.1 Instance-1: Medium Sized Problem (CLP Versus GA)

A flowshop which consists of 10 stations is considered. After station 3, 5 and 8
a single intermediate buffer place is located. The range of the production time
is [1...100], for the setup cost [2...8] and for the setup time [1...5]. The number of
jobs is varied in the range of 4 to 10 and the objective function is the weighted
sum of the makespan (factor 1.0) and the setup cost (factor 0.3), where the setup
time is not concerned with a weight but is indirectly included in the calculation
of the makespan.

Three differently sized buffer places (large, medium, small) are available and
the ratio of jobs is 3

10 , 3
10 and 4

10 for large, medium and small, respectively.
The allocation of the buffer places to the buffers considers five scenarios for the
intermediate case (“I111”, “I231”, “I132”, “I222”, “I333”) and three scenarios
for the centralized case (“C1”, “C2”, “C3”). “I132” represents 1 small, 1 large
and 1 medium buffer place, located as intermediate resequencing buffer places
after stations 3, 5 and 8, respectively. “C2” represents 1 medium buffer place,
located as a centralized buffer place, accessible from stations 3, 5 and 8. “I333”

Table 1. Semi-dynamic demand using the exact approach (CLP)

Jobs Perm I111 I231 I132 I222 I333 C1 C2 C3
4 483,1 480,9 480,7 480,7 480,9 480,7 480,9 480,7 480,7
5 552,0 490,7 490,7 490,7 490,7 490,7 490,7 490,7 490,7
6 647,5 627,0 620,1 620,1 620,1 620,1 628,5 622,2 622,2
7 636,5 627,7 627,7 625,0 625,0 609,5 628,0 627,7 616,1
8 673,6 646,6 646,6 644,8 644,8 644,8 646,6 644,8 632,3
9 744,3 719,4 719,4 716,1 716,1 716,1 719,4 716,1 712,1
10 813,7 786,5 763,2 762,5 785,9 791,2 786,5 786,5 764,0
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Table 2. Semi-dynamic demand using the heuristic approach (GA)

Jobs Perm I111 I231 I132 I222 I333 C1 C2 C3
4 483,1 480,9 480,7 480,7 480,7 480,7 480,9 480,7 480,7
5 552,0 490,7 490,7 490,7 490,7 490,7 490,7 490,7 490,7
6 647,5 627,0 620,1 620,1 620,1 620,1 628,5 622,7 622,2
7 636,5 627,7 628,8 626,1 625,0 609,5 629,1 628,5 616,3
8 673,6 669,2 651,3 646,0 647,2 638,2 672,4 653,4 637,0
9 744,3 736,5 724,2 728,6 721,8 709,4 736,5 729,5 714,7
10 813,7 808,3 788,0 781,7 805,1 757,5 809,2 805,9 772,2

and “C3” are the two cases which provide the largest flexibility in terms of
physical size restrictions.

The results of the CLP are shown in table 1. In all cases, when offline re-
sequencing buffers are considered, the results are improved compared to the
permutation sequence. In the studied flowshop, an average of 4.3% is achieved
for the CLP, whereas, in the case of the GA, see table 2, the average is 3.7%.

In the case of the exact approach, as well as in the GA, the semi-dynamic
demand with a fixed job sequence for the first station, leads to a considerable
improvement. In table 3 the improvement of the CLP with respect to the GA is
shown. For up to 5 jobs, both methods achieve the same solutions. When 6 or
more jobs are to be sequenced, in general, the CLP outperforms the GA when
smaller buffer places are used.

The execution time in the vast majority of the cases was inferior to 600 seconds
for the case of the CLP. The execution time of the GA, limited to 1000 iterations,
required up to 55 seconds; increasing the number of iterations did not result in a
major improvement. In general, the solutions of the CLP show better results in
the more restricted problem. Nevertheless, the GA has to process a large number
of infeasible solutions when the resequencing possibilities are heavily restricted.
The GA consequently performs better in the less restricted the problem. This be-
havior was also observed when the demand is not a semi-dynamic demand, con-
sidering that the jobs can be resequenced before they enter the production line.

4.2 Instance-2: Large Problem (GA)

A flowshop which consists of 5 stations is considered. The range of the production
time is [0...20] such that for some jobs zero-processing time at some stations
exists, for the setup cost [2...8] and for the setup time [1...5]. The objective

Table 3. Comparison of the GA and the Constrained Logic Programming for semi-
dynamic demand. The values show the improvement of the CLP with respect to the
GA.

Jobs Perm I111 I231 I132 I222 I333 C1 C2 C3
4 483,1 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
5 552,0 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
6 647,5 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,1% 0,0%
7 636,5 0,0% 0,2% 0,2% 0,0% 0,0% 0,2% 0,1% 0,0%
8 673,6 3,4% 0,7% 0,2% 0,4% -1,0% 3,8% 1,3% 0,7%
9 744,3 2,3% 0,7% 1,7% 0,8% -0,9% 2,3% 1,8% 0,4%
10 813,7 2,7% 3,1% 2,5% 2,4% -4,5% 2,8% 2,4% 1,1%
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Fig. 2. Semi-dynamic demand without sequencing before the first station: a) In I22,
both buffers are provided with two buffer places each; in I20, only station 2 has access
to a resequencing buffer with two places; and in I02, only station 3 has access to
a resequencing buffer with two places. b) Station 2 and station 3 have access to a
centralized buffer with two buffer places (C2), three buffer places (C3) and four buffer
places (C4).

function is the weighted sum of the makespan (factor of 1.0) and the setup cost
(factor of 0.3). The setup time has no weight associated with but is indirectly
included in the calculation of the makespan. For the intermediate case, three
scenarios are considered: in I22, both buffers are provided with two buffer places
each; in I20, only station 2 has access to a resequencing buffer with two places;
and in I02, only station 3 has access to a resequencing buffer with two places. For
the centralized case, station 2 and station 3 have access to a centralized buffer
with two places (C2), three places (C3) and four places (C4).

Figure 2 shows the amounts of improvement which are achieved by the GA,
when resequencing of a randomly generated sequence within the production line
(semi-dynamic case) is permitted, compared to the case without resequencing. In
the intermediate case, see figure 2a, the use of the two resequencing possibilities
(I22) achieves best results up to 30 jobs, then, the case of one resequencing
possibility at station 2 (I20) outperforms in nearly all cases until 100 jobs. Even
though I22 provides more flexibility in terms of resequencing, the GA performs
better for instances with fewer resequencing possibilities when more than 30 jobs
are to be sequenced. This comes from the fact that the length of the chromosomes
is dependent on the number of resequencing possibilities (L).

In the centralized case, see figure 2b, the variable parameter is the number of
buffer places. The use of two buffer places (C2) in all of the considered cases is
inferior compared to the case of three and four buffer places (C3, C4). Until 30
jobs, the cases C3 and C4 achive nearly equivalent results which means that the
fourth buffer place is not required. Then, for 40 jobs and more, the fourth buffer
place shows a considerable impact on the possible improvements, compared to
the case without resequencing.
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5 Conclusions

This paper has presented the performance comparison of two conceptually dif-
ferent approaches for a mixed model non-permutation flowshop production line.
The demand is a semi-dynamic demand with a fixed job sequence for the first
station and resequencing is permitted where stations have access to intermedi-
ate or centralized resequencing buffers. Furthermore, the access to the buffers is
restricted by the number of available buffer places and the physical size of the
products.

The accomplished performance study demonstrated the effectiveness of rese-
quencing jobs within the line. The exact approach, using Constraint Logic Pro-
gramming (CLP), outperforms the Genetic Algorithm (GA), when the physical
size of the resequencing buffer places is limited. Due to the limited applicability
of the exact approach, the performance study for larger problems of up to 100
jobs was performed using the GA. The chromosome size is dependent on the
number of resequencing possibilities and therefore the performance of the GA
for more than 30 jobs shows better results when fewer resequencing possibilities
are present.

The results revealed the benefits that come with a centralized buffer location,
compared to the intermediate buffer location. It either improves the solution
or leads to the use of fewer resequencing buffer places. An increased number of
large buffer places clearly improves the objective function and including buffers,
constrained by the physical size of jobs to be stored, on one side limits the
solutions but on the other side minimizes the necessary buffer area.

In order to take full advantage of the possibilities of resequencing jobs in a
mixed model flowshop, additional installations may be necessary to mount, like
buffers, but also extra efforts in terms of logistics complexity may arise. The
additional effort is reasonable if it pays off the necessary investment.
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Abstract. The Ant Colony Optimization (ACO) algorithms are being
applied successfully to a wide range of problems. ACO algorithms could
be good alternatives to existing algorithms for hard combinatorial opti-
mization problems (COPs). In this paper we investigate the influence of
the probabilistic model in model-based search as ACO. We present the
effect of four different probabilistic models for ACO algorithms to tackle
the Multiple Knapsack Problem (MKP). The MKP is a subset problem
and can be seen as a general model for any kind of binary problems with
positive coefficients. The results show the importance of the probabilistic
model to quality of the solutions.

1 Introduction

There are many NP-hard combinatorial optimization problems for which it is
impractical to find an optimal solution. Among them is the MKP. For such
problems the reasonable way is to look for algorithms that quickly produce
near-optimal solutions. ACO [2,4,3] is a meta-heuristic procedure for quickly
and efficiently obtaining high quality solutions of complex optimization prob-
lems [11]. The ACO algorithms were inspired by the observation of real ant
colonies. Ants are social insects, that is, insects that live in colonies and whose
behavior is directed more to the survival of the colony as a whole than to that of
a single individual component of the colony. An important and interesting aspect
of ant colonies is how ants can find the shortest path between food sources and
their nest. ACO is the recently developed, population-based approach which has
been successfully applied to several NP-hard COPs [6]. One of its main ideas is
the indirect communication among the individuals of a colony of agents, called
“artificial” ants, based on an analogy with trails of a chemical substance, called
pheromones which real ants use for communication. The “artificial” pheromone
trails are a kind of distributed numerical information which is modified by the
ants to reflect their experience accumulated while solving a particular problem.
When constructing a solution, at each step ants compute a set of feasible moves
and select the best according to some probabilistic rules. The transition proba-
bility is based on the heuristic information and pheromone trail level of the move
(how much the movement is used in the past). When we apply ACO algorithm to
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MKP various probabilistic models are possible and the influence on the results
is shown.

The rest of the paper is organized as follows: Section 2 describes the gen-
eral framework for MKP as a COP. Section 3 outlines the implemented ACO
algorithm applied to MKP. In section 4 four probabilistic models are described.
In Section 5 experimental results over test problems are shown. Finally some
conclusions are drawn.

2 Formulation of the Problem

The Multiple Knapsack Problem has numerous applications in theory as well as
in practice. It also arise as a subproblem in several algorithms for more com-
plex COPs and these algorithms will benefit from any improvement in the field
of MKP. We can mention the following major applications: problems in cargo
loading, cutting stock, bin-packing, budget control and financial management
may be formulated as MKP. In [12] there is proposed to use the MKP in fault
tolerance problem and in [1] there is designed a public cryptography scheme
whose security realize on the difficulty of solving the MKP. Martello and Toth
[10] mention that two-processor scheduling problems may be solved as a MKP.
Other applications are industrial management, naval, aerospace, computational
complexity theory.

Most of theoretical applications either appear where a general problem is
transformed to a MKP or where a MKP appears as a subproblem. We should
mention that MKP appears as a subproblem when solving the generalized as-
signment problem, which again is used when solving vehicle routing problems. In
addition, MKP can be seen as a general model for any kind of binary problems
with positive coefficients [7].

The MKP can be thought as a resource allocation problem, where we have
m resources (the knapsacks) and n objects. The object j has a profit pj, each
resource has its own budget ci (knapsack capacity) and consumption rij of re-
source i by object j. We are interested in maximizing the sum of the profits,
while working with a limited budget.

The MKP can be formulated as follows:

max
∑n

j=1 pjxj

subject to
∑n

j=1 rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(1)

xj is 1 if the object j is chosen and 0 otherwise.
There are m constraints in this problem, so MKP is also called m-dimensional

knapsack problem. Let I = {1, . . . ,m} and J = {1, . . . , n}, with ci ≥ 0 for all
i ∈ I. A well-stated MKP assumes that pj > 0 and rij ≤ ci ≤

∑n
j=1 rij for all

i ∈ I and j ∈ J . Note that the matrix [rij ]m×n and the vector [ci]m are both
non-negative.
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In the MKP we are not interested in solutions giving a particular order. There-
fore a partial solution is represented by S = {i1, i2, . . . , ij} and the most recent
elements incorporated to S, ij need not to be involved in the process for selecting
the next element. Moreover, solutions of ordering problems have a fixed length
as we search for a permutation of a known number of elements. Solutions of
MKP, however, do not have a fixed length. We define the graph of the problem
as follows: the nodes correspond to the items, the arcs fully connect nodes. A
fully connected graph means that after the object i we can choose the object j
for every i and j if there are enough resources and object j is not chosen yet.

3 ACO Algorithm for MKP

Real ants foraging for food lay down quantities of pheromone (chemical clues)
marking the path that they follow. An isolated ant moves essentially at random
but an ant encountering a previously laid pheromone will detect it and decide to
follow it with high probability and thereby reinforce it with a further quantity of
pheromone. The repetition of the above mechanism represents the auto catalytic
behavior of real ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The above behavior of real ants has inspired ACO algorithm. This technique,
which is a population-based approach, has been successfully applied to many NP-
hard optimization problems [2,4]. The ACO algorithm uses a colony of artificial
ants that behave as co-operative agents in a mathematical space where they are
allowed to search and reinforce pathways (solutions) in order to find the optimal
ones. A solution satisfying the constraints is said to be feasible.

procedure ACO
begin

Initialize
while stopping criterion not satisfied do

Position each ant in a starting node
repeat

for each ant do
Chose next node by applying the state transition rate
Apply step-by-step pheromone update

end for
until every ant has build a solution
Update best solution
Apply offline pheromone updating

end while
end

After initialization of the pheromone trails, ants construct feasible solutions,
starting from random nodes, then the pheromone trails are updated. At each step
ants compute a set of feasible moves and select the best one (according to some
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probabilistic rules) to carry out the rest of the tour. The transition probability
is based on the heuristic information and pheromone trail level of the move.
The higher the value of the pheromone and the heuristic information, the more
profitable it is to select this move and resume the search. In the beginning, the
initial pheromone level is set to a small positive constant value τ0 and then ants
update this value after completing the construction stage.

ACO algorithms adopt different criteria to update the pheromone level. In
our implementation we use the Ant Colony System (ACS) [4] approach.

In ACS the pheromone updating stage consists of local update stage and
global update stage.

3.1 Local Update Stage

While ants build their solution, at the same time they locally update the pher-
omone level of the visited paths by applying the local update rule as follows:

τij ← (1− ρ)τij + ρτ0, (2)

where ρ is a persistence of the trail and the term (1 − ρ) can be interpreted as
trail evaporation.

The aim of the local updating rule is to make better use of the pheromone
information by dynamically changing the desirability of edges. Using this rule,
ants will search in wide neighborhood around the best previous solution. As
shown in the formula, the pheromone level on the paths is highly related to
the value of evaporation parameter ρ. The pheromone level will be reduced and
this will reduce the chance that the other ants will select the same solution and
consequently the search will be more diversified.

3.2 Global Updating Stage

When all ants have completed their solution, the pheromone level is updated
by applying the global updating rule only on the paths that belong to the best
solution since the beginning of the trail as follows:

τij ← (1 − ρ)τij + ∆τij (3)

where ∆τij =

⎧⎨⎩
ρLgb if (i, j) ∈ best solution

0 otherwise
,

Lgb is the cost of the best solution from the beginning. This global updating rule
is intended to provide a greater amount of pheromone on the paths of the best
solution, thus the search is intensified around this solution.

Let sj =
∑m

i=1 rij . For heuristic information we use:

ηij =

⎧⎨⎩
pd1

j /sd2
j if sj �= 0

pd1
j if sj = 0

(4)
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Hence the objects with greater profit and less average expenses will be more
desirable.

The MKP solution can be represented by string with 0 for objects that are
not chosen and 1 for chosen objects. The new solution is accepted if it is better
than current solution.

4 Transition Probability

In this section we describe four possibilities for transition probability model. For
ant k, the probability pk

ij of moving from a state i to a state j depends on the
combination of two values:

– The attractiveness ηij of the move as computed by some heuristic.
– The pheromone trail level of the move.

The pheromone τij is associated with the arc between nodes i and j.

4.1 Proportional Transition Probability

The quantity of the pheromone on the arcs between two nodes is proportional
to the experience of having the two nodes in the solution. Thus the node j is
more desirable if the quantity of the pheromone on arc (i, j) is high. For ant k
which moves from node i to node j the rule is:

pk
ij(t) =

⎧⎪⎨⎪⎩
τijηij(Sk(t))∑

q∈allowedk(t) τiqηiq(Sk(t)) if j ∈ allowedk(t)

0 otherwise
, (5)

where allowedk is the set of remaining feasible states, Sk(t) is the partial solution
at step t from ant k.

4.2 Transition Probability with Sum

This probability takes into account how desirable in the past has been the node j,
independently how many ants have reached it from the node i or from some other.
Thus the node j is more desirable if the average quantity of the pheromone on
the arcs which entry in the node j is high. In this case the transition probability
becomes:

pk
ij(t) =

⎧⎨⎩
(∑n

i=1 τij)ηij(Sk(t))∑
q∈allowedk(t)(

∑n
l=1 τlq)ηiq(Sk(t))

if j ∈ allowedk(t)

0 otherwise
. (6)
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4.3 Maximal Transition Probability

This probability is proportional to the maximal pheromone on the arcs which
entry in the node j. Thus the node j can be more desirable independently of the
quantity of the pheromone on the arc (i, j) if there is some other arc with high
quantity of the pheromone which entry in the node j. In this case the transition
probability is changed as follows:

pk
ij(t) =

⎧⎨⎩
(maxl τlj)ηij(Sk(t))∑

q∈allowedk(t)(maxl τlq)ηiq(Sk(t)) if j ∈ allowedk(t)

0 otherwise
. (7)

4.4 Minimal Transition Probability

This probability is proportional to the minimal pheromone on the arcs which
entry in the node j. Thus the node j will be more desirable if the quantity of
the pheromone on all arcs which entry in the node j is high. In this case the
transition probability is as follows:

pk
ij(t) =

⎧⎨⎩
(minl τlj)ηij(Sk(t))∑

q∈allowedk(t)(minl τlq)ηiq(Sk(t)) if j ∈ allowedk(t)

0 otherwise
. (8)

5 Experimental Results

In this section we describe the experimental analysis on the performance of
MKP as a function of the transition probability. We show the computational
experience of the ACS using 10 MKP instances from “OR-Library” available at
http://people.brunel.ac.uk/∼{}mastjjb/jeb/orlib, with 100 objects and
10 constraints. To provide a fair comparison for the above implemented ACS
algorithm, a predefined number of iterations, k = 400, is fixed for all the runs.
The developed technique has been coded in C++ language and implemented on
a Pentium 4 (2.8 GHz).

Because of the random start of the ants in every iteration, we can use fewer
ants than the number of the nodes. After the tests we found that 10 ants are
enough to achieve good results. Thus we decrease the running time of the pro-
gram. We run the same instance using different transition probability models
on the same random sequences for starting nodes and we find different results.
Thus we are sure that the difference comes from the transition probability. For
all 10 instances we were running experiments for a range of evaporation rates
and the parameters d1 and d2 in order to find the best parameters for every
instance. We fixed the initial pheromone value to be τ0 = 0.5. After choosing
for every problem instance the best rate for the parameters we could compare
the different transition probabilities. In Figure 1 we show the average results
over all 10 problem instances and every instance is run 20 times with the same
parameter settings.

http://people.brunel.ac.uk/~{ }mastjjb/jeb/orlib
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Fig. 1. The graphics shows the average solution quality (value of the total cost of the
objects in the knapsack) over 20 runs. Dash dot line represents proportional probability,
dash line — probability with sum, dots line — maximal probability and thick line —
minimal probability.

Our first observation is that the proportional and the minimal transition prob-
abilities show advantage over the sum and maximal transition probabilities. In
a small number of iterations (less than 50), probability with sum and minimal
probability achieve better results, but after that the proportional probability
outperforms them. The MKP is not ordered problem. It means that the quality
of the solution is not related to the order we choose the elements. Using max-
imal transition probability it is enough only one arc to have high quantity of
the pheromone and the node will be more desirable. This kind of probability is
more suitable to ordered problems: the node j is more desirable by node i than
by node q. Using transition probability with sum the node is more desirable if
the average quantity of the pheromone is high, but for some of the arcs this
quantity can be very high and for other arc it can be very low and the average
pheromone to be high. Thus we can explain the worst results with this two mod-
els of the transition probability. If the minimal probability is high, the quantity
of pheromone for all arcs which entry the node is high. If the proportional prob-
ability is high it means that after node i is good to chose node j. The last two
models of transition probability are better related to the unordered problems
and thus we can achieve better results using them.

6 Conclusion

The design of a meta-heuristic is a difficult task and highly dependent on the
structure of the optimized problem. In this paper four models of the transition
probability have been proposed. The comparison of the performance of the ACS
coupled with these probability models applied to different MKP problems are
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reported. The goal is to find probability model which is more relevant to the
structure of the problem. The obtained results are encouraging and the ability
of the developed models to rapidly generate high-quality solutions for MKP can
be seen. For future work another important direction for current research is to
try different strategies to explore the search space more effectively and provide
good results.
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Abstract. Multiple sequence alignment is a key process in today’s biol-
ogy, and finding a relevant alignment of several sequences is much more
challenging than just optimizing some improbable evaluation functions.
Our approach for addressing multiple sequence alignment focuses on the
building of structures in a new graph model: the factor graph model.
This model relies on block-based formulation of the original problem,
formulation that seems to be one of the most suitable ways for capturing
evolutionary aspects of alignment. The structures are implicitly built by
a colony of ants laying down pheromones in the factor graphs, according
to relations between blocks belonging to the different sequences.

1 Introduction

For years, manipulation and study of biological sequences have been added to
the set of common tasks performed by biologists in their daily activities. Among
the numerous analysis methods, multiple sequence alignment (MSA) is probably
one of the most used. Biological sequences come from actual living beings, and
the role of MSA consists in exhibiting the similarities and differences between
them. Considering sets of homologous sequences, differences may be used to
assess the evolutionary distance between species in the context of phylogeny. The
results of this analysis may also be used to determine conservation of protein
domains or structures. While most of the time the process is performed for
aligning a limited number of thousands bp-long sequences, it can also be used at
the genome level allowing biologists to discover new features that could not be
exhibited at a lower level of study [5]. In all cases, one of the major difficulties is
the determination of a biologically relevant alignment, performed without relying
explicitly on evolutionary information like a phylogenetic tree.

Among existing approaches for determining such relevant alignments, one of
them rests on the notion of block. A block is a set of factors present in several
sequences. Each factor belonging to one block is an almost identical substring. It
may correspond to a highly conserved zone from an evolutionary point of view.
Starting from the set of factors for each sequence, the problem we address is the
building of blocks. It consists in choosing and gathering almost identical factors
� Authors are alphabetically sorted. The work of Y. Pigné is partially supported by
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common to several sequences in the most appropriate way, given that one block
cannot contain more than one factor per sequence, that each factor can belong
to only one block and that two blocks cannot cross each other. For building such
blocks, we propose an approach based on ant colonies. This problem is very close
to some classical optimization issues except that the process does not use any
evaluation function since it seems unlikely to find a biologically relevant one.
As such, it also differs notably from other works in the domain setting up ant
colonies for computing alignments for a set of biological sequences [6,2].

Next section details the proposed graph model. Section 3 goes deeper into the
ant algorithm details. Finally, Section 4 studies the behavior of the algorithm
with examples.

2 Model

There exist many different families of algorithms for determining multiple se-
quence alignments, dynamic programming, progressive or iterative methods,
motif-based approaches... However, if the number of methods is important, the
number of models on which these methods operate is much more limited. In-
deed, most algorithms use to consider nucleotide sequences either as strings or
as graphs. In any case however, the problem is formulated as an optimization
problem and an evaluation function is given. Within this paper, we propose an-
other approach based on a graph of factors, where the factors are sub-sequences
present in, at least, two sequences. Instead of considering these factors individu-
ally, the formulation considers that they interact with each other when they are
neighbors in different sequences, such that our factor graph may be understood
as a factor/pattern interaction network. Considering such a graph, a multiple
sequence alignment corresponds to a set of structures representing highly inter-
acting sets of factors. The original goal may be now expressed as the detection of
such structures and we propose to perform such a task with the help of artificial
ants.

2.1 Graph Model

An alignment is usually displayed sequence by sequence, with the nucleotides
or amino acids that compose it. Here the interest is given to the factors that
compose each sequence. So each sequence of the alignment is displayed as a list
of the factors it is composed of. Fig. 1 illustrates such a representation, where
sequences are displayed as series of factors.

There exists a relation between factors (named 1, 2 and 3 in Fig. 1) as soon
as there are almost identical. Indeed, two identical factors on different sequences
may be aligned. Such an alignment aims at creating blocks. Together with fac-
tors, these relations can be represented by a graph G = (V,E). The set V of
nodes represents all the factors appearing in the sequences, and edges of E link
factors that may be aligned. These graphs are called factor graphs. A factor
graph is a complete graph where edges linking factors attending on the same se-
quence are removed. Indeed, a given factor f may align with any other identical
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Fig. 1. This is a set of three sequences. Common subsequences of these sequences
which are repeated are labeled. After the conversion, each sequence of the alignment
is displayed as a list of factors. Here sequence 1 = [1,2,3], sequence 2 = [2,1,3] and
sequence 3 = [2,1,3,3]. Thin lines link factors that may be aligned together.

Fig. 2. The alignment seen in Fig. 1 displayed as a set of factor graphs

factor f ′ provided f ′ does not belong to the same sequence. In Fig. 1, thin links
between factors illustrate the possible alignments between them.

From a graph point of view the sequential order “sequence by sequence” has
no sense. The alignment problem is modeled as a set of factor graphs. So as to
differentiate the different factors, a unique identifier is given to each of them.
Each factor is assigned a triplet [x, y, z] where x is an identifier for the pattern,
y is the identifier of the sequence the factor is located on and z is the occurrence
of this pattern on the given sequence. For instance, on Fig. 1, the bottom right
factor of the third sequence is identified by the triplet [3, 3, 2]. Namely, it is the
pattern “3”, located on the sequence 3 and it occurs for the second time on this
sequence, given the sequences are read from left to right.

Using that model the sequences are not ordered as it is the case when consid-
ering progressive alignment methods. Fig. 2 illustrates such graphs according to
the representation of Fig. 1.

From each factor graph a subset of factors may be selected to create a block.
If the block is composed of one factor per sequence, it is a complete block, but
if one sequence is missing the block is said partial. Not all block constructions
are possible since blocks crossing is not allowed and the selection of one block
may prevent the construction of another one. For instance, from Fig. 1 one can
observe that a block made of factors “1” may be created. Another block with
factor “2” may also be created. However, both blocks cannot be present together
in the alignment. These blocks are said incompatible. A group of blocks is said
to be compatible if all couples of blocks are compatible.

Another relation between potential blocks can be observed in their neighbor-
hood. Indeed, a strong relevance has to be accorded to potential blocks that
are closed to one another and that do not cross. If two factors are neighbors
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Fig. 3. The relation graph Gr based on the dual graph of G with additional edges cor-
responding to compatibility constraints, represented by thick plain edges, and friendly
relations, represented by dashed links

in many sequences, there is a high probability for these factors to be part of a
bigger factor with little differences. Such relations are taken into account within
our approach and are called friendly relations. An example of friendly relation
in the sample alignment can be observed sequences 2 and 3 between factors “1”
and “2”.

The factor graphs are intended to represent the search space of blocks accord-
ing to the set of considered factors. However, they do not capture compatibility
constraints and friendly relations between blocks. For that purpose, we first con-
sider G′ = (V ′, E′) dual graph of G = (V,E), G being the graph composed of the
entire set of factor graphs. The set V ′ of G′ corresponds to the set E of G. Each
couple of adjacent edges e1, e2 ∈ E corresponds to one edge in E′. Moreover,
in order to represent compatibility constraints and friendly relations two new
kinds of edges have to be added to this graph: namely Ec for compatibility con-
straints and Ef for friendly relations. We call relation graph (Fig. 3) the graph
Gr = (V ′, E′ ∪ Ef ∪ Ec).

Our approach makes use of both graphs. Ants move within the factor graphs,
but their actions may also produce some effects in remote parts of the factor
graphs, according to relation graph topology as explained in Section 3.

2.2 Ants for Multiple Sequence Alignment

Ant based approaches have shown their efficiency for single or multiple criteria
optimization problems. The central methodology being known as Ant Colony
Optimization [3]. Ants in these algorithms usually evolve in a discrete space
modeled by a graph. This graph represents the search space of the considered
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problem. Ants collectively build and maintain a solution. Actually, this construc-
tion takes place thanks to pheromone trails laid down the graph. The search is
led both by local information in the graph and by the global evaluation of the
produced solutions.

The model issued in the previous section proposed a graph model that raises
local conflicts and attractions that may exist in the neighborhood of the fac-
tors in the alignment. For this, the model may handle the local search needed by
classical ACOs. However, providing a global evaluation function for this problem
is unlikely. Indeed, defining a relevant evaluation function for MSA is in itself
a problem since the evaluation should be aware of the evolutionary history of
the underlying species, which is part of the MSA problem. Molecular biologists
themselves do not all agree whether or not one given alignment is a good one.
Popular evaluation functions like the classical sum of pairs [1] are still debated.
As a consequence, instead of focusing on such a function, our approach con-
centrates on building structures in the factor graphs according to the relation
graph. These structures correspond to compatible blocks. The building of blocks
is made by ants which behavior is directly constrained by the pheromones they
laid down in the graph and indirectly by the relation graph since this graph has
a crucial impact on pheromone deposit location.

The global process can be further refined by taking into account the size of
the selected factors, as well as the number of nucleotides or amino acids located
between the factors of two neighbor blocks. These numbers are called relative
distances between factors in the sequel. Thus, the factor graphs carry local in-
formation necessary to the ant system and acts like the environment for ants.
Communication via the environment also known as stigmergic communication
[4] takes place in that graph; pheromones trails are laid down on the edges ac-
cording to ants move, but also according to the relation graph. A solution of the
original problem is obtained by listing the set of compatible blocks that have
been bring to the fore by ants and revealed by pheromones.

3 Algorithm

The proposed ant-based system does not evaluate the produced solutions, in this
way it is not an ACO. However, the local search process remains widely inspired
from ACOs. The general scheme of the behavior of the ant based system follows
these rules:

– Ants perform walks into the factor graphs.
– During these walks each ant lay constant quantities of pheromones down on

the edges they cross.
– This deposit entails a change in pheromone quantities of some remote edges

according to the relation graph Gr as described in Section 2.
– Ants are attracted by the pheromone trails already laid down in the

environment.
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Finally a solution to the problem is a set of the most pheromone loaded edges of
the factor graph that are free from conflicts. In the following section pheromone
management is more formally detailled.

3.1 Pheromone Trails

Let τij be the quantity of pheromone present on edge (i, j) of graph G which
links nodes i and j. If τij(t) is the quantity of pheromone present on the edge
(i, j) at time t, then ∆τij is the quantity of pheromone to be added to the total
quantity on the edge at the current step (time t + 1). So:

τij(t + 1) = (1− ρ).τij(t) + ∆τij (1)

Note that the initial amount of pheromone in the graph is close to zero and
that ρ represents the evaporation rate of the pheromones. Indeed, the modeling
of the evaporation (like natural pheromones) is useful because it makes it possible
to control the importance of the produced effect. In practice, the control of this
evaporation makes it possible to limit the risks of premature convergence of the
process.

The quantity of pheromone ∆τij added on the edge (i, j) is the sum of the
pheromone deposited by all the ants crossing the edge (i, j) with the new step
of time. The volume of pheromone deposited on each passage of an ant is a
constant value Q. If m ants use the edge (i, j) during the current step, then:

∆τij = mQ (2)

3.2 Constraints and Feedback Loops

Generally speaking, feedback loops rule self-organized systems. Positive feedback
loops increase the system tendencies while negative feedback loops prevent the
system from continually increasing or decreasing to critical limits. In this case,
pheromone trails play the role of positive feedback loop attracting ants that will
deposit pheromones on the same paths getting them more desirable. Friendly
relationship found in the graph Gr may also play a positive feedback role. Indeed,
more pheromones are laid down around friendly linked blocks. On the other side,
conflicts between blocks act as negative feedback loops laying down ’negative’
quantities of pheromone.

Let us consider an edge (i, j) that has conflict links with some other edges.
During the current step, the c ants that cross edges in conflict with edge (i, j)
define the amount of negative pheromones to assign to (i, j): ∆τconflict

ij = cQ.
Besides, an edge (i, j) with some friendly relations will be assigned positive

pheromones according to the f ants that cross edges in friendly relation with
(i, j) during the current step : ∆τfriendly

ij = fQ.
Finally, the overall quantity of pheromone on one given edge (i, j) for the

current step defined in (2) is modified as follow:

∆τij = ∆τij + ∆τfriendly
i,j −∆τconflict

i,j (3)
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3.3 Transition Rule

When an ant is on vertex i, the choice of the next vertex to be visited must be
carried out according to a defined probability rule.

According to the method classically proposed in ant algorithms, the choice of
a next vertex to visit is influenced by 2 terms. The first is a local heuristic based
on local information, namely the relative distance between the factors (d). The
second term is representative of the stigmergic behavior of the system. It is the
quantity of pheromone deposited (τ).

Remark 1. Interaction between positive and negative pheromones can lead on
some edges to an overall negative value of pheromone. Thus, pheromones quan-
tities need normalization before the random draw is made. Let max be an upper
bound value computed from the largest quantity of pheromones on the neigh-
borhood of the current vertex. The quantity of pheromone τij between edge i
and j is normalized as max− τij .

The function N(i) returns the list of vertices adjacent to i (its neighbors).
The next vertex will be chosen in this list. The probability for an ant being on
vertex i, to go on j (j belonging to N(i)) is:

P (ij) =

[
1

max−τij

α
. 1
dij

β
]

∑
s∈N(i)

[
1

max−τis

α
. 1
dis

β
] (4)

The parameters α and β make it possible to balance the impact of pheromone
trails relatively to the relative distances.

4 Analysis

First experiments on real sequences have been performed. Fig. 4 compares some
results obtained by the proposed structural approach and the alignment provided
by ClustalW. This sample shows that the visible aligned blocks can be regained
in the results given by ClustalW. However, results are still to be evaluated.
Indeed, it may happen that some blocks are found by our method while they are
not detected by ClustalW. Anyway, we are aware of the necessity of additional
analyses and discussions with biologists in order to validate this approach.

ClustalW

Structural
Approach

Fig. 4. Alignment of 3 sequences of TP53 regulated inhibitor of apoptosis 1 for Homo
sapiens, Bos taurus and Mus musculus. Comparison of the alignment given by ClustalW
and our structural approach. The red uppercase nucleotides on the structural approach
are the blocks.



560 F. Guinand and Y. Pigné

5 Conclusion

In this paper there was proposed a different approach, for the problem of multiple
sequence alignment. The key idea was to consider a problem of building and
maintaining a structure in a set of biological sequences instead of considering an
optimization problem. Preliminary results show that the structures built by our
ant-based algorithm can be informally compared, on a pattern basis, with the
results given by ClustalW.

The outlook for the project is now to prove the efficiency and the relevance of
the method, in particular, an important chunk of future work will concern the
comparison of the differences between conserved regions provided by ClustalW
and other well-known multiple sequence alignment methods and our approach.
The second perspective focuses on the performance of the method. Indeed, the
way blocks are built and intermediate results allow us to consider a kind of divide-
and-conquer parallel version of this tool. Most recent results and advances will
be made available on www.litislab.eu.
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d’interprétation du comportement des termites constructeurs. Insectes sociaux 6,
41–80 (1959)

5. Kurtz, S., et al.: Versatile and open software for comparing large genomes. Genome
Biology 5(2), 12 (2004)

6. Moss, J.D., Johnson, C.G.: An ant colony algorithm for multiple sequence alignment
in bioinformatics. In: Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds.) Artificial
Neural Networks and Genetic Algorithms, pp. 182–186. Springer, Heidelberg (2003)

7. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal w: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position
specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–
4680 (1994)

www.litislab.eu


An Algorithm for the Frequency Assignment

Problem in the Case of DVB-T Allotments

D.A. Kateros1, P.G. Georgallis1, C.I. Katsigiannis1,
G.N. Prezerakos1,2, and I.S. Venieris1

1 National Technical University of Athens,
School of Electrical and Computer Engineering,

Intelligent Communications and Broadband Networks Laboratory,
Heroon Polytechniou 9, 15773 Athens, Greece

{dkateros,chkatsig,prezerak}@telecom.ntua.gr,
pgeorgal@mail.ntua.gr, venieris@cs.ntua.gr
2 Technological Education Institute of Pireaus,

Dpt. of Electronic Computing Systems,
Petrou Ralli & Thivon 250, 12244 Athens, Greece

prezerak@teipir.gr

Abstract. In this paper, we investigate the allocation of frequency chan-
nels to DVB-T allotments for frequency Bands IV/V (UHF). The prob-
lem is modeled with a constraint graph represented by an interference
matrix. The aim is to optimize the spectrum usage, so that the maxi-
mum number of possible channels is assigned to each allotment area. The
problem is a variation of the Frequency Assignment Problem (FAP). We
have developed an algorithm that uses metaheuristic techniques, in or-
der to obtain possible solutions. Three versions of the algorithm, a Tabu
Search, a Simulated Annealing, and a Genetic Algorithm version, are
evaluated. We present and discuss comparative results of these versions
for generated networks, as well as for real allotment networks that are
included in the GE06 digital frequency plan produced by ITU during the
RRC-06 conference.

1 Introduction

The developments in standardization of digital radio broadcasting systems have
introduced new possibilities regarding the methodology of planning networks
of such systems. The introduction of single frequency networks (SFNs), allows
the synchronization of the transmitters of a relatively small geographic area, so
that they may operate at the same multiplex frequency channel without any de-
structive interference occurring at the receiver. Therefore, the planning of digital
radio broadcasting networks need not to be conducted at transmitter level, but
using the notion of an allotment area instead. In this paper, we investigate the
allocation of frequency channels to DVB-T allotments for frequency bands IV/V
(UHF) by means of an algorithm that employs metaheuristic techniques.

The paper is organized as follows. The frequency assignment problem in the
case of DVB-T allotments is defined in the next section. In section 3 we present
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the proposed algorithm and the three metaheuristic techniques, Tabu Search,
Simulated Annealing, and the Genetic Algorithm in relation to their applica-
tion on it. Comparative results of the three versions of the algorithm for gener-
ated networks, as well as a real DVB-T allotment network involving allotment
areas of countries located in Southeastern Europe, are presented and discussed
in section 4. Finally, in section 5 we conclude the paper.

2 The FAP for DVB-T Allotments

The allotment planning approach has been used during the past decade in order
to establish T-DAB and DVB-T frequency plans. The planning procedure can
be separated into two distinct stages; in the first one the compatibility analysis
is conducted, while in the second the plan synthesis takes place, i.e. the allo-
cation of frequency channels to the allotment areas. The compatibility analysis
determines whether two allotment areas can share the same frequency channel
without causing harmful interference to each other. In order to make this as-
sessment, the knowledge of the acceptable interference levels on the borders of
each allotment area and the interference potential of each allotment area must be
known. The acceptable interference levels can be calculated based on the desired
reception type (mobile, portable, indoor), the desired coverage location percent-
age and the modulation type of the wanted radio signal. On the other hand,
the interference potential of each allotment area can be modeled with generic
network structures which are defined in order to be used as representatives of
real network implementations (reference networks) [1]. Technical criteria for the
compatibility analysis can be found in [2].

Let A be the set of allotment areas in the planning area and F the set of
available frequency channels, in our case UHF channels 21-69. C denotes the
constraints matrix, a symmetrical N × N matrix, where N is the number of
allotment areas. The elements ci,j of C are defined as follows:

ci,j =
{

1, if the same channel cannot be reused between allotments i, j ∈ A
0, otherwise

C models co-channel constraints. Adjacent channel constraints are not taken
into account due to the low protection ratios [3] that apply. The objective is
to optimize the spectrum usage while satisfying the constraints included in C.
Since the multiplicity m(a), i.e. the number of channels required for allotment
a ∈ A is not fixed or known, we try to assign as many channels as possible
to each allotment area. The problem is often referred to as Maximum Service
FAP or Max-FAP. To model the problem let n(a) be the number of channels
allocated to allotment a ∈ A. Then we aim to maximize the total number of
channels allocated to all allotment areas or equivalently the mean number of
channels per allotment area (MCpA):

max
∑
a∈A

n(a)⇐⇒ max
1
N

∑
a∈A

n(a)
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For a detailed overview and classification of FAP problems the reader can refer
to [4].

3 The Proposed Algorithm

Due to the difficulty of FAP, heuristic approaches have been widely employed.
Max-FAP, discussed here, exhibits the additional difficulty, that the multiplic-
ity is not fixed, which leads to the vast increase of the solution space. We have
developed an algorithm that utilizes known metaheuristic techniques, in order
to obtain possible solutions. The objective of the algorithm is to maximize the
MCpA, while disallowing frequency allocations that lead to unacceptable inter-
ference, as indicated by the constraints matrix C. Additionally, the algorithm
aims to balance the distribution of frequency channels between allotment areas,
as it was observed that the maximization of MCpA tends to produce solutions
that assign very few frequency channels to some allotments. This issue was also
observed in [9], where the authors set lower and upper bounds on the channel
demands, in order to avoid strongly unbalanced solutions. We have implemented
three versions of the algorithm, a Tabu Search, a Simulated Annealing, and a
Genetic Algorithm version. The reader can find useful details for the implemen-
tation of methods that deal with Fixed Spectrum FAP (FS-FAP) and Minimum
Span FAP (MS-FAP) in [11,8].

The proposed algorithm includes two phases. In the first, we employ the meta-
heuristic technique in order to solve the subproblem of the allocation of exactly
L channels in every allotment area (fixed and known m(a)). We increment L
gradually and repeat this procedure, until the metaheuristic fails to provide an
acceptable solution. The final value of L, for which an acceptable solution is
obtained, is the lower bound for the number of frequency channels allocated to
each allotment area. In the second phase, the algorithm attempts iteratively to
allocate one additional channel to each allotment area using a full execution of
the corresponding metaheuristic to generate a candidate additional frequency
for each allotment area. In the end of every iteration we examine the violations
of the constraints and remove the necessary frequencies in order to obtain an ac-
ceptable solution. In order to determine the allotment from which a channel will
be removed for a given constraint violation, we take into account the following
criteria:

1. If the two allotments have a different number of allocated channels, remove
the channel from the one that has more channels. This ensures that in the
final channel allocation L will be the minimum number of channels allocated
to an allotment area.

2. If the two allotment areas have the same number of allocated channels,
remove the channel from the one that participates in the highest number of
constraint violations at the current stage.

3. If the two allotment areas have the same number of allocated channels and
additionally participate in the same number of constraint violations at the
current stage remove the channel added more recently.
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4. If the previous criteria do not apply choose the allotment from which the
channel will be removed randomly.

The algorithm terminates in case N or more channels need to be removed in
order to obtain an acceptable solution for two consecutive iterations or when a
user defined calculation time is reached.

3.1 Simulated Annealing Version

Simulated Annealing (SA) [10] is a stochastic computational technique for find-
ing good approximations of a given function in a large search space. The method
searches for the best solution in a neighborhood. This new solution is accepted
if it is better than the current one, or with an acceptance probability. The ac-
ceptance probability is controlled by the difference between the current and the
new value of the cost function and an additional parameter T , the temperature,
which is gradually decreased with the number of executed iterations, based on
an annealing schedule.

For the implementation of SA in the framework of our algorithm, we define
the cost function as follows: E = 2v + va, where v is the number of violated
constraints and va the number of allotments that participate in the violations.
The annealing schedule is a simple geometric cooling scheme: Tk+1 = 0.9 · Tk

and the initial temperature is calculated so that the acceptance ratio exceeds
0.9. The transition to new frequency allocations is performed with a Single Move
generator for the first phase of the algorithm, while a Double Move generator
was used for the second phase. This leads to a more thorough search of the
solution space for the first phase in order to obtain the best possible basis for the
final solution. Lastly, the acceptance probability is calculated using the following
formula:

h (∆E, T ) = e
−∆E

T

The procedure terminates when the cost function is zeroed or when no transition
to a new frequency allocation is accepted after ten attempts for a given temper-
ature or, lastly, after a user defined minimum temperature (Tmin) is reached.

3.2 Tabu Search Version

Tabu Search (TS) [6] is a local search method. The method attempts to explore
the solution space in a sequence of moves. In order to try to avoid cycling and to
escape from local optimal solutions, for each iteration, some moves are declared
tabu and cannot be selected. Tabu moves are based on the long- and short-term
history of moves. Additionally, aspiration criteria might make a move that is
included in the tabu list possible, when it is deemed favorable.

For the implementation of TS in the framework of our algorithm, the cost
function is defined as in the SA implementation. The transition to new fre-
quency allocations is performed inside a Restricted Random Neighborhood of the
current allocation. Specifically, for every allotment that is involved in a con-
straint violation we change the violating channel to a new one ∈ F randomly.
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Transitions inside a Full Neighborhood or a Random Neighborhood were also ex-
amined, but produced inferior performance. We defined two Tabu criteria, one
based on short- and one based on long-term memory. The short-term memory
criterion involved moves that lead to the allocation of a channel to an allotment
that had been also allocated to that particular allotment in the last R iterations,
while the long-term memory criterion involves moves for allotments that have
an increased percentage of accepted new allocations in relation with the total
number of accepted new allocations for all allotments. The defined aspiration
criteria involve the acceptance of a tabu transition if the resulting allocation
leads to the minimum value of the cost function recorded.

The procedure terminates when the cost function is zeroed or when no im-
provement of the cost function has been observed for a = 150 iterations or the
total number of iterations reaches b = 500.

3.3 Genetic Algortihm

Genetic Algorithms (GA) [7] are inspired by the natural process of reproduction
and mimic natural evolution and selection. An initial population of n possible
solutions (chromosomes) is created. Each chromosome is evaluated against a
fitness function that represents the quality of the corresponding solution. There
is a small probability Pm that a chromosome may suffer mutation in order to
introduce random alteration of genes. Pairs of chromosomes are then selected for
reproduction based on the relative value of their fitness function in the current
population. These pairs produce offspring based on a crossover probability Pc.
This procedure takes place until the new population contains n chromosomes,
which may consist of offspring and original chromosomes that have survived and
may or may not have suffered mutation. New generations are produced until a
satisfactory solution is found.

For the implementation of GA in the framework of our algorithm, the fitness
function is based on a fitness remapping [5] of the cost function used in TS and
SA implementations. Namely, the fitness function for chromosome i is derived
from the equation:

ffi = Ji −
(
J̄ − 2 · σ

)
where Ji = −Ei, J̄ and σ are respectively the arithmetic mean and the standard
deviation of Ji. If ffi evaluates to < 0 then it is set to 0. We have chosen a
Pc starting from a value of 0.85 and gradually decreasing to 0.55, in order to
allow the fitter chromosomes to survive to the new generations as the algorithm
proceeds. On a similar manner, we have chosen Pm starting from a value of 0.001
and gradually increasing to 0.02, in order to allow mutations of the chromosomes
of the latter generations that increase the variety within the generations and
can therefore lead to better solutions. We have used Uniform Crossover and the
mutation takes place by replacing a random gene of the chromosome with an
allowable frequency. The size of the population is 100 chromosomes.

The GA procedure terminates if the cost function for a chromosome is eval-
uated to 0 or if no improvement has been observed for a = 150 generations or
the number of generations has reached b = 300.
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Fig. 1. MCpA and Execution Time (minutes) versus corresponding mean number of
incompatibilities. N = 50 and V ar(Inc) ∼= 29.
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Fig. 2. MCpA and Execution Time (minutes) versus corresponding size of benchmark
constraint matrices. E(Inc) ∼= 9 and V ar(Inc) ∼= 16.

4 Results and Discussion

In order to analyze the performance of the three versions of the proposed al-
gorithm, we have generated benchmark constraints matrices using as input the
mean and the standard deviation of the number of incompatibilities (Inc) per
allotment area. The benchmark problems include sets of 50, 100, 150, and 200 al-
lotment areas. For every instance we performed three executions of each version
of the algorithm and present the average values of the results obtained.

In Fig. 1 we observe that all versions of the algorithm exhibit similar perfor-
mance in terms of MCpA values, which can be attributed to the small size of N .
MCpA decreases as E(Inc) increases, which is normal, as the problem becomes
harder. What is more interesting is that the calculation times show that the GA
version is slower and additionally becomes generally slower as E(Inc) increases,
while the SA and TS versions are faster and do not seem to be effected much
by the difficulty of the problem in terms of execution time. In Fig. 2 we notice
that the largest values of MCpA are obtained using the GA version, which be-
comes more evident as N increases. This leads to the conclusion that the GA
version examines the solution space more thoroughly, which explains also the



An Algorithm for the Frequency Assignment Problem 567

Fig. 3. Constraint graph of the allotment network used for the evaluation of the
algorithm

Table 1. Results of frequency allocation for the allotment network illustrated in Fig. 3

SAL TSL GAL SA TS GA
MCpA 11.1 11.2 11.5 12.2 12.1 12.4
Execution Time (min) 151 317 434 183 444 562
Minimum Number of Channels 6 6 5 2 1 1

fact that it demands greater calculation times for small values of N . We also
note that the execution time required by the TS version increases exponentially
as N increases, which can be attributed to the fact that higher values of N
(and therefore higher numbers of allotments violating constraints) increase the
Restricted Random Neighborhood of the current allocation, while the MCpA val-
ues produced are the smallest. The SA version produces inferior results to the
GA version, but requires the least amount of time, which moreover exhibits a
smooth increase with higher values of N .

Lastly, we would like to make some observations concerning the fairness of
the frequency channel allocations produced, which can be quantified using the
minimum number of channels L that has been allocated to an allotment area.
In nearly all cases, we observed that the results produced by the SA version are
the most fair, while the results produced by the TS version were the same or
closely inferior. The GA version produced the most unbalanced results, which
explains the superior performance in terms of MCpA values, as there is an
obvious tradeoff between MCpA and L.

Fig. 3 shows the constraint graph of the allotment network used. It consists
of 95 allotments included in the GE-06 plan produced by the Regional Ra-
diocommunication Conference 2006 (RRC-06). Table 1 displays the obtained
results, both when the algorithm operates exactly as described in section 3
(SAL,TSL,GAL columns), as well as when criterion 1 is not taken into account
during the removal of constraint violations (i.e. no provision is taken for the
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fairness of the channel distribution). It is evident that in the latter case the al-
gorithm leads to more optimal solutions as far as MCpA is concerned, however
the results have limited application value, as they are strongly unbalanced.

5 Conclusion

In this paper we described an algorithm to solve the problem of frequency as-
signment in the case of DVB-T allotments for frequency Bands IV/V. Three
versions of the algorithm, each utilizing a different metaheuristic technique, are
evaluated. The results show that the optimal results in terms of the maximiza-
tion of MCpA are obtained by the GA version, while the SA version produces
closely inferior results requiring, however, shorter execution times and addition-
ally leading to more balanced frequency distributions. The TS version exhibits
the worst performance in terms of both result quality and time efficiency.
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Abstract. This work presents a new approach to optimize the broad-
cast operation in manets based on a team of evolutionary algorithms.
A library of parallel algorithmic skeleton for the resolution of multi-
objective optimization problems has been applied. This tool provides
a C++ implementation of a selection of the literature best-known evo-
lutionary multi-objective algorithms and introduces the novelty of the
algorithms cooperation for the resolution of a given problem. The algo-
rithms used in the implementation are: spea, spea2, and nsga2. The
computational results obtained on a cluster of PCs are presented.

1 Introduction

A Mobile Ad-Hoc Network (manet) [9] is a set of autonomous mobile nodes,
connected by wireless links. This kind of networks has numerous applications
because of its capacity of auto-configuration and its possibilities of working au-
tonomously or connected to a larger network. Broadcasting is a common opera-
tion at the application level. Hence, having a well-tuned broadcasting strategy
will result in a major impact in network performance. This work focuses on
the study of a particular kind of manets called, metropolitan manets. These
manets have some specific features that make difficult the testing in real envi-
ronments: the network density is heterogeneous and it is continuously changing
because devices in a metropolitan area move and/or appear/disappear from the
environment. Therefore we need to have a simulation tool to easily test the qua-
lity of broadcasting strategies. Fixed the dfcn protocol and the mall scenario in
the simulator, the optimization implies satisfying different objectives simultane-
ously: the number of devices to reach (coverage) must be maximized, a minimum
usage of the network (bandwidth) is desirable and the process must take a time
as short as possible (duration).

The improvement of the broadcast in manets is based on the optimization
of more than one objective function. The multiple objectives are conflicting and
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must be simultaneously satisfied. In this kind of multi-objective optimization
problems, a solution optimizing every objective might not exist. Since exact
approaches are practically unaffordable, a wide variety of evolutionary algo-
rithms has been designed. The goal of such algorithms is to obtain an approxi-
mated Pareto front as closer as possible to the optimal one.

The first issue when using an evolutionary technique in the resolution of a
problem is to select the particular algorithm to apply. There are many of them
available in the literature but it is important to notice that every alternative
has some particular properties that make it appropriated or not for a certain
kind of problems. So, if the chosen algorithm is not suitable for the problem to
solve, poor quality solutions will be found. Generally, this forces the user to test
several algorithms before making a final decision. Usually the users do not have
a prior knowledge about the behaviour of the algorithm applied to a particular
problem, so if they have to try many alternatives, the process could take too
much user and computational effort.

One possibility to decrease the time invested in such task consists in the
application of parallel schemes. An example of these strategies is the island
model [7]. In particular, the use of heterogeneous island-based parallel tech-
niques can avoid the inconvenient of selecting an algorithm. In this scheme, on
each island (or processor) a different algorithm is executed for the resolution
of the same problem. Taking into account that certain algorithms will obtain
quite better results than others, a promising approach is found on the technique
called team algorithms [3]. This approximation makes possible to weigh up the
algorithms depending on their obtained results and also allows to assign more
computational resources to the algorithms with better expectations.

This work presents a team of evolutionary algorithms which work parallelly
and cooperatively in the resolution of the broadcast operation in a fixed scenario
of manet. The implementation uses a library of parallel algorithmic skeleton for
the resolution of multi-objective optimization problems [8]. This tool provides
a C++ implementation of a selection of the literature best-known evolutionary
multi-objective algorithms and introduces the novelty of the algorithms coopera-
tion for the resolution of a given problem. For manets, the particular properties
of the problem have been programmed. Also, the configuration of the evolutionary
algorithms that will participate in the problem resolution has been customized.

The remaining content of the article is structured in the following way: Sec-
tion 2 presents the broadcast optimization problem in manets. The implemen-
tation using the team algorithm skeleton is described in section 3. The compu-
tational study is presented in section 4. Finally, the conclusions and some lines
of future work are given in section 5.

2 Broadcast Operation in MANETS

As stated in previous section, the optimization of the broadcast operation in
manets involves a multi-objective optimization problem. The objectives are:
minimize the broadcast duration, maximize the percentage of reached devices
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and minimize the bandwidth used in the operation. manets have several fea-
tures that hinders the testing in real environments. There are different simula-
tion tools [5] and the choice for this work was Madhoc [4]. This tool provides a
simulation environment for several levels of services based on different types of
manets technologies and for a wide range of manet real environments. It also
provides implementations of several broadcasting algorithms. For the simulation
of a broadcast operation, the user must specify the characteristics of the envi-
ronment to simulate, a mall in this case, and the type of broadcasting algorithm
to be used.

The chosen broadcast protocol was dfcn (Delayed Flooding with Cumula-
tive Neighbourhood) [6]: a deterministic and totally localized algorithm. It uses
heuristics based on the information from one hop. Thus, it achieves to get a
high scalability. The dfcn behaviour is determined by a set of configuration
parameters that must be appropriately tuned to obtain an optimum behaviour:

– minGain is the minimum gain for forwarding a message. It ranges from 0.0
to 1.0.

– [ lowerBoundRAD, upperBoundRAD ] define the Random Delay for
rebroadcasting values in milliseconds. Values must be in the range [0.0, 10.0].

– proD is the maximum density for which it is still needed using proactive
behaviour for complementing the reactive behaviour. It ranges in [0, 100].

– safeDensity is the maximum density below which DFCN always rebroad-
casts. It ranges from 0 up to 100 devices.

Given the values for the five dfcn configuration parameters, the Madhoc tool
will do the corresponding simulation and it will provide the average values ob-
tained during the simulation for each of the three objectives: the broadcast du-
ration, the percentage of reached devices and the bandwidth. The goal is to find
the five parameter configuration that optimizes the dfcn behaviour regarding
to duration, coverage and bandwidth features.

One possibility of optimizing the strategy behaviour is to systematically vary
each of the five dfcn parameters. The drawback is that the number of possible
parameter combinations is too large. Moreover, evaluations in the simulator need
certain time with the used processors, so an enumerative solution is unaffordable.
Furthermore, since the broadcast algorithm presents an important complexity
and the simulator introduces many random factors, doing a deep analysis of the
problem to extract information in order to define an heuristic strategy is very
difficult. For these reasons, one usual way of affording this problem is through
evolutionary techniques [1]. Here the proposed strategy is based on the merging
of some of this techniques to build a team of algorithms.

3 Team Algorithms

A team algorithm scheme is based on the cooperation of different algorithms
to solve a problem. In the used scheme [8] the team consists of evolutionary
algorithms.Specifically, the algorithms available are: spea (Strength Pareto Evo-
lutionary Algorithm) [11], spea2 (Strength Pareto Evolutionary Algorithm 2 )
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1 initConfiguration (fichConfig);
2 initAllIsland ();
3 while (1) {
4 islandIdle = recvParetoFront();
5 if (stop()) {
6 for (i = 0; i < numIsland-1; i++)
7 recvParetoFront();
8 sendMessageFinalize();
9 printOptimalParetoFront();
10 }
11 config = selectionConfigAlgorithm();
12 initIsland(config);
13 }

(a) Coordinator

1 recvConfigMigration ();
2 while (1) {
3 data = recvDataConfig ();
4 if (data is messageFinalize ())
5 break;
6 initParamAlgorithm (data);
7 recvInitialPopulation ();
8 while (!finishAlgorihtm ()) {
9 runGeneration ();
10 sendMigration ();
11 recvMigration ();
12 }
13 sendParetoFront ();
14 }

(b) Island

Fig. 1. Team Algorithm Pseudocode

[10] and nsga2 (Nondominated Sorting Genetic Algorithm 2 ) [2]. The team al-
gorithm model consists of a coordinator process and as many islands or slaves
processes (parallel and asynchronous) as specified by the user.

The aim of the team coordinator is the initialization of an algorithm configu-
ration on each of the slave processes and the management of the global solution.
Figure 1(a) shows the pseudocode for the coordinator process. Before initia-
ting the slave processes, the coordinator reads and stores the tool setup which
has been specified by the user through a configuration file (line 1). Then, the
coordinator initiates all the slave processes and assigns to each of them an al-
gorithm instance (line 2). When all the configurations have been executed at
least once, the coordinator begins to apply the selection criterion given in the
tool customization for deciding, every time a slave gets idle, which is the next
configuration to be executed. However, when beginning the execution of a new
evolutionary algorithm it is not worth enough to restart the search without
considering the solutions obtained until that moment. Every time an algorithm
execution is going to begin, the corresponding slave will take some of the initial
individuals from the current global solution. After each algorithm completion,
the slaves send the set of obtained solutions to the coordinator (line 4), so the co-
ordinator is able to update its Pareto front. The size of this global Pareto front
is fixed by the user. This solution size is maintained by applying the nsga2

crowding operator among slave completions. Until the global stop condition is
not reached (line 5), the coordinator selects the next algorithm configuration to
execute (line 11) and allocates it to the just finalized slave (line 12). If the stop
condition is verified, the coordinator waits until all the slaves finish and collects
all the local solutions in order to build the final global Pareto front (lines 6-7).
To conclude, the coordinator process sends a finalization message to the slaves
(line 8) giving as result the global Pareto front and the execution statistics for
each of the algorithm configurations.
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Each slave process represents an execution island. The aim of an execution is-
land is to search problem solutions from an initial set of individuals applying an
evolutionary algorithm configuration. Figure 1(b) shows the pseudocode for the
slave processes. At the beginning, all the slaves receive the migration parame-
ters to be applied: migration probability and number of individuals to migrate
(line 1). Next, each slave receives a message with the configuration and the al-
gorithm to execute (line 3). The slave initiates the algorithm instance (line 6)
and afterwards receives from the coordinator process some individuals randomly
selected from the global Pareto front. This set of individuals is used to fill a part
of the algorithm initial population (line 7). In the case where the island must
continue executing the same algorithm configuration, the population of the last
execution generation is taken as the new initial population. Once the algorithm
instance is initialized in the island process and the local front is cleared, the
instance execution is able to be started (lines 8-12). Every time the algorithm
finishes a generation (line 9) the slave determines, considering the established
migration probability, if it has to do a migration or not (line 10). In affirmative
case, a certain number of randomly selected individuals from the local Pareto
front is sent to a randomly chosen slave. Also it is necessary to check for received
individuals migrated from others islands (line 11). When the algorithm execu-
tion finishes, the slave process sends its local Pareto front to the coordinator
(line 13). This event indicates to the coordinator that now the slave is idle and
available for doing more work. If the final stop condition has not been reached
yet, the coordinator will send to the slave the new algorithm configuration to
execute. These steps are successively repeated until the coordinator indicates
the end of the program (line 4).

The implementation of the manets problem consists in defining a C++ class
representing an individual (Figure 2) and define a configuration file with the
skeleton operation characteristics: algorithms and configurations to use, the al-
gorithm selection method and the execution stop condition.

4 Computational Results

The executions have been done over a Debian GNU/Linux cluster of 8 bi-
processor nodes. Each processor is an Intel Xeon 2.66 GHz with 512 MB RAM
and a Gigabit Ethernet interconnection network. The mpi implementation used
is mpich version 1.2.6 and the C++ compiler version is 3.3.5. Due to the ran-
dom component inherent to the evolutionary algorithms, all the executions were
repeated 30 times and average values have been considered.

In a first experiment, the broadcast problem was solved with each one of the
single evolutionary algorithms, fixing the number of evaluations to 10,000. The
approximated Pareto fronts obtained with each of the single algorithms were
merged obtaining a new solution called merge. Afterwards, each test prob-
lem was solved using a team algorithm constituted by three islands fixing the
maximum Pareto front size to 100 elements. The number of evaluations with this
method was fixed to 30,000, that is, the sum of the evaluations executed by the
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IndividualManet

-NPARAM: static const int = 5

-NOBJ: static const int = 3

-RANGE[]: static const double = {0, 100, 0, 1, 0, 100, 0, 10, 0, 10}

-OBJFUNC[]: static const int = {MINIMIZE, MAXIMIZE, MINIMIZE}
+IndividualManet()

+IndividualManet(p1:double,p2:double,p3:double,p4:double,p5:double)

+mutation(mr:double): bool

+crossover(ind:Individual *): IndividualManet

+evaluate(): void

Individual

-param: vector<double>

-obj: vector<double>

-range: vector<double>

-objFunc: vector<double>

+...
+Individual()

+evaluate(): void

+clone(): Individual*

+mutation(mr:double): bool

+crossover(ind:Individual*): bool

+mutate_Pol(mr:double): bool

+crossover_SBX(ind:Individual*): bool

+...()

Fig. 2. Skeleton classes for the broadcasting problem in manets

individual algorithms. The overhead of the team algorithm for this problem is
negligible due to the high computational effort required by each single individual
evaluation. In average, the team algorithm execution time is similar to the single
execution time. The solutions obtained by this method were named team. With
these configurations, the execution time of the parallel algorithm varies between
the lowest and highest sequential times. The mutation and crossover rates used
in every execution were fixed to 0.01 and 0.8 respectively. The population and
archive size used in the individual executions of the evolutionary algorithms were
fixed to 100 and 60, respectively. In the team algorithm executions both values
were fixed to 60. A smaller population was used in the team algorithm because
there is a population of that size on each one of the execution islands. The mi-
gration rate was fixed to 0.01, using 4 individuals in each migration. The 100%
of the elements of the initial population of each execution in the islands were
filled from the current global Pareto front.

Left side of Table 1 presents the average, maximum and minimum generational
distances using as reference front, for each of the 30 executions, the join of the solu-
tions given by all the methods. The ratio of contribution of each one of the methods
is also presented. The average generational distance obtained with the team algo-
rithm execution is the lowest one. Results for the team algorithm are clearly better
than the results obtained with the individual executions, and it is also better than
the merge of the individual executions. The contribution of points to the join of the
Pareto fronts is less than 50%, but it is important to note that the team algorithm
Pareto front is limited to 100 points, that is, in the join 400 points are considered
and only 100 points come from the team algorithm, so a value of 44% represents a
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Table 1. Single Algorithms and Team Algorithm Results

GDavg GDmax GDmin Ratio GDavg GDmax GDmin Ratio
NSGA2 0.38 1.17 0.19 13% 0.46 0.73 0.25 11%

SPEA 0.3 0.55 0.04 21% 0.43 0.71 0.28 17%

SPEA2 0.29 0.87 0.17 22% 0.40 0.84 0.27 21%

MERGED 0.16 0.29 0.01 56% 0.36 0.49 0.25 49%

TEAM 0.15 0.33 0.05 44% 0.34 0.49 0.22 51%
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Fig. 3. Effects of Migration Probability

high ratio. Right side of Table 1 presents a similar comparative but using as refer-
ence front the join of all the 30 executions. Similar results are obtained in this case.
It is important to note that the contribution of points to the final Pareto front given
by the team algorithm method is greater than 50%.

A second experiment checks the effect of the migration scheme used in the
team algorithm. The parameters that can be fixed are: the migration probability
and the number of individuals to send when a migration is done. The team
algorithm was executed using the same configuration as in the first experiment,
but variating the value of the migration probability between 0.0 and 0.05 with
increases of 0.01 among executions. Figure 3 represents the average generational
distance reached for each migration rate using as reference front the join of all
the executions. The error reached with low migration probability is lower than
the error reached without migration, proving the positive effect of the migration
scheme. However, high values of migration probability are not positive because it
can produce that several slaves find the same solutions or very similar solutions,
causing an increase in the average generational distance achieved.

5 Conclusions and Future Work

In this work an optimization of the broadcast operation in manets based on a
team of evolutionary algorithms has been presented. The implementation uses a
library of parallel algorithmic skeleton which implements a set of the best-known
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multi-objective evolutionary algorithms and proposes a parallel interaction and
cooperation between them for the resolution of the problem. The results pre-
sented here prove that an improvement of the results quality can be obtained
using this approach.

The main line of future work is to extend the set of available multi-objective
evolutionary algorithms. Experiments have been developed over a single metro-
politan scenario: a mall. It would be worth to verify that results can be
generalized to other type of metropolitan manets and even to other kind of
multi-objective real-world optimization problems.
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Abstract. We have designed a virtual learning environment where stu-
dents interact through their computers and with the software agents in
order to achieve a common educational goal. The Multi-Agent System
(MAS) consisting of autonomous, cognitive and social agents communi-
cating by messages is used to provide a group decision support system
for the learning environment. Learning objects are distributed in a net-
work and have different weights in function of their relevance to a specific
educational goal. The relevance of a learning object can change in time;
it is affected by students’, agents’ and teachers’ evaluation. We have used
an ant colony behavior model for the agents that play the role of a tutor
and organizing the group-work activities for the students.

Keywords: learning objects, stigmergic collaboration, multi-agent sys-
tem, e-learning, ant colony optimization.

1 Introduction

In one of our recent papers [13] we had presented a socio-cultural model of the
student as the main actor of a virtual learning environment, as part of a larger
project — DANTE — Socio-Cultural Models implemented through multi-agent
architecture for e-learning. DANTE has as main objective the development of
a global model for the virtual education system, student centered, that facili-
tates the learning through collaboration as a form of social interaction. In our
vision, the global model requires its own universe in which the human agents
interact with software agents. The global model is considered the core of an
e-learning system. The proposed e-Learning system has a general architecture
with three levels: user, intermediary, supplier educational space, on each level
heterogeneous families of human and software agents are interacting. The main
human actors are: the student, the teacher, and the tutor. In the virtual learning
environment we have the corresponding agents. The human actors are interact-
ing with the e-learning system via several agentified environments. The teacher
(human agent) is assisted by two types of software agents: personal assistant
(classic interface agent) and didactic assistant. The SOCIAL agentified envi-
ronment has social agents and a database with group models (profiles of social
behavior). The agentified DIDACTIC environment assists the cognitive activities
of the student and/or of the teachers. The student (human agent) evolves in an
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agentified environment with three types of agents. He/she has a personal as-
sistant (software interface agent) who monitors all the student’s actions and
communicates (interacts) with all the other agents, with the agentified envi-
ronments of other students and with the teacher’s agentified environment. The
student has at his/her disposal two more agents: the TUTOR and the mediating
agent. The TUTOR assistant evaluates the educational objectives of the student
and recommends her/him some kind of activities. The decisions are based on the
knowledge of the students’ cognitive profile (which takes into account the social
component). The TUTOR agent interacts with the personal assistant of the stu-
dent, with the mediating agent and with the social agentified environment. As
the system is conceived, the accent is put on collaboration activities between
students, which consist in knowledge exchange, realization of common projects,
tasks’ negotiation, sharing resources, common effort for the understanding of
a subject, problem-solving in-group. The TUTOR is mainly evolving in a net-
work populated with learning objects. A learning object is a resource with three
components: a learning objective, a learning activity, and a learning assessment.
From a technical point of view, a learning object is, according to IEEE- Learning
Technology Standards Committee (LTSC), “any entity, digital, or non-digital,
which can be used, reused, or referenced during technology supported learning”.

In this paper we are presenting a possible model for one of the components of
the TUTOR sub-system, i.e. the one responsible for organizing the group-work
activities for the students. A group-work activity can be, for example, a project
that will be developed by a team of students. In a team, students are organized
according to their skills and preferences. For example, if the work assigned to a
team is from the computer science class and the goal is to develop an online art
exhibition, a member of the team can be “specialized” in web design, another in
PHP programming or MySQL, another in .NET, etc. As someone has to know
what an art exhibition is, this task will be assigned to a student from the art
class, a student that can be in another team. At one moment, a student can be
asked by different teams to perform a certain task.

An activity consists of several tasks. A member of a team will perform in
a time-interval the task for which she has (or intent to obtain) the required
knowledge and skills. The goal is to minimize the maximum of the completion
times for all tasks with the constraint that a student cannot participate in two
group-work activities at the same time.

So, in our learning environment we have a set of students’ teams and a set of
group work activities consisting of several tasks. There are task-classes and at
this stage of the modelling process the potential assignment of one student to
a specific task is based on the concept of response threshold combined with a
function of the background knowledge of the student. As we can see, this pro-
blem is scheduling one, belonging to the NP-class of problems. Works developed
in the last ten years have shown that social insects provide us with a powerful
metaphor to create decentralized systems of interacting agents. Swarm intelli-
gence — the emergent collective intelligence of social insects — in networks of
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interactions among individuals and between individuals and their environment.
Several models of division of labor in colonies of insect have been used to solve
task allocation problems. In our paper we are using for the TUTOR agent an
Ant System [5] combined with a simple reinforcement of response thresholds.

2 Ant Social Behavior

Insects with social behavior, and among them several species of ant colonies,
have been studied for more than hundred years. Their organizing capacity, the
way they communicate and interact and their performances have become models
especially for highly distributed artificial multi-agent system.

Fifty years ago, the French entomologist Pierre-Paul Grass [1] observed that
some species of termites react to what he called “significant stimuli”. He observed
something very interesting: that the effects of these reactions can act as new
significant stimuli for both the insect that produced them and for the other
insects in the colony. Grass described this particular type of communication, in
which the “workers are stimulated by the performance they have achieved”, by
the term stigmergy.

Almost thirty years ago, in Douglas R. Hofstadter’s fantastic book Godel,
Escher, Bach: an Eternal Golden Braid (1979), one of the characters, Anteater,
is telling Achilles about Aunt Hillary, his friend, who is in fact an ant colony,
viewed as a single intelligent entity. The dialog is evolving around the question if
there is the possibility for collective intelligence to emerge from the interaction
of hundreds of simple not-so-intelligent agents and if we can learn from studying
these natural multi-agents at work. Hofstadter was asking the question: “Could
there be an Artificial Ant Colony?”, and the answer, today, is Yes!

Today we have many methods and techniques “ants inspired”, one of the
most successful being the general purpose optimization technique known as ant
colony optimization — ACO. Ants, in their quest for food (foraging behavior)
lay pheromone on the ground in order to mark some favorable path that should
be followed by other members of the colony. Ant colony optimization exploits a
similar mechanism for solving optimization problems [1,2]. ACO can be applied
to discrete optimization problems with a finite set of interconnected compo-
nents and an associated cost function (objective function). There are constrains
on what components and connection can be part of a feasible solution. Each
feasible solution has a global “quality” determined from a function of all costs
components.

ACO algorithms use a population of agents-artificial ants in order to build a
solution to a discrete optimization problem. Solutions’ information (individual
connections of the problem) are kept in a global memory — the pheromone
mapping. Specific heuristics can be considered on a-priori information.

In an ACO there are basically three processes: ants’ generation and activ-
ity, pheromone trail evaporation and daemon actions. In the problem graph, an
artificial ant searches for a minimum or maximum cost solution. Each ant has
a memory, can be assigned a starting position and can move to any feasible
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vertex. An ant decides to move by a probabilistic manner, taking into account a
pheromone value and a heuristic value. When an ant is moving from one location
to another pheromone values are altered (step-by-step pheromone update). The
set of allowed nodes (vertexes) is kept in a tabu-list. After completing the solu-
tion, the artificial ant dies, freeing allocated resources. The amount of pheromone
on all connections is regulated through pheromone evaporation and by daemon
actions that are centralized processes that cannot be performed to an individual
ant solution (frequently this are local optimization procedures).

In order to apply ACO to a given combinatorial optimization, Dorigo et al.
[4,7,8,5] have formalized Ant Colony Optimization (ACO) into a metaheuristic.
The formalization starts with a model of the combinatorial problem.
A model

P = (S,Ω, f)

of a combinatorial optimization problem consists of:

– a search space S defined over a finite set of discrete decision variables: Xi, i =
1, . . . , n

– a set Ω of constraints among the variables
– an objective function (or cost function)

f : S → R+
0

to be minimized.

Xi is a generic variable that takes values in Di = {v1
i , . . . , v

|Di|
i }.

A feasible solution s ∈ S is a complete assignment of values to variables that
satisfies all constraints in Ω.
A solution s∗ ∈ S is called a global optimum if and only if:

f(s∗) ≤ f(s), ∀ s ∈ S.

The model of a combinatorial optimization problem is used to define the phe-
romone model of ACO. To each possible solution component we associate a
pheromone value. That means that the pheromone value τij is associated with
the solution component cij , by the assignment Xi = vj

i . The set of all possible
solution components is denoted by C. In ACO, an artificial ant builds a solution
by traversing the fully connected construction graph GC(V,E), where V is a set
of vertices and E is a set of edges. This graph can be obtained from the set of
solution components C in two ways: components may be represented either by
vertices or by edges. Artificial ants move from vertex to vertex along the edges of
the graph incrementally building a partial solution. Additionally, ants deposit a
certain amount of pheromone on the components; that is, either on the vertices
or on the edges that they traverse. The amount of pheromone deposited may
depend on the quality of the solution found. Subsequent ants use the pheromone
information as a guide toward promising regions of the search space [6].
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3 TUTOR Group-Work Activities Sub-system

In our virtual learning environment we have a set G of students’ teams and a
set A of group work activities consisting of several tasks. Let

aj ∈ A with j = 1, . . . , J be an activity from the set A (1)
gi ∈ G with i = 1, . . . , I be a team from the set G (2)
tkji ∈ TK with i = 1, . . . , I, j = 1, . . . , J (3)

be a task of the activity aj that has to be performed by the team gi.
An activity aj consists of an ordered sequence of tasks from a set TK = {tkji}.

A task tkji has to be performed by the team gi in a number dji of time units. N =
|TK| is then the total number of tasks. As in a classical Job-Shop Scheduling
Problem [12] the goal is to assign tasks to time intervals in such a way that no
two activities are performed at the same time by the same team and that the
maximum completion time of all tasks is minimized.

For the convenience of the validation process, at the first stage, we will con-
sider that all teams have the same number of members. A team gi ∈ G is
supposed to have M members (student-agents):

gi =
M⋃

m=1

gim (4)

This is almost the real situation, when students are assigned in teams with the
same size, based on an arbitrary criterion. There are task-classes and at this stage
of the modelling process the potential assignment of one student to a specific
task is based on the concept of response threshold combined with a function of
the background knowledge of the student and her decision making behavior. A
student-agent gim, is attracted to a task tkji with a probability P depending on
her background knowledge, beliefs (cognitive), affects (emotive) and intentions
[13] and on response threshold θimj :

P (θimj , simj) =
s2

imj

s2
imj + θ2

imj

(5)

where simj = f(beliefs, affects, intention, qualification-knowledge and skills).
The response threshold θimj of the ant-agent gim to the task tkji is decreased

when the agent has performed the task tkji; at the same time, thresholds for the
other tasks are increasing proportional to the time t to perform the task.

θnew
imj = θold

imj − xijξ∆t + (1− xij)ϕ∆t (6)

where xij is the time spent by the agent i for the task j, ξ is a learning coefficient,
ϕ is a forgetting coefficient, and ∆t is a time unit.

If a task is performed, the response threshold is decreased with a quantity
depending on the learning coefficient, in the opposite situation; the threshold is
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increased with a function of the forgetting coefficient. The state of an ant-agent
is evolving from “active” — performing a task, to “inactive” — idle, and vice
versa. An inactive agent starts to perform a task with a probability P given by
(5). An active agent completes the task, or abandons it, with a probability p per
time unit:

p = P (state = “active′′ → state = “inactive′′) (7)

the average time spent by an agent in task performing before giving up the task
is 1/p.

The problem is represented as a weighted graph Q = (TK ′, L), where TK ′ =
TK{tk0} and L is the set of edges that connect node t0 with the first task of
each activity. The vertexes of T are completely connected, with exception of the
nodes of the tasks from the same activity that are connected sequentially, each
such node being linked only to its direct successor. There are N(N − 1)/2 + |A|
edges. Each edge (i, j) is weighted by two numbers: τij — the pheromone level
(trail level) and ηij — the so called visibility and represents the desirability
of a transition from node i to node j. Each ant-agent has an associated data
structure — the tabu-list, that memorizes the tasks of an activity that have
been performed at the time moment t.

A transition probability function from node i to node j for the k-th ant-agent
was defined as:

pk
ij(t) =

⎧⎪⎨⎪⎩
[τij(t)]

α·[ηij ]
β∑

k∈ allowedk

[τij(t)]α · [ηij ]β
, if j ∈ allowedk

0 otherwise

(8)

where allowedk = (TK\tabuk), tabuk is a vector that changes dynamically and
contains the tabu list of the k-th ant, and α and β are parameters used to control
the relative importance of pheromone level and visibility.

Considering NR the number of potential active agents, NRact the number
of active agents at the time moment t, we have the following formula for the
variation of the attraction of a task (pheromone deposit) in a discrete time
situation:

simj(t + 1) = simj(t) + β − (α ·NRact)/NR (9)

The order in which the nodes are visited by each ant-agent specifies the proposed
solution.

4 Discussion

We have presented a complex model of one of the components of a virtual learn-
ing environment — the TUTOR sub-system, i.e. the one responsible for orga-
nizing the group-work activities for the students. We have used an ant colony
behavior model for the agents that play the role of a tutor and are organizing
the group-work activities for the students. We have chosen an ant social behav-
ior model because it is natural and it is efficient and effective. Studies on the
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students’ learning behavior have shown that in choosing the tasks to perform
they are heavily influenced by colleagues and friends. This behavior is similar
to the foraging behavior of ant colonies. The validation of the model was made
having in mind that, at this stage of development, we are interested more in
the good fitness of the model with the real problem than in the performance
of the algorithms compared to other approaches. We have collected data from
groups of students in high schools and from the tutors (human agents) in order
to determine simj — the student attraction towards a task and the probabilities
involved in the model. We used the STUDENT model presented in [13]. For
testing the tutor-agent behavior we have used special designed questionnaires.
The first results were quite promising. However, there was a problem concerning
simj . For two of the data samples our model was weak in the sense that the
parameter reflecting the student’s knowledge and skills, based on a combination
of scores obtained at different tests, was almost irrelevant; students with a low
score, managed to perform very well, and students with an average score had
a high rate of task rejection. That is why one of the future research directions
will be focused in improving the STUDENT behavioral learning model. Another
will consist in building a small pilot and testing the whole system, but with a
reduced number of variables and parameters.
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Abstract. In conventional ultrasound imaging systems with phased ar-
rays, the improvement of lateral resolution of images requires enlarging
of the number of array elements that in turn increases both, the complex-
ity and the cost, of imaging systems. Multi-element synthetic aperture
focusing (MSAF) systems are a very good alternative to conventional
systems with phased arrays. The benefit of the synthetic aperture is in
reduction of the system complexity, cost, and acquisition time.

A general technique for parameter optimization of an MSAF system
is described and evaluated in this paper. The locations of all “transmit-
receive” subaperture centers over a virtual linear array are optimized
using the simulated annealing algorithm. The optimization criterion is
expressed in terms of the beam characteristics — beam width and side
lobe level.

The comparison analysis between an optimized MSAF system and an
equivalent conventional MSAF system shows that the optimized system
acquires images of equivalent quality much faster.

1 Introduction

Images produced by ultrasound imaging systems must be of sufficient quality in
order to provide accurate clinical interpretation. The image quality (lateral res-
olution and contrast) is primarily determined by the beam characteristics of a
transducer used in an imaging system. In conventional ultrasound imaging sys-
tems with phased array (PA), all transducer elements transmit signals and
receive the echoes, reflected from the tissue. Thus the modern conventional PA
systems produce high-resolution images at high cost because the system complex-
ity and thus the system cost depends on the number of transducer elements [1].
The further improvement of lateral resolution in a conventional PA imaging sys-
tem requires enlarging of the number of transducer elements. It is often not possi-
ble because of physical constrains or too high cost. The same effect of high lateral
resolution and contrast can be accomplished by using various synthetic aperture
techniques. The benefit of the synthetic aperture is the reduction of system com-
plexity and cost. Moreover, in a synthetic aperture imaging system, the acquisition
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time can be drastically reduced and dynamical steering and focusing can be ap-
plied in both transmit and receive. There are different methods for synthetic aper-
ture imaging — Synthetic Receive Aperture (SRA) technique, Synthetic Transmit
Aperture (STA) technique, Synthetic Aperture Focusing technique (SAFT), and
Multi-Element Synthetic Aperture Focusing (MSAF) technique [2].

In this paper the MSAF technique for image formation is considered and
optimized. In an MSAF system, a group of elements transmits and receives
signals simultaneously, and the transmit beam is defocused to emulate a single
element response [3]. The acoustic power and the signal-to-noise ratio (SNR) are
increased compared to the classical SAFT technique where a single element is
used in both transmit and receive [5]. A disadvantage is that the method requires
more memory for data recordings.

The relation between the effective aperture function and the corresponding
beam pattern of the imaging system can be used as a tool for analysis and opti-
mization of an MSAF imaging system. In MSAF imaging, the aperture function
depends on the number of transmit elements, the number of subapertures and
their locations within the array, and the weight coefficients applied to the ar-
ray elements. Hence it appears that the shape of the effective aperture function
of a system and, as consequence, the shape of the two-way beam pattern can
be optimized depending on the positions and the weights, applied to the trans-
mit/receive subapertures.

2 MSAF Imaging

Consider a conventional MSAF system with N -element transducer, where a Kt-
element transmit subaperture sends an ultrasound pulse and the reflected echo
signals are received at a Kr-element receive subaperture. Usually Kt = Kr = k.
At the next step, one element is dropped, a new element is added at the end
of the subaperture and the transmit/receive process is repeated again (Fig. 1).
The process of transmit/receive is repeated for all positions of transmit/receive
subapertures. The number of transmissions needed to create a synthetic aperture
equivalent to a physical array with N elements is:

M = N − k + 1 (1)

Fig. 1. Conventional MSAF system
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All the data recordings associated with each corresponding pair transmit/receive
subaperture are then focused synthetically by a computer producing low-res-
olution images. The final high-resolution image is formed as a sum of all low-
resolution images.

The image acquisition time is an important quality parameter of the imaging
systems, which are used for real time applications. It defines the ability of a
system to resolve movements of structures in the image. In an MSAF imaging
system, the image acquisition time is evaluated as:

TMSAF = M.TREC (2)

where M is the number of transmissions, and TREC is the time needed to acquire
RF-signals at each transmission.

In this paper we investigate a variant of the MSAF system and the possibilities
to optimize it. In contrast to the classical MSAF system mentioned above where
one element is dropped between neighboring transmissions, in our MSAF system
a random number of elements is dropped between neighboring transmissions.
This approach makes it possible to reduce the image acquisition time TMSAF ,
compared to the classical MSAF system, by reducing the number of emissions,
needed to form an image.

3 Description of the Optimization Problem

The image quality parameters, lateral resolution and contrast, are determined by
the main lobe beam width (W ) and the side lobe peak (SL) of the beam pattern
of an imaging system. The resolution is improved by decreasing the main lobe
beam width, and the contrast is improved by lowering the level of the side lobe
peak. The two-way beam pattern of an MSAF system that employs a transducer
with N elements is evaluated as the Fourier Transform of the effective aperture
function eMSAF , defined as:

eMSAF =
N−k+1∑

m=1

wR (m)⊗ wT (m) (3)

where wR (m) = wT (m) = [0, 0, . . . , im, im+1, . . . , im+k−1, 0, . . . , 0], k is the
number of elements in each subaperture, im to im+k−1 are the weighting co-
efficients applied to each transmit/receive subaperture and ⊗ is the convolution
operator.

The effective aperture for the modified MSAF system is changed to:

eMSAF =
NSUB∑
m=1

wR (m)⊗ wT (m) (4)

where
wR (m) = wT (m) = [0, 0, . . . , in, in+1, . . . , in+k−1, 0, . . . , 0]; n = 1 +

m∑
j=1

S(j);

S is an array which shows the number of elements dropped after each



588 M. Nikolov and V. Behar

transmission, S(1) = 0 because the first subaperture starts from the first element
of the transducer array; NSUB = size(S) is the number of used subapertures.

The optimization problem of an MSAF system can be formulated as an opti-
mization of both the positions of the transmit/receive subapertures, which de-
pend on the number of elements which are dropped after each transmit/receive
step, and the weights applied to the subaperture elements.

The set of the subaperture positions is found by using the simulated anneal-
ing algorithm. It is done for a set of known weighting functions {B}L. Such a
set weighting functions may include several well-known window-functions (Ham-
ming, Hann, Kaiser, Chebyshev, etc.). The optimization criterion can be written
as follows:

Given k, N and {B}L, choose S (j1, j2, . . . , jNSUB)
to minimize the cost C(S,Bl)

(5)

where Bl is the currently used weighting function.
The cost function C(S,Bl) is defined as:

C(S,Bl) = minW (I, Bl) subject to SL < Q (6)

where W (I, Bl) is the main lobe width corresponding to the current positions of
the subapertures and the weighting functions, applied to them, SL is the side
lobe peak and Q is a threshold of acceptable level of the side lobe peak.

4 The Simulated Annealing Algorithm

The simulated annealing algorithm was suggested by Kirkpatrick et al. [4]. It
realizes an iterative procedure that is determined by simulation of the arrays
with variable number of elements dropped after each transmit/receive step. The
process is initiated with a random layout of the positions of all transmit/receive
subapertures (the first subaperture starts with the first element of the transducer
array and the last subaperture ends with the last element of the transducer
array). These positions are found by generating the step array, where each step
is a random number, smaller than the number of elements in each subaperture.
The step array S should satisfy the following expression:

N = k +
NSUB∑
j=1

S(j) (7)

where N is the total number of elements in the aperture and k is the number of
elements in each subaperture. The number of subapertures NSUB (expressed by
the size of the step array)depends on the total number of dropped elements, which
is random, hence in each run of the algorithm the step array is of different size.

The simulated annealing algorithm is composed of two loops (Fig. 2). At
each perturbation is chosen a new neighboring layout, by shifting the current
aperture with one element to the left or to the right with equal probability of 0.5.
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begin
set the weighting function Bl

compute a random initial state I0

set the initial temperature T0

for i=1 to number of iterations
for j=1 to number of perturbations

compute at random a neighboring
layout Ip = perturbate(Ij−1)
if Ip is better than Ij−1 then

set Ij = Ip

else
set Ij = Ip with probability
p(T ) depending on the cost function

endif
endfor
Ti = Ti−1.α

endfor
end

Fig. 2. The simulated annealing algorithm

The algorithm accepts or rejects the new layout according to a certain criterion.
The number of perturbations is equal to the number of subapertures.

The acceptance is described in terms of probability p(T ) that depends on the
cost function C(S,Bl). For the cost function defined by (6), the expression for
the acceptance probability p(T ) takes the form:

p(T ) =

⎧⎪⎪⎨⎪⎪⎩
1 if ∆W < 0 & ∆SL < 0
exp(−∆W/T1,k) if ∆W > 0 & ∆SL < 0
exp(−∆SL/T2,k) if ∆W < 0 & ∆SL > 0
exp(−∆W/T1,k)× exp(−∆SL/T2,k) if ∆W > 0 & ∆SL > 0

(8)
where ∆W is the difference of width of the main lobe, ∆SL is the difference of
the height of the peak of the side lobe between the current locations of trans-
mit/receive subapertures and the threshold of acceptable level Q. The choice
of Q depends on the used weighting function. If no weighting is used Q = 40
and Q = 90 otherwise. Tk is the current value of “temperature”, evaluated as
Tk = 0.99Tk−1. Since in our case two parameters are evaluated (W and SL),
we use two “temperatures” T1 and T2 defined as 10% of the expected value of
the corresponding parameter. The algorithm proceeds until 1000 iterations are
executed.

5 Simulation Results

The physical array utilized in computer simulations is of 64 elements with half
wavelength spacing. Three different systems are evaluated with 40, 45, and 50
active elements in each subaperture. The properties of the MSAF system are
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Table 1. Numerical results obtained by employing the optimization algorithm

No of
Step
Array

Weighting
W [◦] SLB [dB]

Average
elements in number of
subaperture Optimal Average Optimal Average iterations

40
0,1,3,2,5, No

1.78 1.73 -42.07 -38.54 43.30
3,3,4,3 weighting

45
0,1,5, No

1.83 1.82 -40.09 -33.50 66.57
3,4,6 weighting

50
0,2,3, No

1.83 1.82 -52.84 -45.19 352.10
2,3,4 weighting

40
0,1,1,1,1, Hamming

1.75 1.92 -100.59 -96.85 650.00
2,15,1,1,1 Window

45
0,1,1,5, Hamming

1.97 1.99 -94.09 -97.11 580.20
4,6,1,1 Window

50
0,1,1, Hamming

2.10 2.18 -90.13 -94.05 549.90
10,1,1 Window

40
0,1,1,3, Chebishev

1.75 1.88 -109.97 -107.79 558.57
16,1,1,1 Window

45
0,1,5, Chebishev

1.97 1.98 -103.39 -103.38 568.26
6,6,1 Window

50
0,1,1, Chebishev

2.11 2.14 -104.74 -103.87 432.43
11,1 Window

Table 2. Beam characteristics of a conventional MSAF system

No of No weighting Hamming Window Chebishev Window
elements in

W [◦] SLB [dB] W [◦] SLB [dB] W [◦] SLB [dB]
subaperture

40 1.87 -43.44 2.11 -102.65 2.12 -105.81

45 1.88 -41.15 2.29 -102.16 2.32 -103.12

50 1.84 -49.58 2.41 -103.39 2.45 -102.47

optimized using the algorithm described in Section 3. The optimal positions of
the subapertures are found for three weighting functions. For each weighting
function, the positions of the subapertures are shifted until optimal performance
is obtained.

The number of elements, dropped between neighboring transmissions and
found to optimize the performance of the system, according the optimization
criterion, together with the optimal and the average quality parameters (width
of the main beam lobe and peak of the sidelobes) are presented in Table 1. The
results are achieved in 30 runs of the algorithm. In the last column is shown
the average number of iterations, needed to produce the best result in each run.
For comparison the numerical results obtained for a conventional MSAF system
with one element dropped between neighboring transmissions are presented in
Table 2.
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Fig. 3. The optimized effective aper-
ture function and two-way beam pattern;
50/64 elements; No weighting
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Fig. 4. The optimized effective aper-
ture function and two-way beam pattern;
50/64 elements; Hamming window
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Fig. 5. Effective aperture function and
two-way beam pattern of a conven-
tional MSAF system; 50/64 elements; No
weighting
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Fig. 6. Illustration of the work of the op-
timization algorithm

It can be seen that the weighting, applied to the subapertures reduces the
peaks of the side lobes from -40 dB to -95 dB for Hamming window and -104
dB for Chebishev window. This is done at the cost of widening the main lobe
width (hence reducing the lateral resolution of the system) from 1.73 degrees for
a system without weighting, to more than 2 degrees for a system with Chebi-
shev window. A comparison of the optimized system with a conventional MSAF
system shows that the optimized system has slightly better main lobe width,
but the side lobe peaks of the conventional system are a little bit lower. The
differences are small so practically the systems have similar beam parameters.

Both optimized functions, the effective aperture function and the correspond-
ing two-way beam pattern, are plotted for optimized system with 50 elements
in subaperture, without weighting (Fig. 3); with 50 elements in subaperture and
hamming weighting (Fig. 4). For comparison a conventional MSAF system with
50 elements in subaperture and without weighting is shown on Fig. 5. Fig. 6
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illustrates the work of the simulated annealing algorithm for a system with 45
elements in subaperture, without weighting.

Acquisition time. As follows from (2) the image acquisition time of an MSAF
system is linearly proportional to the number of emissions (M) and the time
required to acquire the echoes from one direction of view (TREC). In a conven-
tional MSAF system only one element is dropped after each transmit/receive
step. In the optimized MSAF system on the other hand, after each step usually
are dropped more than one elements. This significantly reduces the number of
transmissions and, as a consequence, the image acquisition time for the same
length of a physical array, while maintaining the same image quality.

Analysis of Table 1 shows that the best compromise between the desired main
beam lobe width and the side lobe peaks is achievedby the system with 40 elements
in each subaperture, Chebishev weighting and step array: 0, 1, 1, 3, 16, 1, 1, 1. Such
a system employs a 64-element physical arrayand produces an image in 8 transmis-
sions. In comparison the equivalent conventional MSAF system produces an image
with the same quality in 25 transmissions, which is more than 3 times slower.

6 Conclusions

In most medical applications the image acquisition time is required to be mini-
mized in order to avoid the phase errors caused by tissue motion during the data
acquisition. For this aim, an optimization algorithm based on the simulated an-
nealing algorithm is proposed for optimizing the locations of the subapertures
within the array transducer.

The MSAF system under study employs a 64-element array, with 40 elements
in each subaperture. The analysis shows that an optimized MSAF system obtains
images of similar quality and acquires data 3 times faster than a conventional
MSAF system.
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Abstract. The article presents experimental results achieved by Free
Search on optimization of 100 dimensional version of so called bump test
problem. Free Search is adaptive heuristic algorithm. It operates on a set
of solutions called population and it can be classified as population-based
method. It gradually modifies a set of solutions according to the prior
defined objective function. The aim of the study is to identify how Free
Search can diverge from one starting location in the middle of the search
space in comparison to start from random locations in the middle of
the search space and start from stochastic locations uniformly generated
within the whole search space. The results achieved from the experiments
with above initialization strategies are presented. A discussion focuses
on the ability of Free Search to diverge from one location if the process
stagnates in local trap during the search. The article presents, also, the
values of the variables for the best achieved results, which could be used
for comparison to other methods and further investigation.

1 Introduction

In this study Free Search [10,12,13] is applied to 100 dimensional variant of
so-called bump problem [6,7]. The test problem is hard constraint non-linear
optimization problem generalized for multidimensional search space. It is widely
discussed in the literature. Large research efforts have been directed towards
its exploration. The optimum is unknown, and the best-achieved results are
published [2,5,6,7,8,9,11,13,15,16,17,18]. “It’s a difficult problem that has been
studied in the scientific literature and no traditional optimization method has
given a satisfactory result. The function is non-linear and the global maximum
is unknown.” [9] An earlier investigation of the bump problem, published in the
literature applies Genetic Algorithm [6] and some evolutionary algorithms [2,7]
to twenty and fifty dimensional variants of the problem. These investigations
accept 20000 and 50000 iterations limit respectively for 20 and 50 dimensions.
Better results, published in the literature, for 20 and 50 dimensional variants
are achieved by evolutionary algorithms modified for precise exploration of the
space near to the constraint boundaries [8,9,18]. The best results, published in
the literature [5], for the bump problem from 2 up to 50 dimensions achieved
by asynchronous parallel evolutionary algorithm APEMA on distributed MIMD
computational system indicates best value 0.80361910 for 20 dimensions and

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 593–600, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



594 K. Penev

0.83523753 for 50 dimensions. The best results achieved by Free Search are for
20 dimensions 0.80361910412558 and for 50 dimensions 0.83526234835811175.
This investigation has no available publications for other algorithms for 100
dimensional variant of the bump problem. The search space of this test is con-
tinuous. It has many peaks. An essential condition of this test is start from single
location in the middle of the search space. This condition guarantees start from
location, which is relatively far from the maximal hill. In contrast to start from
multiple start locations uniformly distributed within the search space, it elim-
inates possibility for starting from initial locations accidentally generated near
to the best value. Start from one location facilitates a measurement of the diver-
gence across the whole space and then convergence to the best value. The work
presented in this article is a continuation of the experiments on this problem
published earlier [11,17]. The experiments with the bump optimization problem
for n = 50, xi ∈ (0, 10), i = 1, . . . , 50 require, for clarification of the results with
precision of seven decimal digits, exploration of 10400 solutions ... Free Search
achieves the maximum with such precision after exploration of less than 109 so-
lutions... The relation between the number of all possible values with a certain
level of precision and the number of explored locations deserves attention. These
results can be considered from two points of view. The first point of view is when
these results are accepted as accidental. The algorithm is “lucky” to “guess” the
results. If that point of view is accepted, it follows that the algorithm “guesses”
the appropriate solution from 10400 possible for 50-dimensional space. Another
point of view is to accept the results as an outcome of the intelligent behavior
modeled by the algorithm. Free Search abstracts from the search space essen-
tial knowledge. That knowledge leads to the particular behavior and adaptation
to the problem. In that case the relation between explored and all possible lo-
cations can be a quantitative measure of the level of abstraction. The second
point of view that the algorithm models intelligent behavior is accepted. Ab-
straction knowledge from the explored data space; learning, implemented as an
improvement of the sensibility; and then individual decision-making for action,
implemented as selection of the area for next exploration; can be considered as a
model of artificial thinking [11]. The experiments with 100 dimensional variant
in this study are harder and Free Search confirms its excellent exploration abil-
ities on large-scale optimization problems. In the article and in the tables the
following notation is accepted: n is the number of dimensions, i is dimensions
indicator, i = 1, . . . n, xi are initial start locations, Xmax and Xmin are search
space boundaries, xmax are variables of an achieved local maximum, Fmax100 is a
maximal achieved value for the objective function, ri is random value, ri ∈ (0, 1).

2 Test Problem

The objective function and the conditions are:

Maximize:

∣∣∣∣∣
n∑

i=1

cos4(xi)− 2
n∏

i=1

cos2(xi)

∣∣∣∣∣ /
√√√√ n∑

i=1

ix2
i
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subject to:
n∏

i=1

xi > 0.75 (1)

and
n∑

i=1

xi < 15
n

2
(2)

for 0 < xi < 10, i = 1, . . . n, starting from xi = 5, i = 1, . . . , n, where xi are the
variables (expressed in radians) and n is the number of dimensions [7].

3 Methodology

Free Search is applied to the 100 dimensional variant of the bump problem as
follows: The population size is 10 (ten) individuals for all experiments. Four
series of 320 experiments with four different start conditions are made:

– start from one location in the middle of the search space xi = 5, i = 1, . . . , n;
(This is an original condition of the test, ignored from majority authors due
to inability of other methods to diverge successfully from one location [8,9,18]

– start from random locations in the middle of the search space xi = 4 + 2ri,
ri ∈ (0, 1);

– start from locations stochastically generated within the whole search space
xi = Xmin

i + (Xmax
i −Xmin

i )ri, ri ∈ (0, 1);
– additional experiments with start from the best achieved location xi = xmax

i

are made. The last result of these experiments is presented also in Table 1.

For the first three series maximal neighbor space per iteration is restricted to
5% of the whole search space and sensibility is enhanced to 99.999% from the
maximal. For the fourth series, in order to distinguish very near locations with
very similar high quality, maximal neighbor space per iteration is restricted to
0.0005% from the whole search space and sensibility is enhanced to 99.9999999%
from the maximal.

4 Experimental Results

The maximal values achieved from 320 experiments for 100-dimensional search
space for the four different start conditions are presented in Table 1. In Table 1:
xi = 5 start from one location; xi = 4 + 2ri start from random locations in the
middle of the search space; xi = Xmin

i + (Xmax
i − Xmin

i )ri start from random
locations uniformly distributed within the whole search space; xi = xmax

i start
from a local sub-optimum.

The best results from 320 experiments with start from currently achieved best
local sub-optimum xi = xmax

i are presented in Table 2. The variables’ values for
the best achieved objective function value for n = 100 are presented respectively
in Table 3. The constraint parameter values are an indicator whether the found
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Table 1. Maximal values achieved for n = 100 bump problem

n start from iterations
∏

xi Fmax100

100 xi = 5 100000 0.750305761739250 0.838376006873

100 xi = 4 + 2ri 100000 0.7750016251034640 0.836919742344

100 xi = Xmin
i + (Xmax

i − Xmin
i )ri 100000 0.750125157302112 0.838987184912

100 xi = xmax
i 100000 0.750000000039071 0.845685456012

Table 2. Best achieved results from 320 experiments start from xi = xmax
i

Fmax = 0.84568545600962819
∏

xi = 0.75000000007771150

Fmax = 0.8456854560029361
∏

xi = 0.75000000002732459

Fmax = 0.84568545601228962
∏

xi = 0.75000000003907141

Fmax = 0.84568545600160894
∏

xi = 0.75000000003325862

Fmax = 0.84568545601179412
∏

xi = 0.75000000001648370

Fmax = 0.84568545600045464
∏

xi = 0.75000000009027890

Fmax = 0.84568545600126788
∏

xi = 0.75000000002984646

Fmax = 0.84568545600471334
∏

xi = 0.75000000013973589

Fmax = 0.84568545600142975
∏

xi = 0.75000000000654199

Fmax = 0.84568545600266842
∏

xi = 0.75000000002129508

Fmax = 0.84568545600390022
∏

xi = 0.75000000011346923

Fmax = 0.84568545600150213
∏

xi = 0.75000000021696134

Fmax = 0.84568545600245093
∏

xi = 0.75000000004234102

Fmax = 0.84568545600018008
∏

xi = 0.75000000002819023

Fmax = 0.84568545600770795
∏

xi = 0.75000000006311085

Fmax = 0.84568545600403033
∏

xi = 0.75000000001039713

Fmax = 0.84568545600069034
∏

xi = 0.75000000001963218
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Table 3. Variables values for the best achieved Fmax100=0.84568545601228962

x[ 0]=9.4220107126347745 x[ 1]=6.2826322016103955 x[ 2]=6.2683831748189975

x[ 3]=3.1685544118834987 x[ 4]=3.1614825164328604 x[ 5]=3.1544574053305716

x[ 6]=3.1474495832290019 x[ 7]=3.1404950479045355 x[ 8]=3.1335624853236599

x[ 9]=3.1266689747394079 x[10]=3.1197805974560233 x[11]=3.1129253611190442

x[12]=3.1061003015872641 x[13]=3.0992700218084379 x[14]=3.0924554966175832

x[15]=3.0856546345558589 x[16]=3.0788589079539115 x[17]=3.0720627263662514

x[18]=3.0652657000077048 x[19]=3.0584746707061194 x[20]=3.0516637034865339

x[21]=3.0448584949106863 x[22]=3.0380286236964169 x[23]=3.0311906892219178

x[24]=3.024325642570814 x[25]=3.0174564447484493 x[26]=3.0105540636060151

x[27]=3.0036206348205221 x[28]=2.996654984477289 x[29]=2.9896634779600619

x[30]=2.9612192303388043 x[31]=2.9755508892857203 x[32]=2.9684029022824512

x[33]=2.9612192303388043 x[34]=2.9539969359393266 x[35]=2.9467002904105652

x[36]=2.9393411868452524 x[37]=2.9319091645017501 x[38]=2.9243754870396326

x[39]=2.916779048836506 x[40]=0.48215961508911009 x[41]=0.48103824318067195

x[42]=0.47987816774664849 x[43]=0.47878167955313988 x[44]=0.47768451249416577

x[45]=0.47661282330477983 x[46]=0.47553403486022883 x[47]=0.47446785125492774

x[48]=0.47342756022045934 x[49]=0.47239007924579712 x[50]=0.47137147513069294

x[51]=0.47032878010013335 x[52]=0.46930402745591204 x[53]=0.46831098721684394

x[54]=0.46735104878920491 x[55]=0.46636407600760849 x[56]=0.46539891729486565

x[57]=0.46441864961851576 x[58]=0.46347276946009547 x[59]=0.46251323773794134

x[60]=0.4616002801440135 x[61]=0.46065790486354485 x[62]=0.45975509243021634

x[63]=0.45882641352502623 x[64]=0.45794463889695297 x[65]=0.45703335381561577

x[66]=0.45616083797292917 x[67]=0.45530545866090766 x[68]=0.4544181045335004

x[69]=0.45356136754388732 x[70]=0.45270186592373279 x[71]=0.45185207109498432

x[72]=0.45101805630688263 x[73]=0.45019912098968307 x[74]=0.44936498811072595

x[75]=0.44854068486603355 x[76]=0.44772742155880246 x[77]=0.44690550854857802

x[78]=0.44610180301058927 x[79]=0.44532932347961096 x[80]=0.44452998407145683

x[81]=0.4437461852789148 x[82]=0.44294433416028023 x[83]=0.44217581932603778

x[84]=0.44144485059511346 x[85]=0.44065197401737571 x[86]=0.43992044125167573

x[87]=0.43915615308675215 x[88]=0.43841742447730969 x[89]=0.43766920812505228

x[90]=0.43695640149660347 x[91]=0.43620589323988396 x[92]=0.43550809702824705

x[93]=0.43477896755895717 x[94]=0.43406590088092134 x[95]=0.43335315514811895

x[96]=0.43265970793420877 x[97]=0.43194897101473584 x[98]=0.43126789176092778

x[99]=0.43057416262765469
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maximum belongs to the feasible region. They indicate also expected possible
improvement and can be valuable for further research.

The best results presented in the Table 2 suggest that for 100-dimensional
search space n = 100 with the precision of four decimal digits (0.0001) the
optimum is Fopt100 = 0.8456. Considering constraint value with high probability
could be accepted that the optimal value for 100-dimensional variant of the bump
problem is between 0.845685 and 0.845686. Clarification of this result could be
a subject of future research. From previous experiments Free Search achieves:
“For n = 50, xi ∈ (0, 10), i = 1, . . . , 50 there are 10400 solutions with a precision
of seven decimal digits. Free Search achieves the maximum with such precision
after exploration of less than 109 solutions” [11].

For n = 100, xi ∈ (0, 10), i = 1, . . . , 100 with a precision of three decimal digits
there are 10400 solutions. To reach the result with this precision current version of
Free Search needs exploration of more than 1012 solutions. These results suggest
that perhaps 100-dimensional space is more complex than 50-dimensional space
with the same size.

Let us note that: (1) these results are achieved on a probabilistic principle;(2)
the search space is continuous and the results can be clarified to an arbitrary
precision; (3) precision could be restricted from the hardware platform but not
from the algorithm [15,16].

5 Discussion

Comparison between the best achieved result and the results achieved within
100000 iterations with start from (1) single location in the middle of the search
space, (2) random locations in the middle of the search space, and (3) random
locations stochastically distributed within the whole search space suggests dif-
ference of around 1%. Consequently Free Search can diverge successfully starting
from one location and then can reach the optimal hill with the same speed as
start from random locations. This in high extent is a confirmation of the indepen-
dence of the algorithm from the initial population published earlier [12,15,16].
Theoretically these results can be interpreted as an ability of the algorithm to
abstract knowledge during the process of search and to utilize this knowledge for
self-improvement and successful, satisfactory completion of the search process.
Rational value of the results is a confirmation of the high adaptivity of Free
Search, which can support scientific search and engineering design in large com-
plex tasks. Ability to continue the search process starting from the best achieved
from previous experiments location brings additional value to the method. By
means of the engineering design practice Free Search can overcome stagnation
and can continue the search process until reaching an acceptable value and an
arbitrary precision.

Another aspect of the results is what is the overall computational cost for ex-
ploration of this multidimensional task. A product between the number of itera-
tions and the number of individuals in the algorithm population could be
considered as a good quantitative measure for overall computational cost. For all
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experiments population size is 10 (then) individuals. In comparison to other pub-
lications [7,8,9] this is low number of individuals, which lead to low computational
cost. To guarantee diversification and high probability of variation of the dimen-
sions values within the population other methods operate on higher number of
individuals, pay high computational cost and require large or distributed com-
putational systems and extensive redundant calculations [5,18]. For his task Free
Search minimizes required computational resources to a single processor PC.

6 Conclusion

In summary Free Search demonstrates good exploration abilities on 100–dimen-
sional variant of the bump problem. Implemented novel concepts lead to an
excellent performance. The results suggest that: (1) FS is highly independent
from the initial population; (2) the individuals in FS adapt effectively their be-
havior during the optimization process taking into account the constraints on
the search space, (3) FS requires low computational resources and pays low com-
putational cost keeping better exploration and search abilities than the methods
tested with the bump problem and discussed in the literature [2,5,7,9,18] (4)
FS can be reliable in solving real-world non-linear constraint optimization prob-
lems. The results achieved on the bump optimization problem illustrate the
ability of Free Search for unlimited exploration. With Free Search, clarification
of the desired results can continue until reaching an acceptable level of precision.
Therefore, Free Search can contribute to the investigation of continuous, large
(or hypothetically infinite), constrained search tasks. A capability for orienta-
tion and operation within multidimensional search space can contribute also to
the studying of multidimensional spaces and to a better understanding of real
space. Presented experimental results can be valuable for evaluation of other
methods. The algorithm is a contribution to the research efforts in the domain
of population-based search methods, and can contribute, also, in general to the
Computer Science in exploration and investigation of large search and optimiza-
tion problems.
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Abstract. Mathematical models and their parameters used to describe
cell behavior constitute the key problem of bioprocess modelling, in
practical, in parameter estimation. The model building leads to an in-
formation deficiency and to non unique parameter identification. While
searching for new, more adequate modeling concepts, methods which
draw their initial inspiration from nature have received the early atten-
tion. One of the most common direct methods for global search is genetic
algorithm. A system of six ordinary differential equations is proposed to
model the variables of the regarded cultivation process. Parameter esti-
mation is carried out using real experimental data set from an E. coli
MC4110 fed-batch cultivation process. In order to study and evaluate
the links and magnitudes existing between the model parameters and
variables sensitivity analysis is carried out. A procedure for consecutive
estimation of four definite groups of model parameters based on sensitiv-
ity analysis is proposed. The application of that procedure and genetic
algorithms leads to a successful parameter identification.

1 Introduction

The costs of developing mathematical models for bioprocesses improvement are
often too high and the benefits too low. The main reason for this is related
to the intrinsic complexity and non-linearity of biological systems. In general,
mathematical descriptions of growth kinetics assume hard simplifications. These
models are often not accurate enough at describing the underlying mechanisms.
Another critical issue is related to the nature of bioprocess models. Often the
parameters involved are not identifiable. Additionally, from the practical point of
view, such identification would require data from specific experiments which are
themselves difficult to design and to realize. The estimation of model parameters
with high parameter accuracy is essential for successful model development. All
parameter estimation problems involve minimization and the choice of minimiza-
tion algorithm is problem-dependent. There are many possible variants such as
numerical methods [7,14]. During the last decade evolutionary techniques have
been applied in a variety of areas. A concept that promises a lot is the genetic

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 601–608, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



602 O. Roeva

technique. Genetic algorithm (GA) is global, parallel, stochastic search method,
founded on Darwinian evolutionary principles. Since its introduction, and sub-
sequent popularization [6], the GA has been frequently utilized as an alternative
optimization tool to conventional methods. Specific particularities of the con-
sidered processes lead to estimation of a large-scale problem and as a successful
tool for solving this problem are examined GA. The GA effectiveness and robust-
ness have been already demonstrated for identification of fed-batch cultivation
processes [2,15,16,17,18,19].

Even if experimental curves are successfully matched by fermentation process
model outputs, it does not imply that the estimates of parameters are unique.
Sensitivity analysis is an efficient tool in parameter estimation in fermentation
processes models and throws light on the conditions that make parameters iden-
tifiable. For mathematical models that involve a large number of parameters
and comparatively few responses, sensitivity analysis can be performed very ef-
ficiently by using methods based on sensitivity functions [10,11]. The output
sensitivity functions (partial derivates of the measured states with respect to
the parameters) are central to the evaluation of practical identifiability.

The aim of this paper is to investigate the sensitivity of the E. coli model
parameters thus to propose particular identification procedure using genetic al-
gorithms. The main purpose is to cope with the problem of adequate estimation
of large number of parameters in such complex and non-linear cultivation pro-
cesses models.

The paper is organized as follows. A dynamic model of an E. coli cultivation
process using Monod kinetics is described in Section 2. In Section 3 a sensitivity
analysis of the model parameters concerning process variables are presented and
an identification procedure is proposed. The genetic algorithm performance for
parameter estimation is discussed in Section 4. The results and discussion are
presented in Section 5. Conclusion remarks are done in Section 6.

2 Mathematical Model

Application of the general state space dynamical model [1] to the E. coli culti-
vation fed-batch process leads to the following system:

dX

dt
= µmax

S

kS + S
X − Fin

V
X (1)

dS

dt
= − 1

YS/X
µmax

S

kS + S
X +

Fin

V
(Sin − S) (2)

dA

dt
=

1
YA/X

µmax
A

kA + A
X − Fin

V
A (3)

dpO2

dt
= − 1

YpO2/X
µmax

pO2

kpO2 + pO2
X + kLa

pO2(pO∗
2 − pO2)−

Fin

V
pO2 (4)

dCO2

dt
=

1
YCO2/X

µmax
CO2

kCO2 + CO2
X + kLa

CO2(CO∗
2 − CO2)−

Fin

V
CO2 (5)
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dV

dt
= Fin (6)

where: X is biomass concentration, [g/l]; S — substrate concentration, [g/l]; A —
acetate concentration, [g/l]; pO2 — dissolved oxygen concentration, [%]; CO2 —
carbon dioxide concentration, [%]; pO∗

2 — saturation concentration of dissolved
oxygen, [%]; CO∗

2 — saturation concentration of carbon dioxide, [%]; Fin —
feeding rate, [l/h]; V — bioreactor volume, [l]; Sin — substrate concentration in
the feeding solution, [g/l]; µmax — maximum value of the specific growth rate,
[h−1]; kS and kA, [g/l]; kpO2 and kCO2 , [%] — saturation constants; kLa

pO2 ,
kLa

CO2 — volumetric oxygen transfer coefficients, [h−1]; YS/X , YA/X , YpO2/X

and YCO2/X — yield coefficients, [-].

3 Sensitivity Analysis

In order to provide a precisely and accurate model parameter identification a
sensitivity analysis using sensitivity functions is carried out [10,11]. If mathe-
matical model (Eqs. (1)–(6)) is presented as follows:

dxj

dt
= fj(x1, ..., xm, t, p1, ..., pn) (7)

Accordingly [10,11] the sensitivity functions are defined as:

sji =
∂xj(p, t)

∂pi

∣∣∣∣
p=p0

(8)

where sji are the sensitivity functions of ith parameter according jth variable,
xj — state variables, pi — model parameters.

The derivatives ∂xj

∂pi
are obtained by:

d

dt

∂xj

∂pi
=

m∑
j=1

∂fj

∂xj

∂xj

∂pi
+

∂fj

∂pi
(9)

Mathematical model (Eq. (7)) and sensitivity equations (Eq. (9)) together
formed the sensitivity model of considered system. In the considered case x =
[X S A pO2 CO2] and p = [µmax kS kA kpO2 kCO2 YS/X YA/X YpO2/X

YCO2/X kLa
pO2 kLa

CO2 ]. In solving the sensitivity model of the system the
following parameter values are used: p = [0.46 0.014 0.012 0.01 0.012 0.49 0.015
0.04 0.03 250 200]. Based on these parameter values two parameter groups,
respectively +15% variation and -15% variation are formed. The two sensitivity
models are analytically worked out and the sensitivity function are calculated.
The results of the sensitivity analysis of the both sensitivity models can be
summarized as follows: (i) The biggest sensitivity has the parameter µmax; (ii)
After that are the following parameters: YS/X , YA/X , YpO2/X and YCO2/X ; (iii)
The influence of the rest of parameters is less in comparison with sensitivity of
parameters mentioned in (i) and (ii).
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Based on these results an particular identification procedure is proposed. The
model parameters are divided into four groups according to their sensitivities.
First parameters that will be estimated are µmax, kS , and YS/X . At this step
only Eqs. (1), (2), and (3) of the model are used. Second parameters are YA/X

and kA, using Eqs. (1), (2), (3), and (6). Third parameters that will be estimated
are YpO2/X , kpO2 , and kLa

pO2 , using Eqs. (1), (2), (4), and (6). Finally, based
on Eqs. (1), (2), (5), and (6), the parameters YCO2/X , kCO2 , and kLa

CO2 will
be estimated. All identification procedures are carried out by applying genetic
algorithm tuned for the considered problem.

4 Genetic Algorithm Performance

Difficulties in parameter estimation of cultivation processes arise when the esti-
mation involves many parameters that interact in highly non-linear ways. Ob-
jective functions characterized by many local optima, expansive flat planes in
multi-dimensional space, points at which gradients are undefined, or when the
objective function is discontinuous, pose difficulty for traditional mathematical
techniques. Due to the complex non-linear structures of cultivation models, of-
ten the parameters involved are not identifiable. In these situations, heuristic
methods like GA offer a powerful alternative, and can greatly enhance the set of
tools available to researchers. Outline of the used here genetic algorithm could
be presented as:

1. [Start] Generate random population of n chromosome (suitable solution of
the problem).

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population.
3. [New population] Create a new population by repeating the following

steps:
(a) [Selection] Select two parent chromosomes from a population according

to their fitness (the better fitness, the bigger chance to be selected).
(b) [Crossover] With a crossover probability cross over the parents to form

new offspring (children).
(c) [Mutation] With a mutation probability mutate new offspring.
(d) [Accepting] Place new offspring in the new population.

4. [Replace] Use new generates population for a further run of the algorithm.
5. [Test] If the condition is satisfied, stop, and return the best solution in

current population.
6. [Loop] Go to step 2.

In the GA, there are many operators, functions, parameters, and settings that
can be implemented differently in various problems. The adjustment of the GA
is based on results in [2,13,15,16,17,18,19]. The first decision to be taken is how
to create chromosomes and what type of encoding to be chosen. Binary rep-
resentation is the most common one, mainly because of its relative simplicity.
A binary 20 bit representation is considered here. The next question is how to
select parents for crossover. There are many methods for selection of the best
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chromosomes [3,6,9]. The selection method used here is the roulette wheel selec-
tion. Crossover can be quite complicated and depends (as well as the technique
of mutation) mainly on the encoding of chromosomes. A double point crossover
is used here [13]. In accepted encoding here a bit inversion mutation is used.
In proposed genetic algorithm fitness-based reinsertion (selection of offspring)
is used.

There are two basic parameters of genetic algorithms — crossover probability
and mutation probability. Crossover rate should be high generally, about 65–
95%, here — 75%. Mutation is randomly applied with low probability — 0.01
[12,13]. The rate of individuals to be selected — generation gap — should be
defined as well. In proposed genetic algorithm generation gap is 0.97 [12,13].
Particularly important parameters of GA are the population size and number
of generations. If there is too low number of chromosomes, GA has a few possi-
bilities to perform crossover and only a small part of search space is explored.
On the other hand, if there are too many chromosomes, GA slows down. For
considered algorithm a number of generations of 200 and a population size of
100 are chosen.

5 Results and Discussion

In practical view, modelling studies are performed to identify simple and easy-
to-use models that are suitable to support the engineering tasks of process op-
timization and especially of control. The most appropriate model must satisfy
the following conditions: (i) the model structure should be able to represent the
measured data in a proper manner and (ii) the model structure should be as
simple as possible compatible with the first requirement. On account of that the
cultivation process dynamic is described using simple Monod-type model, the
most common kinetics applied for modelling of cultivation processes [1].

For the parameter estimation problem real experimental data of the E. coli
MC4110 fed-batch cultivation process are used. The cultivation condition and
the experimental data have been already published [5]. As it is shown, the model
consists of six differential equations (Eqs. (1)–(6)) thus represented five depen-
dent state variables (x) and eleven parameters (p). The model parameters are
estimated in conformity with the proposed in Section 3 identification proce-
dure. Genetic algorithm using Genetic Algorithm Toolbox [3,9] is applied. The
optimization criterion is presented as a minimization of a distance measure J
between experimental and model predicted values of state variables, represented
by the vector x :

J =
n∑

i=1

m∑
j=1

{[xexp(i)− xmod(i)]j}2 → min (10)

In the case of identification of all model parameters most of the numerical
methods can not find the correct decision [15,19] whereas the GA is able to find
the correct decision but for too much computation time. The estimation of all
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Table 1. Identified model parameters

Parameter Value

µmax, [h−1] 0.52

kS, [g/l] 0.023

kA, [g/l] 0.59

kpO2 , [% ] 0.023

kCO2 , [%] 0.020

YS/X , [-] 0.50

Parameter Value

YA/X , [-] 0.013

YpO2/X , [-] 0.20

YpO2/X , [-] 0.10

kLapO2 , [h−1] 155.87

kLaCO2 , [h−1] 53.41

eleven parameters takes more than four hours. Using different parameters groups
in identification allows estimation of two or three parameters simultaneously
instead of estimation of eleven parameters simultaneously. Thus the computation
time is decreased — for proposed GA and identification scheme the computation
time is about 10 minutes.

The numerical results from the identification are presented in Table 1. The pre-
sented estimates aremeanvalues of 25 runs of the genetic algorithm. The algorithm
produce the same estimations with more than 85% coincidence. The resulting pa-
rameters values are in admissible range according to [5,8,20].

The model predictions of the state variables are compared to the experimental
data points of the real E. coli MC4110 cultivation. The results are depicted in
Fig. 1. Model predicted data are presented with solid line. Presented figure indi-
cates that the model predicts successfully the process variables dynamics during
the fed-batch cultivation of E. coli MC4110. However, graphical comparisons
can clearly show only the existence or absence of systematic deviations between
model predictions and measurements. It is evident that a quantitative measure
of the differences between calculated and measured values is an important crite-
rion for the adequacy of a model. The most important criterion for the valuation
of models is that the deviations between measurements and model calculations
(J) should be as small as possible. This criterion cannot be used alone, because
it favors the use of complex models with many parameters which are difficult
to identify uniquely. For this reason, this criterion has to be complemented by
a criterion of ’parsimony’ leading to a preference for simple model structures,
as example — Fisher criterion (FC ) and minimum description length (MDL)
criterion [4]. The numerical results for values of these criteria are as follows:
J = 1.23, FC = 0.47 and MDL = 3.34.

The obtained criteria values show that the developed model is adequate and
has a high degree of accuracy. The proposed estimation procedure leads to sim-
plification of the identification and as a result accurate estimations are obtained.
The presented results are a confirmation of successfully application of the pro-
posed identification procedure and of the choice of genetic algorithms.
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Fig. 1. Time profiles of the process variables

6 Conclusion

The use of genetic algorithms in the parameter estimation of nonlinear dynamical
model of E. coli cultivation process has been investigated in this paper. The iden-
tification problem is formulated as an optimization problem. The mathematical
model is presented by a system of six ordinary differential equations, describ-
ing the regarded process variables. Proposed particular identification procedure,
based on an sensitivity analysis, leads to the simplification of the parameter
estimation process and to the evaluating of accurate estimates. Numerical and
simulation results reveal that correct and consistent results can be obtained using
considered procedure and genetic algorithms. The results confirm that the ge-
netic algorithm is powerful and efficient tool for identification of the parameters
in the non-linear dynamic model of cultivation processes.
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Abstract. This paper presents a solution of a constrained two dimen-
sional strip packing problem using genetic algorithms. The constraint
consists of considering three-stage guillotine patterns. This is quite a real
constraint motivated by technological considerations in some industries.
An analysis of including distributed population ideas and parallelism
into the basic genetic algorithm is carried out to solve the problem ac-
curately and efficiently. Experimental evidence in this work shows that
the proposed parallel versions of the distributed algorithms outperform
their sequential counterparts in time, although there are no significant
differences either in the mean best values obtained or in the effort.

1 Introduction

The two-dimensional strip packing problem (2SPP) is present in many real-world
applications such as in the paper or textile industries, and each of them could
impose different constraints and objectives to its basic formulation. The 2SPP
can be described as having to pack a set of small rectangular pieces onto a larger
rectangle with a fixed width W of unlimited length, designated as the strip.
There are M different pieces, each piece j ∈ {1, . . . ,M} is characterized by its
length and its width, and all pieces have fixed orientation. The search is for a
layout of all the pieces in the strip that minimizes the required strip length and,
where necessary, takes additional constraints into account.

In some cases, a problem constraint consists in n-stage guillotine packing,
where the corresponding packing pattern is built as a series of levels: each piece
is placed so that its bottom rests on one of these levels. The first level is simply
the bottom of the strip. Each subsequent level is defined by a horizontal line
drawn through the top of the tallest piece on the previous level. Particularly,
in this work, we are focusing on a three-stage guillotine pattern. In the first
stage, horizontal cuts (parallel to horizontal edge of the strip) are performed
to the strip, producing an arbitrary number of levels (stripes). In the second
stage, those levels are processed by vertical cuts generating an arbitrary number
of so-called stacks. The third stage produces the final elements (and waste)
from the stacks by performing only horizontal cuts. Many real application of
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cutting and packing in the glass, wood, and paper industries consider n-stage
guillotine packing (or cutting) patterns, hence the importance of incorporating
this restrictions in the problem formulation. Few authors restrict to problems
involving guillotine patterns [5,9] and n-stage guillotine patterns [10,11,13,14,15].

Some existing approaches for solving the 2SPP include the utilization of a
genetic algorithm (GA) [6,9], among others. But, as it happens frequently in
practice, the high complexity of this task poses problems and results in time-
consuming scenarios for industrial problems. This gives rise to the application
of parallel algorithms not to only reduce the resolution time but also to improve
the quality to the provided solutions. Few works on packing address this problem
with parallelism techniques [12].

This paper presents a GA with an order-based representation of tentative so-
lutions, problem-dependent genetic operators, and a layout algorithm. In order
to reduce the trim loss in each level, an additional final operation, denominated
as adjustment operator, is always applied to each generated child. Moreover,
the initial population is seeded using a set of rules including information of the
problem (such as the piece’s width, pieces area, etc.), resulting in a more spe-
cialized initial population. In particular, we will analyze the advantages of using
a single population (panmixia) versus an algorithm having multiple distributed
populations. The main goal of this paper is to present how to build an improved
GA to solve larger problems than the ones found in the literature at present,
and to quantify the effects of including these operations into the algorithms.

The paper is organized as follows. In Section 2 we will briefly describe parallel
GAs for the 2SPP. In Section 3 we present the parameterization used. Then
we analyze the results in Section 4. Finally, we summarize the conclusions and
discuss the future research in Section 5.

2 Parallel Genetic Algorithms for the 2SPP

In this work we use a distributed GA (dGA) [17], which is a multi-population
(island) model performing sparse exchanges of individuals (migration) among
the elementary subpopulations Pi. The migration policy must define the island
topology, when migration occurs, which individuals are being exchanged, the
synchronization among the subpopulations, and the kind of integration of ex-
changed individuals within the target subpopulations.

In Algorithm 1 we can see the structure of an elementary genetic subalgorithm
(dGAi) in which we will now explain the steps for solving our packing tasks. Each
dGAi creates an initial subpopulation Pi of µ solutions to the 2SPP in a random
way, and then evaluates these solutions. The evaluation uses a placement (ad
hoc or heuristic) algorithm to arrange the pieces into the strip to construct a
feasible packing pattern. After that, the population goes into a cycle where it
undertakes evolution, which means the application of genetic operators, to create
λ offspring. This cycle also includes an additional phase of individual exchange
with a set of neighboring subalgorithms, denoted as dGAj . Finally, each iteration
ends by selecting µ individuals to build up the new subpopulation from the set
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Algorithm 1. Distributed Genetic subalgorithm
dGAi

t = 0; {current evaluation}
initialize(Pi(t));
evaluate(Pi(t));
while (not maxevaluations) do

P ′
i (t) = evolve(Pi(t)); {recombination, mutation and adjustment}

evaluate (P ′
i (t));

P ′
i (t) = send/receive individuals from dGAj ; {interaction with neighbors}

Pi(t + 1) = select new population from P ′
i (t) ∪ Pi(t);

t = t + 1;
end while

of µ+ λ existing ones. The best solution is identified as the best individual ever
found which minimizes the strip length needed.

In what follows we will discuss some design issues of the GAs proposed to
solve the 2SPP. Issues such as encoding, fitness function, genetic operators and
the generation of the initial population must be taken care of in a methodological
way in any application of GAs to a given problem.

Representation. We encode a packing pattern into a chromosome as a sequence
of pieces that defines the input for the layout algorithm. Therefore, a chromo-
some will be a permutation π = (π1, π2, ..., πM ) of M natural numbers (piece
identifiers).

In order to generate three-stage guillotine patterns, a modified next-fit de-
creasing height heuristic is used here —in the following referred as modified
next-fit, or MNF— which proved to be very efficient in [11,12]. This heuristic
gets a sequence of pieces as its input, not necessarily decreasing height sorted,
and constructs the packing pattern by placing pieces into stacks, and then stacks
into levels in a greedy way, i.e., once a new stack or a new level is started, previ-
ous ones are never reconsidered. Deeper explanation of the MNF procedure can
be found in [15].

Fitness Function. In our problem, the objective is to minimize the strip length
needed to build the layout corresponding to a given solution π. An important
consideration is that two packing patterns could have the same length —so their
fitness will be equal— although, from the point of view of reusing the trim loss,
one of them can be actually better because the trim loss in the last level (which
still connects with the remainder of the strip) is greater than the one present in
the last level of the other layout. In order to distinguish these situations we are
using the following fitness function:

F (π) = strip.length− l.waste

l.area
(1)

where strip.length is the length of the packing pattern corresponding to the
permutation π, and l.area and l.waste are the areas of the last level and of the
reusable trim loss in the last level, respectively. Hence, F (π) is both simple and
accurate.
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Recombination Operator. The Best Inherited Level Recombination (BIL) [15]
transmits the best levels of the parent to the child, i.e. those with the highest
filling rate (fr) or, equivalently, with the least trim loss. This rate is calculated
as follows, for a given level l:

fr(l) =
n∑

i=1

width(πi)× length(πi)
W × l.length

(2)

where π1, ..., πn are the pieces in l, width(πi) and length(πi) are the piece di-
mensions, and W and l.length the level dimensions. Actually, BIL recombination
works as follows. In the first step the filling rates of all levels from one parent,
parent1, are calculated. After that, a selection probability for each level l, pro-
portional to the filling rate, is determined. A number k of levels are selected
from parent1 by proportional selection according to their filling rate. The pieces
πi belonging to the inherited levels are placed in the first positions of the child.
Meanwhile, the remaining positions are filled with the pieces which do not belong
to that levels, in the order they appear in the other parent parent2.

Mutation Operator. Best and Worst Stripe Exchange (BW SE) [15] mutation
changes the location of the best and the worst level, so that the final cost is
reduced. The pieces of the best level (the one with highest filling rate) are al-
located in the first positions of the new packing pattern while the pieces of the
worst level are assigned to the last positions. The middle positions are filled with
the remaining pieces in the order they appeared in the original packing pattern.
In BW SE, the movements can help to the involved levels or their neighbors to
accommodate pieces from neighboring levels, thus improving their trim loss.

Adjustment Operator. Given a solution, the operator MFF Adj [15] consists of
the application of a modified first-fit decreasing height (FFDH) heuristics, with
the aim of improving the filling rate of all levels. The possible new layout obtained
in this way has to be transmitted to the chromosome in such a way that we can
obtain the same layout by applying MNF to the chromosome. MFF Adj works
as follows. It considers the pieces in the order given by the permutation π. The
piece πi is packed into the first stack in the first level it fits, as in MNF. If piece
πi does not fit into any existing stack and there is room enough in that level, a
new stack is created, as in MNF. Otherwise the following levels are considered
and checked in the previous order. If no space were found, a new stack containing
πi is created and packed into a new level in the remaining length of the strip.
The above process is repeated until no piece remains in π.

Initial Seeding. The search process is started from a specialized initial popula-
tion, created by following some building rules, hopefully allowing to reach good
solutions in early stages of the search. The rules (see Table 1) will include some
characteristics from the problem such as piece sizes, and also incorporate ideas
from the best fit (BF) and first fit (FF) heuristics [7]. These rules are proposed
with the aim of producing individuals with improved fitness values and also for
introducing diversity in the initial population. Individuals are generated in two
steps. In the first step, the packing patterns are randomly sampled from the
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Table 1. Rules to generate the initial population

# Rule Description # Rule Description
1 sorts pieces by decreasing width. 2 sorts pieces by increasing width.
3 sorts pieces by decreasing length. 4 sorts pieces by increasing length.
5 sorts pieces by decreasing area. 6 sorts pieces by increasing area.

# Rule Description
7 sorts pieces by alternating between decreasing width and height.
8 sorts pieces by alternating between decreasing width and increasing height.
9 sorts pieces by alternating between increasing width and height.
10 sorts pieces by alternating between increasing width and decreasing height.
11 the pieces are reorganized following the BFDH heuristic.
12 the pieces are reorganized following the FFDH heuristic.
13 The packing pattern remains without modifications, so here the rule preserves

the original piece position (random generation).

search space with a uniform distribution. After that, each of them is modified
by one rule, randomly selected, with the aim of improving the piece location
inside the random packing pattern. Each application of a rule yields a (possibly)
different solution because of the randomization used in the first step.

3 Implementation

The specific GA we have implemented is a steady state, or a (µ+1)-GA, where only
one new solution is built in each step, with a binary tournament selection for each
parent. The new generated individual in every step replaces the worst individual in
the population only if it is fitter. We wanted to compare the following approaches:
a panmitic (sequential) GA (seqGA) and some distributed GAs or dGAn, where
n indicates the number of islands of the model. In this test we used two, four and
eight islands. The dGAs were run on a single processor system and on a cluster of
workstations, where each island was assigned to a different processor.

In our GAs, the whole population was composed of 512 individuals and each
island had a population of 512/n individuals, where n is the number of islands.
The stopping criterion was based on the quality of the final solution or when the
maximum number 216 of evaluations were reached because we wanted to measure
the time to find equivalent solutions among the GAs versions. The probability of
recombination was 0.8, the mutation probability 0.1, and the adjustment proba-
bility was set to 1.0. The method of seeding the initial population consists of an
uniform decision of what rule from a set of problem aware rules should be used
for seeding. In dGAs, one migrant is randomly selected to be exchanged to the
neighboring subpopulation, while the target island selects the worst individual to
be replaced with the incoming one (only if it is better). The migration frequency
was set to 1,024 evaluations. The subalgorithms were disposed in a unidirec-
tional ring with asynchronous communications (individuals are integrated into
the population whenever they arrive) for efficiency. The above parameters had
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been previously tuned [15,14], but we do not include the tuning details in the
article due to room restrictions. These algorithms were run in MALLBA [3], a
C++ software library fostering rapid prototyping of hybrid and parallel algo-
rithms, and the platform was an Intel Pentium 4 at 2.4 GHz and 512 MB RAM,
linked by Fast Ethernet, under SuSE Linux with 2.4.19-4GB kernel version.

We have considered five randomly generated problem instances with M equal
to 100, 150, 200, 250 and 300 pieces and a known global optimum equal to
200 (the minimal length of the strip). These instances belong to the 2SPP
only and were generated as guillotine patterns by an own implementation of
a data set generator, following the ideas proposed in [18] with the length-to-
width ratio of all rectangles in the range 1/3 ≤ l/w ≤ 3 (publicly available
at http://mdk.ing.unlpam.edu.ar/∼lisi/2spp.htm). As the optimum value
does not correspond to the three-stage guillotine pattern constraint, then the
target fitness to reach for instance corresponds to the average of the best fitness
found in previous works for a maximum of 216 evaluations. These values were
217.99, 216.23, 213.12, 213.59 and 213.90 for instances 100, 150, 200, 250 and
300 respectively.

4 Computational Analysis

Let us proceed with the analysis of the results. For each algorithm we have
performed 50 independent runs per instance. Table 2 shows a summary of the
results for the seqGA and each dGAn running both in sequential (1 processor)
and in parallel (n processors). The most relevant aspects that were measured
in this comparison are the following ones: the number of times each algorithm
reached the target value for each instance (column hits), the average values of
the best found feasible solutions along with their standard deviations (column
avg), the average number of evaluations (column eval) and the average run time
expressed in seconds (column t[s]). Also in this table we report the speedup
(column s), the efficiency (column e), and the serial fraction (column sf ) using
the orthodox definition of speedup of [1] (comparing the same algorithm, dGAn,
both in sequential and in parallel).

From this table we can infer that there are a significant difference between
dGAn and seqGA regarding the numerical effort to solve the problem (the
ANOVA test is always significant: p-values well below 0.05) corroborating that
this two algorithms performed a different search process. For example, seqGA
samples near three times more the number of points in the search space than
dGA2 before locating good solutions. Also, a decrease in the number of evalua-
tions is observed as the number of islands n increases, independently of whether
the dGAn were run on 1 or n processors. Overall, it seems that the two ver-
sions needed a similar effort to solve all the instances (the t-test for this column
gave p-values greater than 0.05). Hence we cannot conclude anything about the
superiority of any of the two dGAn versions.

With respect to the number of hits: dGA4 and dGA8 running in parallel
reached higher numbers than their counterparts running on 1 processor, dGA2

http://mdk.ing.unlpam.edu.ar/~lisi/2spp.htm
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Table 2. Experimental results

Inst Alg 1 processor n processors s e sf
hits avg±σ eval t[s] hits avg±σ eval t[s]

100 seqGA 50 218.03 ± 0.19 1325.96 426.32
dGA2 60 217.99 ± 0.00 588.88 441.85 54 217.99 ± 0.00 470.56 225.01 1.96 0.98 0.02
dGA4 36 217.99 ± 0.00 270.00 419.61 46 217.99 ± 0.00 277.44 109.22 3.84 0.96 0.01
dGA8 44 218.01 ± 0.25 138.04 398.86 62 218.01 ± 0.14 267.08 52.92 7.54 0.94 0.01

150 seqGA 64 216.18 ± 0.68 1333.30 563.42
dGA2 72 216.09 ± 0.68 753.70 476.74 68 216.11 ± 0.72 696.02 274.05 1.74 0.87 0.15
dGA4 50 216.37 ± 0.70 326.74 833.41 72 216.09 ± 0.68 325.94 120.83 6.90 1.72 -0.14
dGA8 62 216.25 ± 0.72 191.60 631.60 64 216.27 ± 0.61 201.98 100.73 6.27 0.78 0.04

200 seqGA 78 213.22 ± 0.43 1091.23 824.13
dGA2 80 213.19 ± 0.40 525.26 709.60 70 213.27 ± 0.49 570.54 559.55 1.27 0.63 0.58
dGA4 76 213.23 ± 0.43 291.68 872.25 76 213.19 ± 0.49 267.14 222.69 3.92 0.98 0.01
dGA8 58 213.20 ± 0.42 139.22 800.72 62 213.37 ± 0.49 143.30 189.42 4.23 0.53 0.13

250 seqGA 38 213.68 ± 0.55 2288.15 4001.02
dGA2 28 213.72 ± 0.49 869.86 4433.81 34 213.73 ± 0.60 856.44 2049.38 2.16 1.08 -0.08
dGA4 18 214.03 ± 0.64 403.54 5242.06 26 213.83 ± 0.59 510.02 1274.57 4.11 1.03 -0.01
dGA8 24 213.83 ± 0.55 203.88 4851.44 36 213.63 ± 0.49 263.20 539.87 8.99 1.12 -0.02

300 seqGA 6 213.94 ± 0.19 1171.35 11014.84
dGA2 4 213.90 ± 0.34 426.68 11256.02 0 214.01 ± 0.20 424.89 5958.72 1.89 0.94 0.06
dGA4 2 213.95 ± 0.11 291.85 11369.00 4 213.93 ± 0.20 236.71 2836.35 4.10 1.03 -0.01
dGA8 4 213.93 ± 0.22 125.14 11010.61 4 213.91 ± 0.31 278.86 1420.12 8.16 1.02 0.00

running on 1 processor reached a higher number of hits than the corresponding
algorithm running on 2 processors —except for the instance 250—, and dGA4
had the lowest number of hits for each instance. As we expected, there are no sig-
nificative differences in mean best values in running each dGAn in sequential or
in parallel, since the two versions of dGAs correspond to the same algorithm, and
only the execution time should be affected by the different number of processors
used. These conclusions are supported by a t-test.

The speedup is quite high. In instances 250 and 300, with n = 4, 8, the
speedup is slightly superlinear. This results indicate that we are using a good
parallel implementation. There are a reduction of efficiency for the instance 200.
As expected in a well-parallelized algorithm, the serial fraction is quite stable,
although we can notice a reduction of this value as the number of processors
increases (except in the instance 200).

5 Conclusions

In this work we have shown how distributed genetic algorithms can be used to
give a solution to the strip packing problem using three-stage guillotine patterns.
The characteristics of the distributed search have been shown to lead to fast
techniques computing accurate results, which represents a promising advance
in this area. The distributed algorithms were capable of a higher numerical
performance (lower efforts) with similar levels of accuracy with respect to the
sequential panmitic algorithm. Also we have shown the high speedup of the
distributed GAs proposed running in parallel, since we firmly believe that time is
very important in the research in this area which is actually aimed at a practical
utilization.
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As future work we plan to investigate non-permutation representations with
a direct mapping to the final layout of the pieces and to use longer problem
instances.
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4. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation.
Oxford University Press, New York (1997)

5. Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. EJOR 172(3), 814–837 (2006)

6. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic
algorithms for a 2D packing problem. EJOR 128(1), 4–57 (2000)

7. Lodi, A., Martello, S., Monaci, M.: Recent advances on two-dimensional bin packing
problems. Discrete Applied Mathematics 123, 379–396 (2002)

8. Michalewicz, M.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996)

9. Mumford-Valenzuela, C.L., Vick, J., Wang, P.Y.: Metaheuristics: Computer
Decision-Making. In: Chapter Heuristics for large strip packing problems with guil-
lotine patterns: An empirical study, pp. 501–522 (2003)

10. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional
bin packing. Technical Report TR-186-04-04, Technische Universität Wien, Institut
für Computergraphik und Algorithmen (2004)

11. Puchinger, J., Raidl, G.R., Koller, G.: Solving a Real-World Glass Cutting Prob-
lem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 165–
176. Springer, Heidelberg (2004)

12. Salto, C., Molina, J.M., Alba, E.: Sequential versus distributed evolutionary ap-
proaches for the two-dimensional guillotine cutting problem. In: Proc. of Interna-
tional Conference on Industrial Logistics, pp. 291–300 (2005)

13. Salto, C., Molina, J.M., Alba, E.: Analysis of distributed genetic algorithms for
solving cutting problems. ITOR 13(5), 403–423 (2006)

14. Salto, C., Molina, J.M., Alba, E.: A comparison of different recombination oper-
ators for the 2-dimensional strip packing problem. In: Proc. of the XII Congreso
Argentino de Ciencias de la Computación, pp. 1126–1138 (2006)

http://oplink.lcc.uma.es


Analysis of Distributed Genetic Algorithms 617

15. Salto, C., Molina, J.M., Alba, E.: Evolutionary algorithms for the level strip pack-
ing problem. In: Proc. of the Workshop on Nature Inspired Cooperative Strategies
for Optimization, pp. 137–148 (2006)

16. Spiessens, P., Manderick, B.: A massevily parallel genetic algorithm. In: Proc. of
the 4th. International Conference on Genetic Algorithms, pp. 279–286 (1991)

17. Tanese, R.: Distributed genetic algorithms. In: Proc. of the 3rd. International Con-
ference on Genetic Algorithms, pp. 434–439 (1989)

18. Wang, P.Y., Valenzuela, C.L.: Data set generation for rectangular placement prob-
lems. EJOR 134, 378–391 (2001)



Computer Mediated Communication and

Collaboration in a Virtual Learning
Environment Based on a Multi-agent System

with Wasp-Like Behavior

Dana Simian1, Corina Simian2, Ioana Moisil1, and Iulian Pah2

1 University “Lucian Blaga” of Sibiu, Romania
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Abstract. In this paper is presented a model for an adaptive multi-
agent system for dynamic routing of the grants’ activities from a learn-
ing environment, based on the adaptive wasp colonies behavior. The
agents use wasp task allocation behavior, combined with a model of
wasp dominance hierarchy formation. The model we introduced allows
the assignment of activities in a grant, taking into account the specializa-
tion of students, their experience and the complexity of activities already
taken. An adaptive method allows students to enter in the Grant system
for the first time. The system is changing dynamic, because both the
type of activities and the students involved in the system change. Our
approach depends on many system’s parameters. For the implementation
these parameters were tuned by hand. The Grant-system we built is in-
tegrated in a virtual education system, student centered, that facilitates
the learning through collaboration as a form of social interaction.

Keywords: Multi-Agent System, E-learning, Wasp Models.

1 Introduction

In [6] was developed a model for the virtual education system, student centered,
that facilitates the learning through collaboration as a form of social interaction.
The general architecture of the e-Learning system proposed there, is one with
three levels (user, intermediary, supplier educational space), to each correspond-
ing heterogeneous families of human agents and software. The teacher (human
agent) is assisted by two types of software agents: personal assistant (classic in-
terface agent), with role of secretary and didactic assistant, which is the assistant
from the classical educational system. The SOCIAL agentified environment has
a social agent and a database with group models (profiles of social behavior).
The social agent has as main aim the construction of models for the groups of
students who socialize in the virtual educational environment. The agentified
DIDACTIC environment assists the cognitive activities of the student and/or of
the teachers. Within this environment a Web searching agent evolves together
with a semiotic agent who stimulates the interceding agent of the student send-
ing him pictogram type stimuli, text, numbers. The environment is endowed
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with a collection of instruments and signs recorded in a knowledge base. The
student (human agent) evolves in an agentified environment with three types of
agents. He also has a personal assistant (software interface agent) who monitors
all the students’ actions and communicates (interacts) with all the other agents,
with the agentified environments of other students and the TEACHER agenti-
fied environment. The student has at his disposal two more agents: TUTOR and
the mediating agent. The TUTOR assistant evaluates the educational objectives
of the student and recommends her/him some kind of activities. The decisions
are based on the knowledge of the students’ cognitive profile (which takes into
account the social component). The TUTOR agent interacts with the personal
assistant of the student, with the mediating agent and with the social agentified
environment. Student population is considered a closed one and individuals are
separated into groups, called classes. Students from a class communicate one with
another and also with students from other classes. We will have intra-class and
inter-class communication models and a different student-software agent com-
munication model. A class consists of several teams. Students interact through
their computers and with the software agents in order to achieve a common
educational goal.

We want to enlarge this educational system adding a component named
GRANTS, which allows students to participate to some projects or grants, de-
pending on their qualification. The qualification of a student, on a certain area
is given by the tests he had passed. A test is passed if the associated score is
situated between two values, the minimum and the maximum value. When a
student chooses the courses he wants to take in a period (a week, a month,
a semester, a year) a zero qualification variable is assigned for this student at
the chosen course. Then, the qualification of the student i for the course j is
computed as:

qi,j =
pi,j − cj,min

cj,max − cj,min
, (1)

with pi,j being the score obtained by the student i to the test associated to the
course j. Every course has specified a minimum and a maximum score: cj,min,
cj,max.

The complexity of a grant is given in complexity points associated to each
activity. Every activity requires a qualification in one or many courses, case in
which an average qualification for all the required courses is used.

A student can be involved in many activities of many grants, such that
the total number of complexity points for these activities don’t exceed a given
maximum value. That is, many activities may exists in a student’s grant queue.

The time period for every grant is strictly determinated.
The aim of this paper is to build a multi-agent virtual environment where

agents use wasp task allocation behavior, combined with a model of wasp domi-
nance hierarchy formation, to determine which activity of a set of grants should
be accepted into a student’s queue, such that the execution time of every grant
be respected and the number of students involved in these grants be maximized.
Wasp-like computational agents that we call learning routing wasps act as overall
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student proxies. The policies that the learning routing wasps adapt for their stu-
dent are the policies for deciding when to bid or when not to bid for arriving
activities.

Our environment is a dynamic one, because both new grants and new qualified
students appears in time.

Effective coordination of multiple agents interacting in dynamic environments
is an important part of many practical problems. Few of these problems are
presented in [5]. Our system has many common characteristics with a distributed
manufacturing system. The desire for a more robust basis for coordination has
motivated research into agent-based approaches to manufacturing scheduling
and control [4,7]. Looking to our system from this point of view we can associate
grants’ activities with the factory commands and the students with the factory
machines. The main difference is that in our system not only the commands have
a dynamic behavior but also the number and the type of machines. That is why
the coordination policies in our system must be viewed as an adaptive process.

The adaptive behavior in many natural multi-agents systems has served as
inspiration for artificial multi-agents systems. A survey of adaptive multi-agent
systems that have been inspired by social insect behavior, can be found in [1].

The paper is organized as follows. In the part 2 we present the model of wasp
behavior and a brief survey of the papers in which this model is used. The section
3 contains the main results: our model for an adaptive multi-agent system which
makes a dynamic allocation of grants’ activities in a learning environment. In
the section 4 we present the conclusions.

2 Wasp Behavior Model

Our approach for the Grant System is based on the natural multi-agent system
of a wasp colony. Theraulaz et al. present a model for self-organization within
a colony of wasps [9]. In a colony of wasps, individual wasp interacts with its
local environment in the form of a stimulus-response mechanism, which governs
distributed task allocation. An individual wasp has a response threshold for each
zone of the nest. Based on a wasp’s threshold for a given zone and the amount of
stimulus from brood located in this zone, a wasp may or may not become engaged
in the task of foraging for this zone. A lowest response threshold for a given zone
amounts to a higher likelihood of engaging in activity given a stimulus.

In [3] is discussed a model in which these thresholds remain fixed over time.
Later, in [8] is considered that a threshold for a given task decreases during time
periods when that task is performed and increases otherwise. In [5], Cicirello and
Smith, present a system which incorporates aspects of the wasp model which
have been ignored by others authors. They consider three ways in which the
response thresholds are updated. The first two ways are analogous to that of
real wasp model. The third is included to encourage a wasp associated with an
idle machine to take whatever jobs rather than remaining idle.

The model of wasp behavior also describes the nature of wasp-to-wasp in-
teraction that takes place within the nest. When two individuals of the colony
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encounter each other, they may with some probability interact in a dominance
contest. The wasp with the higher social rank will have a higher probability of
dominating in the interaction. Wasps within the colony self-organize themselves
into a dominance hierarchy. In [5] is incorporated this aspect of the behavior
model, that is when two or more of the wasp-like agents bid for a given job, the
winner is chosen through a tournament of dominance contests.

3 Main Results. Learning Routing Wasps

In this section we present our approach to the problem of allocating dynamically
the activities from many grants, to qualified students, such that the time period
allocated to every grant be respected and the number of students involved, be
maximized. We next define the problem’s terms.

The student i has one or more course qualifications qi,j given by the equality
(1) and can be involved in various activities from grants such that the sum of
the complexity points for these activities must not exceed a limit value:

MCPS = Maximum Complexity Points /student (2)

Each activity of a grant has associated a number of complexity points:

ncpj,k = number of complexity points for the activity j in the grant k (3)

and a set of courses which define the area of each activity.

Aj,k = {i1,j,k, . . . , inj,k,j,k} (4)

is the set of indexes of courses required by the activity j from the grant k.
The minimum and maximum score that allow a student to realize the activity
j, from the grant k are:

minj,k =
∑

l∈Aj,k

cl,min/Nj,k, (5)

with Nj,k = #Aj,k.
maxj,k =

∑
l∈Aj,k

cl,max/Nj,k (6)

The activities are classified using the type of activities. First, in the system
are introduced a number of activity types, characterized by the sets Tm, which
contain the courses that were required by these types.

Tm = {ci1 , . . . , cikm
} (7)

The intersection of two sets of this kind has the following property:

#(Tm

⋂
Tn) ≤ p% ·min(#Tm,#Tn) (8)
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Each activity belongs to an unique type. The value p is a dynamical system
parameter, that is, it is modified in a dynamical way such that every activity
which is in the system in every moment, belongs to an unique activity type set.
We will denote by

NT (t) = #T = #{T1, . . .} at the moment t (9)

and by
taj,k = m, (10)

the type of activity j from the grant k (the activity j, from the grant k is of
type Tm). To each student i we associate two sets of indexes:

Mi =
⋃

student i

taj,k (11)

is the set of all types of activities in which he is or was involved.

Mi,f ⊆Mi (12)

is the set of all types of activities he had already finished. The qualification of a
student for the activity j, from the grant k is

qai,j,k = average{qi,l|l ∈ Aj,k} (13)

If the incoming flow of new activities allows, then, ideally each of the students
should specialize to one or more types of activities among the ones he is capable
to do. To model this requirement, we introduce the activity specialization of a
student. It takes into account the qualification of the student for the courses
required by this activity and the participation to other likewise activities.

si,j,k = ω ·qa(i, j, k)+α·
∑

j∈Mi

⋂
{taj,k}

qa(i, j, k)+β
∑

j∈Mi,f

⋂
{taj,k}

qa(i, j, k), (14)

where ω, α, β are parameters of the system and have a major role in modelling of
what “specialization” must represent. For the first step of our system modelling,
these parameters will be tuned by hand. If we choose ω = 1, α, β > 1 it means
that the experience of student is more important than the initial score from
different courses required from the activities. If we choose α = 0, β = 0, ω = 1
it means that only the initial qualification is taking into account.

We denote by

sqi = number of activities in the queue of student i (15)

This number satisfies the restriction

sq(i)∑
l=1

ncpl,kl
≤MCPS (16)
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Each student in our system has an associated learning routing wasp. Each routing
wasp is in charge of choosing which activity to bid for possible assignment to the
queue of its associate student. Each learning routing wasp has a set of response
thresholds, as like in the wasp behavior model. The response thresholds, are
associated to every type of activity

Wi = {wi,j,k} (17)

where wi,j,k is the response threshold of wasp associated to student i to activity
j from the grant k. Every activity from the system has associated for each wasp
such a response thresholds. The threshold value wi,j,k may vary in the interval
[wmin, wmax].

Activities in the system that have not been assigned yet to a student and that
are awaiting assignment, broadcast to all of the learning routing wasp a stimulus
Sj,k, which is proportional to the length of time the activity has been waiting
for assignment to a student. The learning routing wasp i will bid for an activity
k only if ∑

l∈Aj,k

qi,l/Nj,k ≥ minj,k (18)

In this case the learning routing wasp i will bid for this activity with probability

P (i, j, k) =
Sγ

j,k

Sγ
j,k + wγ

i,j,k

(19)

The exponent γ is a system parameter. In [8] such a rule for task allocation is
used with γ = 2. If, in this rule, γ ≥ 1, then the lower the response thresholds is,
the bigger the probability of binding an activity is. But, using this rule, a wasp
can bid for an activity if a hight enough stimulus is emitted.

Each learning routing wasp, at all times, knows what its student is doing:
the status of the queue, the characteristics of the activity that is realized (all
the variables associated to activity, that is Aj,k, ncpj,k, qai,j,k, taj,k, and if the
student is idle). This knowledge is necessary in order to adjust the response
thresholds for the various activities. This update occurs at each time step. If the
student i is currently realizing an activity of the same type of the activity aj,k,
or is in process of starting up this activity, then

wi,j,k = wi,j,k − δ1 (20)

If the student is involved in other type of activity, then

wi,j,k = wi,j,k + δ2 (21)

If the student is currently idle and has empty queue then

wi,j,k = wi,j,k − δτ
3 , (22)

where τ is the length of time the student has been idle and is an exponent.
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The δ1, δ2 and δ3 are positive system constants.
Therefore, wasp stochastically decides whether or not to bid for the activity,

according to the type of activity, the length of time the activity has been waiting
and the response threshold. The response thresholds for the activity type cur-
rently being realized are reinforced as to encourage the learning routing wasp to
bid on activity of the same type. The equation (22) encourages a wasp associated
to an idle student to take whatever activity it can get, rather than remaining
idle. This equation makes easier the integration of a student just entered in the
GRANT system, and helps him to get his first activity.

The main characteristics of our system, which differentiates it from the system
in [5], is that the number of activity’s type dynamically changes in time and that
the number of activities from a student queue depends on the restriction (16).

If two or more learning routing wasps respond positively to the same stimu-
lus, that is bid for the same activity, these learning routing wasps enter in a
dominance contest. We introduced a method for deciding which learning routing
wasp from a group of competing wasps gets the activity. We take into account the
student specialization for the activity aj,k, computed in (14), with an adaptive
choice of parameters ω, α and β. If Mi = ∅, then it will be chosen ω > 1, to
encourage students to enter in GRANT system, otherwise, the parameters ω, α
and β will have constant values, depending on the specialization policy selected
for the GRANT system. We define for a learning routing wasp the force Fi, as:

Fi = 1 +
∑

aj,k∈ queue(i)

(
ncpj,k +

1
si,j,k

)
(23)

where, si,j,k is the student specialization given in (14).
Let i and l be the learning routing wasps in a dominance contest. Learning
routing wasp i will get the activity with probability

Pc(i, l) = P (Wasp i win |Fi, Fl) =
F 2

l

F 2
i + F 2

l

(24)

In this way, learning routing wasps associated with students of equivalent spe-
cializations and equivalent complexity of the activity in their queue, will have
equal probabilities of getting the activity. For the same specialization, if the com-
plexity of the activities in the queue is different, then the wasp with the smaller
complexity has a higher probability of taking the new activity. For the same
complexity of the activities in the queue the wasp with the higher specialization
has a higher probability of taking the new activity. If the specialization of a
wasp is lower but the complexity of the activity in its queue is also lower, the
probability for this wasp may increase.

4 Conclusions

In this paper a model for an adaptive multi-agent system for dynamic routing of
the grants’ activities from a learning environment, based on the adaptive wasp
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colonies behavior, is presented. The model we introduced allows the assignment
of activities taking into account the specialization of students, their experience
and the complexity of activities already taken. An adaptive method allows stu-
dents to enter in the Grant system for the first time. The system is changing
dynamically, because both the type of activities and the students involved in the
system change. Our approach depends on many system parameters.

For the implementation these parameters were tuned by hand. The next di-
rection of our studies is to compare the results obtained for different sets of
parameters and then, to use meta-level optimization of the control parameters.
Another paper will be dedicated only to the implementation aspects and to the
analysis of the results for different sets of system parameters.
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Abstract. The paper presents a method for designing approximately
zero-phase 2-D IIR filters with a quadrantally symmetric magnitude re-
sponse. The method is based on two error criteria: equiripple error cri-
terion in the passband and least-squared error criterion in the stopband.
The filter design problem is transformed into an equivalent bicriterion
optimization problem which is converted into a single criterion optimiza-
tion problem using the weighted sum strategy. The stability constraints
are explicitly included into this problem. A two-step solution procedure
of the considered problem is proposed. In the first step, a genetic algo-
rithm is applied. The final point from the genetic algorithm is used as
the starting point for a local optimization method. A design example is
given to illustrate the proposed technique.

1 Introduction

In recent years, design and implementation of two-dimensional (2-D) digital fil-
ters have been extensively investigated. There are two types of 2-D digital filters:
finite impulse response (FIR) and infinite impulse response (IIR). IIR filters can
have considerably lower order than FIR filters with similar performance, but in
case of causal IIR filters, zero-phase or linear-phase response can be achieved
only approximately [4]. Approximately zero-phase IIR filters are useful in wide
range of applications where the phase of 2-D signals needs to be preserved.

The design of 2-D IIR filters is more complicated than the design of 2-D FIR
filters. The transfer functions of IIR filters are rational functions and the resulting
approximation problems are highly nonlinear. As IIR filters can be unstable, the
stability conditions must also be included into IIR filter design problems. Several
optimization-based methods have been developed for designing 2-D IIR filters
that approximate desired magnitude and phase specifications. In these methods,
either the least-square (LS) or the minimax approximation is applied [1,3,4,5,7].

In the paper, a new approach for the design of 2-D approximately zero-phase
IIR filters with a separable denominator is proposed. This approach is based on
two error criteria: equiripple error criterion in the passband and least-squared
error criterion in the stopband. Two objective functions are introduced and the
filter design problem is transformed into an equivalent bicriterion optimization
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problem. The obtained problem is converted into a single criterion one using the
weighted sum strategy.

The objective function in the considered constrained optimization problem is
highly nonlinear, and may have many local minima. Such difficult optimization
problems may be solved using local optimization methods in certain cases, but
generally global optimization methods are more suitable. Global methods, such
as a genetic algorithm (GA), are particularly effective when the goal is to find an
approximate global minimum in case of high-dimensional, difficult optimization
problems and multiobjective optimizations.

In the paper, a two-step procedure for solving the considered problem is pro-
posed. At the first step, a GA is applied. The final point from the genetic algo-
rithm is used as the starting point for a local optimization method.

The paper is organized as follows. In Section 2, a frequency-domain filter
design problem is formulated. In Section 3, the design problem is transformed
into an equivalent bicriterion optimization problem. Section 4 deals with the
two-step solution procedure. Section 5 comprises an illustrative design example.
Section 6 concludes the paper.

2 Formulation of the Design Problem

The transfer function H(z1, z2) of a 2-D IIR filter is given by

H(z1, z2) =
A(z1, z2)
B(z1, z2)

(1)

where A(z1, z2) and B(z1, z2) are finite order polynomials in z1,z2.
Let B(z1, z2) = D1(z1)D2(z2), where D1(z1) and D2(z2) are 1-D polynomials.

The assumption that B(z1, z2) is separable restricts the filter being designed to
the class of quadrantally symmetric 2-D filters. It is known that the transfer
function of 2-D IIR filters with quadrantally symmetric frequency response has
the separable denominator [5,7]. The class of quadrantally symmetric 2-D IIR
filters covers practically all types of 2-D IIR filters that have been found useful
in 2-D signal processing applications [5].

A two-variable function F (ω1, ω2) possesses quadrantal symmetry if it satisfies
the following condition [7]:

F (ω1, ω2) = F (−ω1, ω2) = F (ω1,−ω2) = F (−ω1,−ω2) (2)

If F (ω1, ω2), in addition, satisfies
F (ω1, ω2) = F (ω2, ω1) (3)

then it has octagonal symmetry. The presence of these symmetries results in
certain relations among the filter coefficients. These relations can be used to
reduce the number of independent parameters in filter design procedures.

Using the symmetry conditions, the transfer function of a quadrantally sym-
metric 2-D IIR filter can be expressed in the form [7]:

H(z1, z2) =
Q1(z1, z2 + z−1

2 )Q2(z1 + z−1
1 , z2)

D(z1)D(z2)
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=
(
∑M

m=0

∑N
n=0 amnz

m
1 (z2 + z−1

2 )n)(
∑M

m=0

∑N
n=0 bmn(z1 + z−1

1 )mzn
2 )

(zK
1 +

∑K−1
i=0 dizi

1)(z
K
2 +

∑K−1
i=0 dizi

2)
(4)

In case of an octagonally symmetric 2-D IIR digital filter, the number of
independent coefficients to optimize is still reduced and the transfer function
can be written as [7]:

H(z1, z2) =
Q(z1 + z−1

1 , z2)Q(z2 + z−1
2 , z1)

D(z1)D(z2)

=
(
∑M

m=0

∑N
n=0 amn(z1 + z−1

1 )mzn
2 )(
∑M

m=0

∑N
n=0 amn(z2 + z−1

2 )mzn
1 )

(zK
1 +

∑K−1
i=0 dizi

1)(z
K
2 +

∑K−1
i=0 dizi

2)
(5)

A 2-D IIR filter design problem is to determine the coefficients of the stable
transfer function H(z1, z2) such that the resulting frequency response is the best
approximation of the desired frequency response in the given sense.

The 2-D IIR filter with the separable denominator is stable if and only if both
D1(z1) and D2(z2) are stable 1-D polynomials [7]. An 1-D polynomial is stable
if its zeros are strictly inside the unit circle.

Let Y be a vector of the transfer function coefficients. In case of a quadrantally
symmetric filter, Y is defined as follows:

Y = [a00, a01, . . . , aNM , b00, b01, . . . , bNM , d0, d1, . . . , dK−1]T (6)

In case of an octagonally symmetric filter, Y is given by:

Y = [a00, a01, . . . , aNM , d0, d1, . . . , dK−1]T (7)

Assume that the continuous (ω1, ω2) - plane is discretized by using a K1×K2

rectangular grid (ω1k, ω2l), k = 0, 1, . . . ,K1 − 1, l = 0, 1, . . . ,K2 − 1.
The desired zero-phase frequency response Hd(ω1k, ω2l) of the 2-D filter is:

Hd(ω1k, ω2l) =
{

1 for (ω1k, ω2l) in the passband P ,
0 for (ω1k, ω2l) in the stopband S. (8)

Let H(ejω1 , ejω2 ,Y) denote the frequency response of the filter obtained using
the coefficients given by vector Y.

In case of the proposed method, the approximation error is defined differently
in the passband and in the stopband. In the passband P , the approximation is
to be equiripple. The error function E(ω1k, ω2l,Y) is given by:

E(ω1k, ω2l,Y) = |H(ejω1k , ejω2l ,Y) −Hd(ω1k, ω2l)|, ω1k, ω2l ∈ P. (9)

Note that the function E(ω1k, ω2l,Y) is real.
In the stopband S, the LS error E2(Y) to be minimized is:

E2(Y) =
∑

(ω1k,ω2l)∈S

|H(ejω1k , ejω2l ,Y)−Hd(ω1k, ω2l)|2 (10)
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The considered 2-D IIR filter design problem can be formulated as follows: For
desired zero-phase response Hd(ω1k, ω2l) defined on a rectangular grid K1×K2,
and given degrees of numerator and denominator find a vector Y for which the
designed filter is stable and the error function E(ω1k, ω2l,Y) is equiripple in the
passband and, simultaneously, the LS error E2(Y) is minimized in the stopband.
Optionally, the following condition on the maximum allowable approximation
error δ > 0 in the passband can be additionally imposed:

∀ω1k, ω2l ∈ P
∣∣H(ejω1k , ejω2l ,Y)−Hd(ω1k, ω2l)

∣∣ ≤ δ (11)

Adding the above condition results in obtaining the magnitude ripple equal or
smaller than δ.

3 Transformation of the Problem

We solve the considered filter design problem by transforming it into an equiv-
alent bicriterion optimization problem. We introduce two objective functions
X1(Y) and X2(Y). Let us assume that the function X1(Y) possesses the prop-
erty that it has the minimum equal to zero when the error function E(ω1k, ω2l,Y)
is equiripple in the passband. The error function E(ω1k, ω2l,Y) is equiripple in
the passband when the absolute values ∆Ei(Y), i = 1, 2, . . . , J , of all the local
extrema of the function E(ω1k, ω2l,Y) in the passband, as well as the maximum
value ∆EJ+1(Y) of E(ω1k, ω2l,Y) at the passband edge are equal, i.e.:

∆Ei(Y) = ∆Ek(Y), k, i = 1, 2, . . . , J + 1. (12)

Let the objective function X1(∆E1, ∆E2, . . . , ∆EJ+1) be defined as follows:

X1(∆E1, ∆E2, . . . , ∆EJ+1) =
J+1∑
i=1

(∆Ei −R)2, (13)

where:

R =
1

J + 1

J+1∑
k=1

∆Ek. (14)

is the arithmetic mean of all ∆Ek, k = 1, 2, . . . , J + 1.
Note that X1 is non-negative function of ∆E1, ∆E2, . . . , ∆EJ+1 and it is

equal to zero if and only if ∆E1 = ∆E2 = · · · = ∆EJ+1. As ∆E1, ∆E2, . . . ,
∆EJ+1 are the functions of the vector Y, the function X1 can be used as the
first objective function in our bicriterion optimization problem. As the second
objective function, we apply the LS error E2(Y), so X2(Y) = E2(Y). The
weighted combination of the two objective functions X1(Y) and X2(Y) allows
simultaneous control of both the equiripple error in the passband and the LS
error in the stopband.

The equivalent optimization problem can be stated as follows: For given filter
specifications and a weighting coefficient α, find a vector Y such that the function

X(Y, α, β) = αX1(Y) + (1− α)βX2(Y) (15)

is minimized, when the following stability constraints are given:
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D(z1) �= 0 for |z1| ≥ 1 (16)

D(z2) �= 0 for |z2| ≥ 1 (17)

Note that X(Y, α, β) is a convex combination of two objective functions
X1(Y) and X2(Y). Introducing the parameter β enables obtaining compara-
ble initial values of the two terms in (15).

4 Hybrid Solution Procedure

In the previous section, we have formulated a 2-D IIR filter design problem as
a constrained bicriterion optimization problem. This optimization problem is
highly nonlinear, may be multimodal and has high dimensionality. The stability
constraints on the filter coefficients are also included into the problem. Local
optimization methods may work well in case of some 2-D filter design problems,
but they generally are less suited for solving such difficult optimization prob-
lems. Global methods, such as GAs, are more likely to obtain better solutions
in case of high-dimensional, difficult optimization problems, multimodal prob-
lems and multi-objective optimizations. GAs are also largely independent of the
initial conditions. Because of these reasons, GAs are well suited for solving the
optimization problem formulated in the previous section.

GAs are stochastic search and optimization techniques based on the mech-
anism of natural selection. GAs operate on a population of individuals (chro-
mosomes) in each generation. A chromosome represents one possible solution to
a given optimization problem. Chromosome coding is the way of representing
the design variables. GAs use various coding schemes and the choice of coding
scheme depends on the kind of the optimization problem.

To start implementing a GA, an initial population is considered. Successive
generations are produced by manipulating the solutions in the current popu-
lations. Each solution has a fitness (an objective function) that measures its
competence. New solutions are formed using crossover and mutation operations.
The crossover mechanism exchanges portions of strings between the chromo-
somes. Mutation operation causes random alternations of the strings introducing
new genetic material to the population. According to the fitness value, a new
generation is formed by selecting the better chromosomes from the parents and
offspring, and rejecting other so as to keep the population size constant. The
algorithm converges to the best chromosome, which represents the solution of
the considered optimization problem. The detailed description of a simple GA
is presented by Goldberg in [2].

In order to solve the optimization problem formulated in the previous section,
we propose a hybrid procedure, i.e., a combination of the GA and a local op-
timization method [2]. Such hybrid approach is useful in our case because GAs
are slow in convergence, especially when the solution is close to the optimum. In
order to improve the speed of convergence, after a specified number of genera-
tions in the GA has been reached, a local optimization method — the Davidon,
Fletcher, and Powell (DFP) method is applied to solve the considered problem.
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In the implementation of the GA used in the first step of the solution pro-
cedure, the elements of chromosome vectors are double precision floating point
numbers. The GA terminates when a predefined maximum number of genera-
tions is exceeded. The final point from the GA (the best solution) is used as the
starting point for the DFP method. The DFP method is a quasi-Newton method
which approximates the inverse Hessian matrix [6]. Note that the proposed hy-
brid approach combines the advantages of a GA with the fast convergence and
accuracy of a quasi-Newton method.

Numerical calculations have shown that it is possible to achieve better conver-
gence if, instead of the minimization problem formulated in the previous section,
we apply the GA to the following least square approximation problem

E2(Y) =
∑

(ω1k,ω2l)∈P∪S

|H(eω1k , eω2l ,Y)−Hd(ω1k, ω2l)|2 (18)

Then, the solution of this problem is used as a starting point for solving the
problem of minimizing X(Y) using the DFP method. As the final result, we
get a vector Y of the transfer function coefficients for which the error function
E(ω1k, ω2l,Y) is equiripple in the passband and LS error is minimized in the
stopband. The local extrema of the error function E(ω1k, ω2l,Y) are determined
by searching the grid.

In applying the GA, the choice of the probability of crossover, the probability
of mutation as well as the choice of the population size are very important.
Their settings are dependent on the form of objective function. In the developed
program, the population size is 30, the probability of crossover is 0.8, and the
probability of mutation is 0.01.

The constrained optimization problem has been transformed into an uncon-
strained problem using penalty function technique.

5 Design Example

In this section, we apply the proposed approach to the design of a circularly
symmetric, lowpass 2-D IIR filter. The passband of the filter is a circular region
centered at (0, 0) with a radius rp = 0.45π. The stopband corresponds to the
region outside the circle with a radius of rs = 0.7π. The desired magnitude
response is 1 in the passband P , 0 in the stopband S and varies linearly in the
transition band Tr. The filter is designed with M = 1, N = 9, K = 8, δ = 0.05,
and β = 4 × 104. The weighting coefficient is α = 0.5. A square grid of 101 ×
101 points is used for discretizing the (ω1, ω2)-plane. The magnitude and phase
responses of the resulting filter are shown in Fig. 1 and 2, respectively. Note that
the resulting phase response is close approximation of the zero-phase response
in the passband. The designed filter is stable. The maximum pole magnitude is
0.824. It should be pointed out that the order of the designed filter is relatively
high and the considered design problem is quite difficult.

As GAs are stochastic methods, several runs (at least 30 executions) should
be performed to analyze the accuracy of the method. We have performed 30
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Fig. 1. Magnitude response of the filter designed in the example (x = ω1/π, x = ω2/π)
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Fig. 2. Phase response of the filter designed in the example (x = ω1/π, x = ω2/π)

executions of the program for the filter specifications as in the above example
and it has turned out that the coefficients of the vector Y obtained after solving
the problem of minimizing X(Y) using the DFP method have been differing
quite unsignificantly.

In order to compare the resulting filter with the filter obtained using the LS
approach, the LS filter was designed for the same filter specifications. In case of
the proposed approach, the maximum values of the error function E(ω1k, ω2l,Y)
are: in the passband δp = 0.050 and in the stopband δs = 0.051. For the LS
filter, δp = 0.170 and δs = 0.130. Note that in case of the proposed approach,
the maximum values of the error function are smaller than in case of the LS
approach, both in the passband and in the stopband.
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6 Conclusions

A new technique for the design of 2-D approximately zero-phase IIR filters with
separable denominator has been presented. Using this technique, phase responses
that are close approximations of the zero-phase response in the passband can be
achieved. The application of symmetry conditions reduces the number of design
parameters. The filter design problem is transformed into a bicriterion optimiza-
tion problem. Stability constraints are explicitly included into this problem. Ad-
ditional linear and/or nonlinear constraints, such as e.g., the impulse response
decay that characterizes the width of the boundary effect layer in the filtered
signal domain [3], can be also included. In the proposed approach, a standard
GA along with a local optimization method is used to solve the considered opti-
mization problem. The proposed technique can also be applied for solving other
2-D filter design problems in which a compromise between the equiripple and
LS errors is required [8]. It should be possible to extend the proposed technique
to the design of 2-D IIR filters with separable denominator and approximately
constant group delay. This topic will be studied in the future.
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Abstract. The aim of this paper is to present a new finite element ap-
proach applied to a nonstandard second order elliptic eigenvalue problem,
defined on two overlapping domains. We derive optimal error estimates
as distinguished from [1], where they are suboptimal. For this purpose
we introduce a suitable modified degrees of freedom and a corresponding
interpolation operator. In order to fix the ideas and to avoid technical
difficulties, we consider an one-dimensional case. The conclusive part
presents numerical results.

1 Introduction

Let Ω1 and Ω2 be the overlapping intervals (a1, b1) and (b2, a2) respectively, i.e.
a1 < b2 < b1 < a2. Let also Hm(Ωi) be the usual m-th order Sobolev space on
Ωi, i = 1, 2 with norm ‖ · ‖m,Ωi.

Consider the one-dimensional elliptic operators

L(i) = − d

dx

(
α(i)(x)

d

dx

)
+ α

(i)
0 (x),

where α(i)(x) > 0 and α
(i)
0 (x) ≥ 0 are bounded functions on Ωi, i = 1, 2. For

notational convenience we shall often drop the argument x.
The eigenvalue problem is defined by:

Find (λ, u1, u2) ∈ R×H2(Ω1)×H2(Ω2) which obey the differential equation

L(i)ui + (−1)iχΩ1∩Ω2 .K = λui in Ωi, i = 1, 2, (1)

and the boundary conditions

α(i)u′
i(bi)− (−1)iσ(i)ui(bi) = 0,

ui(ai) = 0, i = 1, 2,
(2)

as well as the following nonlocal coupling condition:∫
Ω1∩Ω2

[u1(x) − u2(x)] dx = 0. (3)
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Herein σ(i) ≥ 0 and χΩ1∩Ω2 denotes the characteristic function of Ω1 ∩Ω2.

Remark 1. K is a real number depending on unknown function u = (u1, u2). It
is easy to obtain its explicit representation:

K =
1

2meas(Ω1 ∩Ω2)

2∑
i=1

(−1)i
{[

α(i)(b1)u′
i(b1)− α(i)(b2)u′

i(b2)
]

−
∫

Ω1∩Ω2

α
(i)
0 (x)ui(x) dx

}
.

The study of problem (1)–(3) is motivated by its applications in many engi-
neering disciplines. Such kind of “contact problems” appear in heat conduction,
soil airing, and semiconductors.

We introduce the spaces

Vi =
{
vi ∈ H1(Ωi) : vi(ai) = 0

}
, i = 1, 2 and Ṽ = V1 × V2.

Let the space, which incorporates the nonlocal coupling condition (3) on Ω1∩
Ω2, be defined by

V =
{
v ∈ Ṽ :

∫
Ω1∩Ω2

[v1(x) − v2(x)] dx = 0
}

.

Obviously, V is a closed subspace of Ṽ .
Consider the following variational eigenvalue problem: Find (λ, u) ∈ R × V

such that for all v ∈ V
a(u, v) = λ(u, v), (4)

where

a(u, v) =
2∑

i=1

[∫
Ωi

(
α(i)(x)u′

i(x)v′i(x)

+α
(i)
0 (x)ui(x)vi(x)

)
dx + σ(i)ui(bi)vi(bi)

]
,

(u, v) =
2∑

i=1

∫
Ωi

ui(x)vi(x) dx.

Using the definition of trial and test functions of V as well as the properties
of coefficient functions, it is easy to see that:
– a(·, ·) is bounded, symmetric and strongly coersive on V × V ;
– V is a closed subspace of H1(Ω1)×H1(Ω2).

Thus, for the problem (4) we can refer to the theory of abstract elliptic eigen-
value problems in Hilbert space [2]. We shall use the following results proved by
De Shepper (see [1], Theorem 6):

Theorem 1. The problems (1)–(3) and (4) are formally equivalent. Both prob-
lems have a countable infinite set of eigenvalues λl, all being strictly positive and
having finite multiplicity, without a finite accumulation point. The correspond-
ing eigenfunctions ul can be chosen to be a Hilbert basis of V , orthonormal with
respect to (·, ·).
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2 Finite Element Approximations

We are interested in the approximation of the eigenpairs of (4) by the finite
element method (FEM). Consider families of regular finite element partitions
τ

(i)
hi

of Ωi, i = 1, 2, which fulfill standard assumptions [3]. Herein h1 and h2

are mesh parameters. Nodal points on the intervals Ωi, i = 1, 2 are chosen in a
following way:

a1 = s
(1)
0 < s

(1)
1 < . . . < s

(1)
k1

= b1, a2 = s
(2)
0 > s

(2)
1 > . . . > s

(2)
k2

= b2,

h
(i)
j = |s(i)

j − s
(i)
j−1|, hi = max

j
h

(i)
j , j = 1, . . . , ki, h = max

i
hi, i = 1, 2.

Then the partitions τ
(i)
hi

consist of intervals T i
j with endpoints s

(i)
j−1 and s

(i)
j

such that τ
(i)
hi

=
⋃ki

j=1 T i
j . Let us note that b1 and b2 are nodes for both partitions

τ
(1)
h1

and τ
(2)
h2

, i.e. T i
j ∈ Ω1 ∩Ω2 or T i

j ∈ Ωi \Ω1 ∩Ω2.

We introduce the following finite element spaces related to the partitions τ
(i)
hi

:

X i
hi

=
{
vi ∈ C(Ωi) : vi|T i

∈ P2(T i) ∀T i ∈ τ
(i)
hi

}
, i = 1, 2,

where P2(T i) is the set of polynomials of degree ≤ 2.

Remark 2. Our presentation is restricted to polynomials of second degree. Nev-
ertheless, the approach we will present could be generalized when vi|T i

∈ Pk(T i),
k > 2. As it will be clarified later, the case k = 1 is not applicable to our method.

On the base of X i
hi
, i = 1, 2 we define Xh = X1

h1
×X2

h2
and

Xh,0 = {v = (v1, v2) ∈ Xh : vi(ai) = 0} , i = 1, 2,

Then, the finite element space related to the nonlocal boundary condition on
the intersection of the domains is:

Vh =
{
v ∈ Xh,0 :

∫
Ω1∩Ω2

[v1(x)− v2(x)] dx = 0
}

, Vh ⊂ V.

Now we will present a method which gives an optimal order FE approximation
applied to the problem (4).

For any element T i
j we choose its degree of freedom in such a way that every

polynomial p(x) ∈ P2(T i
j ) is determined by the values at the endpoints of T i

j

and the integral value
∫

T i
j

p(x) dx, j = 1, . . . , ki, i = 1, 2.

We define the interpolation operator πh : C(Ω1) × C(Ω2) → Xh,0, where
πh = (πh1 , πh2) by means of following conditions:

πhv = (πh1v1, πh2v2) ∈ Xh,0;

πhivi(s
(i)
j ) = vi(s

(i)
j ), j = 0, . . . , ki, i = 1, 2,
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T i

j

πhivi(x) dx =
∫

T i
j

vi(x) dx, j = 1, . . . , ki, i = 1, 2.

In view of integral condition, it is evident that πhv ∈ Vh for any v ∈ V .
Likewise, let Πhi , i = 1, 2 be the Lagrange quadratic interpolation operators

on Ωi, i = 1, 2 respectively. Then we denote Πh = (Πh1 , Πh2) ∈ Xh,0.
First, we estimate the difference between both interpolants Πh and πh. This is

a crucial point of our approach. In contrast to [1] (cf. Proposition 8) an optimal
order error estimate is obtained. Considerations are restricted to polynomials of
degree two, but this result could be proved for polynomials of higher degree. Also,
the results could be extended to two-dimensional case for second-order problems.
It is relevant to remark that, in account of (3), one can use integral degrees of
freedom for fourth-order problems on overlapping domains (see e.g. [5]).

For the case we consider the next theorem contains the main result:

Theorem 2. Let the function v = (v1, v2) belong to V ∩H3(Ω), Ω = Ω1 ∪Ω2.
Then there exists a constant C = C(Ω) > 0, independent of h, such that

‖v − πhv‖m,Ω ≤ Ch3−m‖v‖3,Ω, m = 0, 1. (5)

Proof. We shall estimate Πhivi − πhivi on each finite element T i
j , j = 1, · · · , ki,

i = 1, 2.
For this purpose, we denote t = x− s

(i)
j−1, x ∈ T i

j .

Evidently t ∈ [0, h(i)
j ]. The basis functions of the Lagrange interpolant, related

to this interval, are:

ψ1(t) =
2

h
(i)
j

2 t
2 − 3

h
(i)
j

t + 1; ψ2(t) = − 4

h
(i)
j

2 t
2 +

4

h
(i)
j

t; ψ3(t) =
2

h
(i)
j

2 t
2 − 1

h
(i)
j

t.

Analogously, for πhi the basis functions, corresponding to the degrees of free-
dom that we have chosen, are:

ϕ1(t) =
3

h
(i)
j

2 t
2− 4

h
(i)
j

t+1; ϕ2(t) = − 6

h
(i)
j

3 t
2 +

6

h
(i)
j

2 t; ϕ3(t) =
3

h
(i)
j

2 t
2− 2

h
(i)
j

t.

Then

(Πhivi − πhivi)|
T i

j

=

[
ψ1(t)vi(s

(i)
j−1) + ψ2(t)vi

(
s
(i)
j−1 + s

(i)
j

2

)
+ ψ3(t)vi(s

(i)
j )

]

−
[
ϕ1(t)vi(s

(i)
j−1) + ϕ2(t)

∫
T i

j

vi(x) dx + ϕ3(t)vi(s
(i)
j )

] (6)

=
(
− 1

h
(i)
j

2 t
2 + 1

h
(i)
j

t

)[
vi

(
s
(i)
j−1

)
+ 4vi

(
s
(i)
j−1+s

(i)
j

2

)
+ vi

(
s
(i)
j

)
− 6

h
(i)
j

∫
T i

j
vi(x) dx

]
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=
6

h
(i)
j

⎛⎝− 1

h
(i)
j

2 t
2 +

1

h
(i)
j

t

⎞⎠[h(i)
j

(
1
6
vi(s

(i)
j−1)

+
4
6
vi(

s
(i)
j−1 + s

(i)
j

2
) +

1
6
vi(s

(i)
j )

)
−
∫

T i
j

vi(x) dx

]
.

Expression in square brackets represents error functional of a quadrature for-
mula, i.e.

ET i
j
(vi) = h

(i)
j

(
1
6
vi(s

(i)
j−1) +

4
6
vi(

s
(i)
j−1 + s

(i)
j

2
) +

1
6
vi(s

(i)
j )

)
−
∫

T i
j

vi(x) dx.

It is easy to verify, that ET i
j
(vi) = 0 for all vi ∈ P2(T i

j ). However, the quadra-
ture formula is more accurate, i.e. ET i

j
(vi) = 0 for vi ∈ P3(T i

j ). But, to make
use of this property a higher order of regularity of the function vi is needed.

Using the Bramble-Hilbert lemma [4], we have

|ET i
j
(vi)| ≤ Ch

(i)
j

4
|v|3,T i

j
, (7)

where | · |3,T i
j

is third order Sobolev seminorm.
On the other hand∣∣∣∣∣∣ 6

h
(i)
j

⎛⎝− 1

h
(i)
j

2 t
2 +

1

h
(i)
j

t

⎞⎠∣∣∣∣∣∣ ≤ 3
2
h

(i)
j

−1
, t ∈ [0, h(i)

j ].

From this inequality and (7) it follows that

|Πhivi − πhivi|T i
j
≤ Ch

(i)
j

3
|vi|3,T i

j
.

Then, finally we obtain the following L2-norm error estimate:

‖Πhv − πhv‖0,Ω =

⎛⎜⎝ 2∑
i=1

∑
T i

j ∈τ
(i)
hi

∫
T i

j

|Πhivi − πhivi|2 dx

⎞⎟⎠
1/2

≤ Ch3‖v‖3,Ω. (8)

By the same way as (6), we calculate

(Πhivi − πhivi)
′
|
T i

j

=

⎛⎝− 2

h
(i)
j

2 t +
1

h
(i)
j

⎞⎠[vi(s
(i)
j−1) + 4vi(

s
(i)
j−1 + s

(i)
j

2
) + vi(s

(i)
j )

− 6

h
(i)
j

∫
T i

j

vi(x) dx

]
=

6

h
(i)
j

⎛⎝− 2

h
(i)
j

2 t +
1

h
(i)
j

⎞⎠ET i
j
(vi).
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We estimate ∣∣∣∣∣∣ 6

h
(i)
j

⎛⎝− 2

h
(i)
j

2 t +
1

h
(i)
j

⎞⎠∣∣∣∣∣∣ ≤ 6h(i)
j

−2
, t ∈ [0, h(i)

j ].

Applying again (7) we obtain | (Πhivi − πhivi)
′ |T i

j
≤ Ch

(i)
j

2
|vi|3,T i

j
.

Then, the H1-norm error estimate is

‖Πhv − πhv‖1,Ω ≤ Ch2‖v‖3,Ω.

This inequality and (8) give

‖Πhv − πhv‖m,Ω ≤ Ch3−m‖v‖3,Ω, m = 0, 1. (9)

Finally, using classical interpolation theory [3], inequality (9) and applying

‖v − πhv‖m,Ω ≤ ‖v −Πhv‖m,Ω + ‖Πhv − πhv‖m,Ω

we complete the proof.

As a consequence of this theorem one can prove

Proposition 1. The finite element space Vh ⊂ V satisfies the following approx-
imation property:

inf
vh∈Vh

{‖v − vh‖0,Ω + h|v − vh|1,Ω} ≤ Ch3‖v‖3,Ω,

‖v −Rhv‖1,Ω ≤ Ch3‖v‖3,Ω, ∀v ∈ V ∩H3(Ω),
(10)

where Rh : V → Vh is the elliptic projector defined by

a(u−Rhu, vh) = 0, ∀u ∈ V, vh ∈ Vh.

Let us define finite element approximation of the eigenvalue problem (4): Find
(λh, uh) ∈ R× Vh such that

a(uh, vh) = λh(uh, vh) ∀vh ∈ Vh. (11)

The estimates (10) enable us to adapt the theory of the error analysis [2]
to the case of one-dimensional problem on overlapping domains. Namely, using
quadratic finite elements to solve (11), we get optimal order error estimate. If
(λ, u) is an exact eigenpair of (4) and (λh, uh) is the corresponding approximate
solution of (11), then

‖u− uh‖1,Ω ≤ Ch2‖u‖3,Ω,

|λ− λh| ≤ Ch4‖u‖23,Ω,

where C = C(Ω) is independent of the mesh parameters.
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3 Numerical Results

We apply the theoretical results obtained in previous section taking an example
which gives a good illustration of the proposed approach and at the same time
its exact eigenpairs could be determined.

Let Ω1 = [0, 2π] and Ω2 = [π, 3π]. The model problem is:
−u′′

1 −Kχ(π,2π) = λu1 on (0, 2π),

−u′′
2 + Kχ(π,2π) = λu2 on (π, 3π),

u1(0) = 0, u2(3π) = 0,
u′

1(2π) = 0, u′
2(π) = 0,∫ 2π

π

[u1(x)− u2(x)] dx = 0.

The exact eigenvalues are λ2j+1 = λ2j+2 =
(

2j + 1
4

)2

, j = 0, 1, . . ..

Table 1. The eigenvalues computed by the quadratic mesh

λh / N 4 8 16 32

λ1,h 0.0625001288 0.0625000081 0.0625000005 0.0625000000

λ2,h 0.0625001288 0.0625000081 0.0625000005 0.0625000000

λ3,h 0.5625923908 0.5625058521 0.5625003670 0.5625000230

λ4,h 0.5926287762 0.5625058568 0.5625003670 0.5625000230

λ5,h 1.5644208630 1.56262443651 1.5625078502 1.5625004918

Table 2. The relative error R

Rh / N 4 8 16 32

R1,h 2.06 × 10−6 1.29 × 10−7 8 × 10−9 0

R2,h 2.06 × 10−6 1.29 × 10−7 8 × 10−9 0

R3,h 1.64 × 10−4 1.04 × 10−5 6.52 × 10−7 4.09 × 10−8

R4,h 5.36 × 10−2 1.04 × 10−5 6.52 × 10−7 4.09 × 10−8

R5,h 1.23 × 10−3 7.96 × 10−5 5.02 × 10−6 3.15 × 10−7

For the constant K it is easy to obtain K =
u′

1(π) + u′
2(2π)

2π
.

We use a quadratic mesh partitions of both domains Ωi, i = 1, 2 consisting
of N identical subintervals. It means that h is taken to be equal to 2π/N . The
numerical results for the first five eigenvalues computed by finite element method
in terms of integral degrees of freedom are given in Table 1. Table 2 shows the
relative error Ri,h = λi,h/λi − 1.
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Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 108–115. Springer, Heidel-
berg (2005)



Superconvergent Finite Element Postprocessing

for Eigenvalue Problems with Nonlocal
Boundary Conditions

A.B. Andreev1 and M.R. Racheva2

1 Department of Informatics
Technical University of Gabrovo

5300 Gabrovo, Bulgaria
2 Department of Mathematics

Technical University of Gabrovo
5300 Gabrovo, Bulgaria

Abstract. We present a postprocessing technique applied to a class of
eigenvalue problems on a convex polygonal domain Ω in the plane, with
nonlocal Dirichlet or Neumann boundary conditions on Γ1 ⊂ ∂Ω. Such
kind of problems arise for example from magnetic field computations in
electric machines. The postprocessing strategy accelerates the conver-
gence rate for the approximate eigenpair. By introducing suitable finite
element space as well as solving a simple additional problem, we obtain
good approximations on a coarse mesh. Numerical results illustrate the
efficiency of the proposed method.

1 Introduction

This study deals with second order eigenvalue problems with nonlocal boundary
conditions. Here, we propose a procedure for accelerating the convergence of
finite element approximations of the eigenpairs.

Let Ω ⊂ R2 be a bounded polygonal domain with boundary ∂Ω = Γ 1 ∪ Γ 2.
Here Γ1 and Γ2 are disjoint parts of ∂Ω, each consisting of an integer number
of sides of Ω. We consider the following two model problems:

(P1): Find u(x) ∈ H2(Ω), u(x) �= 0 and λ ∈ R satisfying the differential
equation

−
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ a0u = λu, x ∈ Ω, (1)

subject to nonlocal Dirichlet boundary condition∫
Γ1

u ds = 0, (2)

∂u

∂ν
≡

2∑
i,j=1

aij
∂u

∂xj
νi = K = const, x ∈ Γ1, (3)

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 645–653, 2008.
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and usual Robin boundary condition on Γ2

∂u

∂ν
+ σu = 0, x ∈ Γ2. (4)

(P2): Find u(x) ∈ H2(Ω), u(x) �= 0 and λ ∈ R satisfying (1) as well as the
nonlocal Neumann boundary condition∫

Γ1

2∑
i,j=1

(
aij

∂u

∂xj
νi

)
ds = 0, (5)

u = K = const, x ∈ Γ1, (6)

and the eigenfunctions u(x) obey the Robin boundary condition (4) on Γ2.
The constant value K for both problems is unknown and it must be deter-

mined as a part of the solution.
The data used in (1)–(6) are as follows:

∃α > 0, ∀ξ ∈ R2
2∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2, a.e. in Ω,

aij(x) ∈ L∞(Ω); aij = aji, i, j = 1, 2, a.e. in Ω,

a0(x) ∈ L∞(Ω); ∃a > 0 : a0(x) ≥ a, a.e. in Ω,

σ(x) ∈ L∞(Ω); ∃σ0 ≥ 0 : σ(x) ≥ σ0, a.e. in Γ2.

Moreover, νi is the i-th component of the outward unit normal vector ν to
∂Ω.

Eigenvalue problems for linear elliptic differential equations in one or more
dimensions are in themselves important in various physical and engineering con-
texts. In addition they form a link between linear elliptic boundary value prob-
lems on one hand and some initial problems for evolution equations on the
other. The considered problems (P1) and (P2) could be referred to some type
of Helmholz equations applied to electro-magnetic field computations (see, for
example [7] or [6]).

In engineering practice the variational eigenvalue problem is the starting point
for an internal approximation method as in the standard finite element method
[6]. Our aim is, using the ideas developed in [4] (see also [1]), to extend the
results applied to the problems with nonlocal boundary conditions. We derive
a postprocessing algorithm that allows to get higher order convergence for the
postprocessed eigenpairs.

2 Some Preliminaries

For positive integer k we shall use the conventional notations for the Sobolev
spaces Hk(Ω) and Hk

0 (Ω) provided with the norm ‖ · ‖k,Ω and seminorm | · |k,Ω
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[2]. We denote the L2-inner product by (·, ·) and by ‖ · ‖0,Ω — the L2-norm on
Ω. We use C as a generic positive constant which is not necessarily the same at
each occurrence.

Further on, we shall also use some results obtained by De Shepper and Van
Keer [7,3]. First, let us note that the differential equation (1) and the Robin
boundary condition (4) coincide in Ω and on Γ2 respectively for both problems
(1)–(4) and (1), (4)–(6). Thus we have one and the same presentation of the
variational a-form

a(u, v) =
∫

Ω

⎛⎝ 2∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
+ a0uv

⎞⎠ dx +
∫

Γ2

σuv ds ∀u, v ∈ V, (7)

where V is a subspace of H1(Ω).
We shall present our postprocessing procedure using only the problem with

nonlocal Neumann boundary condition. The space of trial functions is defined
by

V =
{
v ∈ H1(Ω) : v is constant on Γ1

}
.

The variational problem corresponding to (P2) is: Find (λ, u) ∈ R× V such
that

a(u, v) = λ(u, v) ∀v ∈ V. (8)

Using the definition of V , it is evident from (7) that:

– a(·, ·) is bounded, symmetric and strongly coersive on V × V ;
– V is a closed subspace of H1(Ω). Also, V is densely and compactly embedded

in L2(Ω).

Thus, the following theorem is valid [7,5]:

Theorem 1. Problem (8) has a countable infinite set of eigenvalues λi, all be-
ing strictly positive and having finite multiplicity, without a finite accumulation
point. The corresponding eigenfunctions ui can be chosen to be orthonormal in
L2(Ω). They constitute a Hilbert basis for V .

For any function f ∈ L2(Ω) let us consider the following elliptic problem [1]:

a(u, v) = (f, v) ∀v ∈ V.

Then the operator T : L2(Ω)→ V defined by u = Tf, u ∈ V is the solution
operator for boundary value (source) problem. Evidently:

a(Tu, v) = a(u, T v) ∀u, v ∈ H1(Ω),

(Tu, v) = (u, T v) ∀u, v ∈ L2(Ω).

Accordingly, the operator T is symmetric and positive. It follows by the Riesz
representation theorem (a(·, ·) is an inner product on V ), that T is bounded. As
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it is shown in [5], λ is an eigenvalue and u is the corresponding eigenfunction if
and only if u− λTu = 0, u �= 0.

We are interested in the approximation of the eigenpairs of (8) by the finite
element method. Let τh be a regular family of triangulations of Ω which fulfill the
standard assumptions (see [2], Chapter 3). The partitions τh consist of triangular
or quadrilateral elements e.

Using τh we associate the finite-dimensional subspaces Vh of V ∩ C(Ω) such
that the restriction of every function of these spaces over every finite element e ∈
τh is a polynomial of Pk(e) or Qk(e) if e is a triangle or a rectangle, respectively.
Here Pk(e) is the set of polynomials of degree which is less than or equal to k
and Qk(e) is the set of polynomials of degree which is less than or equal to k in
each variable. Moreover, h = maxe∈τh

he, where he denotes the diameter of e.
Let us introduce the following finite element space related to the partition τh:

Xh =
{
v ∈ C0(Ω) : v|e ∈ Pk(e) (or Qk(e)), ∀e ∈ τh

}
⊂ H1(Ω).

Also, we will use the space

X0,h = {v ∈ Xh : v = 0 on Γ1} .

Let {ai}Ni=1, where ai and N depend on h, be the set of nodes associated with
Xh and {ϕi}Ni=1 be the canonical basis for Xh. The nodes are numbered in such
a way that the first N0 of them belong to Γ1.

Defining the function ψ =
∑N0

i=1 ϕi it is easy to see, that ψ(ai) = 1, i =
1, . . . , N0 and ψ(ai) = 0, i = N0 + 1, . . . , N .

Then the finite element space Vh can be represented as Vh = X0,h ⊕ span ψ.
Clearly, dimX0,h = N −N0. Also, it is important to note that, constructing

the mass and stiffness matrix for the corresponding problem, the first N0 nodes
should be treated as a single node and the functions ψ and {ϕ}Ni=N0+1 form a
basis for the finite element space Vh.

The approximate eigenpairs (λh, uh) obtained by the finite element method
corresponding to (8) are determined by: Find λh ∈ R, uh ∈ Vh, uh �= 0 such
that

a(uh, v) = λh(uh, v) ∀v ∈ Vh. (9)

Crucial point in the finite element analysis is to construct an appropriate
space Vh. Some computational aspects related to Vh will be discussed later. The
construction of Vh proposed by De Shepper and Van Keer (see [7], Lemmas 3.1
and 3.2) fulfills the standard approximation property:

inf
vh∈Vh

{‖v − vh‖0,Ω + h‖v − vh‖1,Ω} ≤ Chr+1‖v‖r+1,Ω ∀v ∈ V ∩Hr+1(Ω),

(10)
where 1 ≤ r ≤ k.

On the base of this result the rate of convergence of finite element approxima-
tion to the eigenvalues and eigenfunctions can be given by the following estimates
[5]:

‖u− uh‖m,Ω ≤ Chk+1−m‖u‖k+1,Ω, m = 0, 1, (11)

|λ− λh| ≤ Ch2k‖u‖k+1,Ω. (12)
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3 Postprocessing Technique

Our aim is to prove that the ideas, developed in [4] and [1] could be applied to
the eigenvalue problem with nonlocal boundary conditions. Namely, the post-
processig method is reduced to the solving of more simple linear elliptic problem
on a higher-order space.

Let uh be any approximate eigenfunction of (9) with (uh, uh) = 1. Using finite
element solution we consider the following elliptic problem:

a(ũ, v) = (uh, v) ∀v ∈ V. (13)

Let us define the number
λ̃ =

1
(ũ, uh)

,

where ũ and uh are solutions of (13) and (9) respectively.
We now consider the approximate elliptic problem corresponding to (13).

Using the same partition τh, we define the finite-dimensional subspace Ṽh ⊂
V ∩ C(Ω) such that the restriction of every function of Ṽh over every finite
element e ∈ τh is a polynomial of higher degree. More precisely, since Vh contains
polynomials from Pk(e) (Qk(e)), it is sufficient to choose Ṽh in such a manner
that it contains polynomials from Pk+1(e) (Qk+1(e)). The finite element solution,
which corresponds to (13) is:

a(ũh, v) = (uh, v) ∀v ∈ Ṽh. (14)

Then we define
λ̃h =

1
(ũh, uh)

,

where uh and ũh are solutions of (9) and (14) respectively.

Theorem 2. Let the finite element subspaces Vh and Ṽh contain piece-wise poly-
nomials of degree k and k+1 respectively. If (λ, u) is an eigenpair of problem (8)
with nonlocal boundary condition, u ∈ Hk+1(Ω) and (λh, uh) is the corresponding
solution of (9). Let also eigenfunctions be normalized, i.e. (u, u) = (uh, uh) = 1.
Then the following superconvergent estimate holds:

|λ− λ̃h| ≤ Ch2k+2‖u‖2k+1,Ω. (15)

Proof. Because of the fact, that T is a solution operator, it is evident that
a(Tu, v) = (u, v), ∀v ∈ V . Then a(Tu, u) = 1 and a(u, Tu) = λ(u, Tu). Conse-
quently

λ =
1

(Tu, u)
.

Thus we obtain
1
λ
− 1

λ̃
= (Tu, u)− (Tuh, uh) + (T (u− uh), u− uh)− (T (u− uh), u − uh)

= 2(Tu, u)− 2(Tu, uh)− (T (u− uh), u− uh).
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Finally,
1
λ
− 1

λ̃
= 2(Tu, u− uh)− (T (u− uh), u− uh). (16)

Using the boundness of the operator T , we get

|(T (u− uh), u− uh)| ≤ C‖u− uh‖20,Ω.

The first term in the right-hand side of (16) we estimate as follows:

2(Tu, u− uh) =
2
λ

(1− (u− uh)) =
1
λ

((u, u)− 2(u, uh) + (uh, uh))

=
1
λ

(u− uh, u− uh) ≤ 1
λ
‖u− uh‖20,Ω.

From (16), it follows

|λ− λ̃| ≤ C‖u− uh‖20,Ω. (17)

On the other hand,

1

λ̃
− 1

λ̃h

= (ũ, uh)− (ũh, uh) = a(ũ − ũh, ũ) + a(ũh, ũ)− a(ũh, ũh)

= a(ũ− ũh, ũ)− a(ũ− ũh, ũh)− a(ũ− ũh, ũ− ũh).

The continuity of the a-form leads to the inequality

|λ̃− λ̃h| ≤ C‖ũ− ũh‖21,Ω. (18)

From (17) and (18) we obtain

|λ− λ̃h| ≤ C
(
‖u− uh‖20,Ω + ‖ũ− ũh‖21,Ω

)
.

Finally, applying the estimates (10) and (11), we complete the proof.

The estimate (15) shows that the postprocessing procedure gives two order
higher accuracy compared to the consistent mass error estimate (12).

We can improve the estimate (11) by the same postprocessing argument (see
[1]).

Introduce an elliptic projection operator R̃h : V → Ṽh defined by (see [7],
Lemma 3.2): ∀u ∈ V, ∀v ∈ Ṽh, a(u− R̃hu, v) = 0.

For any exact eigenfunction u and its finite element approximation uh we
define:

w̃ = λ̃hũ = λ̃hTuh and w̃h = R̃hw̃ = λ̃hR̃h ◦ Tuh = λ̃hũh.

Theorem 3. Let the conditions of Theorem 2 be fulfilled. Then the following
superconvergence estimate is valid:

‖u− w̃h‖1,Ω ≤ Chk+1‖u‖k+1,Ω. (19)
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Proof. In order to estimate ‖u− w̃h‖1,Ω we shall use the following equalities:

a(u, u) = λ2a(Tu, Tu), a(u, w̃) = λλ̃ha(Tu, Tuh), a(w̃, w̃) = λ̃2
ha(Tuh, Tuh).

Then, since the eigenfunctions u and uh are normalized in L2(Ω), we obtain:

a(u− w̃, u− w̃) = λ2(Tu, u)− 2λλ̃h(u, Tuh) + λ̃2
ha(Tuh, Tuh)

= λa(Tu, u)− 2λ̃ha(Tuh, u) + λ̃2
ha(Tuh, Tuh)

= λ− 2λ̃h(uh, u) +
λ̃2

h

λ̃
= 2λ̃h − 2λ̃h(u, uh) + λ− λ̃h +

λ̃2
h

λ̃
− λ̃h

= λ̃h [(u, u)− 2(u, uh) + (uh, uh)] + λ− λ̃h +
λ̃h

λ̃
(λ̃h − λ̃)

= λ̃h‖u− uh‖20,Ω + (λ− λ̃h) +
λ̃h

λ̃
(λ̃h − λ̃).

Evidently, the bilinear form a(·, ·) defined by (7) is V -elliptic. Moreover, to
estimate ‖u−uh‖20,Ω we apply the regularity of the a-form on V ×V . From (11)
and (12) it follows that

‖u− w̃‖21,Ω ≤ Ch2(k+1)‖u‖2k+1,Ω. (20)

The approximation property of the operator R̃h and the standard assumptions
of the smoothness of w̃ imply

‖w̃ − w̃h‖21,Ω ≤ C(λ)h2(k+1).

Combining this result with (20) we arrive at the estimate (19).

4 Numerical Results

To illustrate our theoretical results we shall refer to the example on related two-
dimensional eigenvalue problem. Let Ω be a square domain: {(x1, x2) : 0 < xi <
1, i = 1, 2}, Γ1 = {(x1, x2) : 0 < x1 < 1, x2 = 1} and Γ2 = ∂Ω \ Γ1.

Consider the following model problem: Find a pair (λ, u) ∈ R×H2(Ω) which
obeys the differential equation

−∆u = λu in Ω,

with nonlocal Neumann boundary condition∫
Γ1

(
∂u

∂x1
ν1 +

∂u

∂x2
ν2

)
ds = 0,

where u is a constant on Γ1 and satisfies the Robin boundary condition

∂u

∂x1
ν1 +

∂u

∂x2
ν2 + 0.21u = 0 on Γ2.
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Table 1. The eigenvalues computed by the finite element method

N λ1,h λ2,h λ3,h λ4,h

16 0.808932859 11.63731126 14.21535688 36.70151076
64 0.804947034 11.21636601 13.72260280 35.34580736

256 0.797117258 11.12108553 13.60201416 33.52161620
1024 0.781913261 11.10150221 13.57203629 33.36752919

Table 2. The eigenvalues obtained after applying the postprocessing

N λ̃1,h λ̃2,h λ̃3,h λ̃4,h

16 0.796993204 11.11973533 13.60842419 33.50785135
64 0.780697718 11.10580126 13.58073619 33.30999380

256 0.780111186 11.10090389 13.56982857 33.28591706

The numerical results for the first four eigenvalues computed by the standard
finite element method with N bilinear elements are given in Table 1. Further,
in Table 2 we present the results of the same four eigenvalues computed by our
postprocessing method, applied on a finite element space which uses polynomials
of degree 2, i.e. by means of biquadratic Serendipity finite elements.

The exact eigenvalues for this problem are not known. The best we can do
is to make a comparison between the eigenvalues computed by the finite ele-
ment method and those obtained after applying postprocessing. For instance,
according to the theoretical results, the accuracy obtained as a result of post-
processing when N = 16, should be similar to the obtained accuracy from FEM
implementation with 256 elements.

On the base of our numerical experiments it may be concluded that the global
postprocessing method presented and studied here gives an effective and accurate
algorithm for calculating the eigenvalues for problems with nonlocal boundary
conditions using the lowest order (bilinear) finite elements on a coarse mesh
instead of usual finite element method on a fine mesh or using a finite element
space with approximating polynomials of higher degree.
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Abstract. We consider a singularly perturbed reaction-diffusion equa-
tion in two dimensions (x, y) with concentrated source on a segment
parallel to axis Oy. By means of an appropriate (including corner layer
functions) decomposition, we describe the asymptotic behavior of the
solution. Finite difference schemes for this problem of second and fourth
order of local approximation on Shishkin mesh are constructed. We prove
that the first scheme is almost second order uniformly convergent in the
maximal norm. Numerical experiments illustrate the theoretical order of
convergence of the first scheme and almost fourth order of convergence
of the second scheme.
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1 Introduction

There is an extensive literature on analytical and numerical methods for singu-
larly perturbed problems, cf. [1,2,5,6,7,8,9,10,12,13] and the references therein.
Our interest lies in examine parameter-uniform numerical methods [13] of high
order for singularly perturbed interface problems. That is, we are interested
in numerical methods for which the following error bound can be theoretically
established

‖u− ŪN‖∞ ≤ CN−p, p > 0,

where N is the number of mesh elements employed in each coordinate direction,
ŪN is a polynomial interpolant generated by the numerical method, ‖.‖∞ is
the global pointwise maximum norm and C is a constant independent of ε and
N . In general, the gradients of the solution [2,3,13] become unbounded in the
boundary/interface and corner layers as ε → 0; however, parameter-uniform
numerical methods guarantee that the error in the numerical approximation is
controlled solely by the size of N .

Let us consider the boundary value problems for the reaction-diffusion model:

−div (a(x, y)∇u) + b(x, y)u = f(x, y) + εδΓK(y), (x, y) ∈ Ω, (1)

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 654–660, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Uniform Convergence of Finite-Difference Schemes 655

Fig. 1. The domain

where Ω = (−1, 1)× (0, 1), the diagonal matrix

(i) a(x, y) =
(
ε2 0
0 ε2

)
or (ii) a(x, y) =

(
ε2 0
0 1

)
and δΓ is the Dirac-delta distribution concentrated on the segment
{(x, y)|x = 0, 0 < y < 1} , b(x, y) ≥ β2 > 0 and the diffusion parameter can be
arbitrary small, but 0 < ε ≤ 1. In [5] the case (ii) is considered, in which case
only boundary interface layers can arise when ε→ 0. In this paper our attention
is concentrated on (i).

This type of problem (1), (i) is characterized by the presence of regular expo-
nential layers in a neighborhoods of ∂Ω and Γ and corner layer at the intersec-
tions of the external and internal boundaries, of width O(ε). We define:

Γ−
s = {(x, 0)| − 1 ≤ x ≤ 0} , Γ+

s = {(x, 0)| 0 ≤ x ≤ 1} , Γs = Γ−
s ∪ Γ+

s ,
Γ−

n = {(x, 1)| − 1 ≤ x ≤ 0} , Γ+
n = {(x, 1)| 0 ≤ x ≤ 1} , Γn = Γ−

n ∪ Γ+
n ,

Γw = {(−1, y)| 0 ≤ y ≤ 1} , Γe = {(1, y)| 0 ≤ y ≤ 1} ,
.

Fig. 1 shows the edges, the corners c1 = Γ−
s ∩ Γw, c2 = Γw ∩ Γ−

n , c3 =
Γ+

n ∩Γe, c4 = Γe∩Γ+
s , and the interface corners of the domain c−s = Γ−

s ∩Γ, c+s =
Γ+

s ∩ Γ, c−n = Γ−
n ∩ Γ, c+n = Γ+

n ∩ Γ . We adopt the following notation for the
boundary conditions:

g(x, y) = gi(x), (x, y) ∈ Γi, i = s, n; g(x, y) = gi(y), (x, y) ∈ Γi, i = e, w. (2)

In the next section by means of an appropriate Shishkin-Han&Kellog decom-
position we describe the asymptotic behavior of the solution of the problem. In
section 3 we propose two difference schemes on piecewise-uniform Shishkin mesh:
one of second-order convergent at fixed ε and the other one — of fourth order.
For the first scheme on Shishkin mesh we proved rigorously almost second-order
of uniform (with respect to ε) convergence. Numerical experiments in the last
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section show almost second order and almost fourth order of uniform convergence
on Shishkin mesh of the proposed schemes.

2 Shishkin-Han and Kellog Decomposition

In this section we examine the asymptotic behavior of the solution of (1) with
respect to the singular perturbation parameter ε. This behavior will be used in
the next section at the theoretical analysis of the discrete problems.

The question for the smoothness of the solution without interface (K ≡ 0)
is well studied [1,9,10]. The well known is the following fact [1]. Let f, b ∈
C4,λ(Ω̄), 0 < λ < 1. If g ∈ C(∂Ω)

⋂
C4,λ(Γk), k = s, e, n, w, then u ∈

C1,λ′
(Ω̄)

⋂
C6,λ(Ω), where λ′ ∈ (0, 1) is an arbitrary number. In order to ob-

tain a higher smoothness compatibility conditions in the corners ci for i =
1, ..., 4 and c∓s , c∓n must be imposed. Such compatibility conditions for the case
without interface (K ≡ 0) are derived in [10], and for the interface case in [5,11].
Further, we suppose that all necessary compatibility conditions are fulfilled.

Using results for smoothness of solution [11], maximum principle and stretch-
ing arguments [5,7,6,10,12,13] one can establish crude bounds on the derivatives
of the solution of the form

‖u(k,j)‖ ≤ Cε−k/2−j/2, 0 ≤ k + j ≤ 4, u(k,j) =
∂k+ju

∂xk∂yj
.

These bounds are not sufficient to analyze the uniform convergence of the dif-
ference schemes studied in this paper, because they do not explicitly show the
presence of boundary/interface and corner layers in Ω−, Ω+. In the next theo-
rem we present a decomposition of u and appropriate bounds of its derivatives
with respect to ε, which is used in the error analysis in Section 3.

Theorem 1. Let u ∈ C5+λ
(
Ω̄−)⋂C5+λ

(
Ω̄+
)⋂

C
(
Ω̄
)

and ∂iu
∂yi ∈ C

(
Ω̄
)
, i =

0, 1, 2, 3, 4. The solution u may be written as a sum

u = v +
4∑

i=1

(
w−

i + w+
i

)
+

4∑
i=1

(
z−i + z+

i

)
,

where
Lv ≡ f + δΓ (x)K (y) , Lw∓

i ≡ 0, Lz∓i ≡ 0, i = 1, 2, 3, 4.

Boundary conditions for v, wi, zi, i = 1, 2, 3, 4, can be specified so that the
following bounds on the derivatives of the components hold:

‖v(k,j)‖ ≤ C
(
1 + ε2−k−j

)
, 0 ≤ k + j ≤ 4

|w∓
1 (x, y) | ≤ C exp

(
−

√
b∓

ε y
)
, |w∓

3 (x, y) | ≤ C exp
(
−

√
b∓

ε (1− y)
)

|w−
2 (x, y) | ≤ C exp

(
−

√
b−

ε (1 + x)
)
, |w−

4 (x, y) | ≤ C exp
(
−

√
b∓

ε x
)

|w+
2 (x, y) | ≤ C exp

(
−

√
b+

ε x
)
, |w+

4 (x, y) | ≤ C exp
(
−

√
b+

ε (1− x)
)
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max
{
‖w(k,j)

i ‖, ‖z(k,j)
i ‖

}
≤ Cε−k−j , 0 ≤ k + j ≤ 4,

‖w(k,0)
i ‖ ≤ C, i = 1, 3, ‖w(0,j)

i ‖ ≤ C, j = 2, 4,
|z−1 (x, y) | ≤ C exp

(
−

√
b−

ε (1 + x)
)

exp
(
−

√
b−

ε y
)
,

|z−2 (x, y) | ≤ C exp
(
−

√
b−

ε (1 + x)
)

exp
(
−

√
b−

ε (1− y)
)
,

|z−3 (x, y) | ≤ C exp
(
−

√
b−

ε x
)

exp
(
−

√
b−

ε (1 − y)
)
,

|z−4 (x, y) | ≤ C exp
(
−

√
b−

ε x
)

exp
(
−

√
b−

ε y
)
,

where b∓ = max b(x, y) on Ω̄− and Ω̄+, respectively.

3 The Discrete Problems

On Ω we introduce the mesh ωh that is the tensor product of two one dimensional
piecewise uniform Shishkin meshes, i.e. ωh = ωx

h×ω
y
h, ωx

h splits the interval [−1, 1]
into six subintervals [−1,−1 + σx], [−1 + σx,−σx], [−σx, 0], [0, σx], [σx, 1 −
σx] and [1 − σx, 1]. The mesh distributes N/4 points uniformly within each of
the subintervals [−1,−1 + σx], [−σx, 0], [0, σx], [1− σx, 1] and the remaining N
mesh points uniformly in the interior subintervals [−1+σx,−σx] and [σx, 1−σx].
ωy

h splits the in interval [0, 1] into three intervals [0, σy], [σy , 1−σx] and [1−σy, 1].
The mesh distributes uniformly within each of the subintervals [0, σy] and [1 −
σy, 1] and the remaining N/2 mesh points uniformly in the interior subinterval
[σy, 1−σy]. To simplify our discussion we take σx = σy; these boundary interface

transition points are defined as σ = σx = σy = min
[

1
4 , σ0ε

ln N
β

]
. Below we

denote by h = 4σ
N , H = 2(1−2σ)

N ; hi = xi − xi−1, 0 < i ≤ 2N, [h] = [h]xi =
hi+1 − hi. Similarly kj = yj − yj−1, 0 < j ≤ N, [k] = [k]yj = kj+1 − kj . In the
numerical experiments we take σ0 = 2 for the scheme (3) and σ0 = 4 for the
scheme (4). For a mesh function U = Uij = U(xi, yj) on ωh, we define:

Ux̄ = Ux̄,i = (U(xi, yj)− U(xi−1, yj)) /hi, Ux = Ux,i = Ux̄,i+1,

Uȳ = Uȳ,j = (U(xi, yj)− U(xi, yj−1)) /kj , Uy = Uy,j = Uȳ,j+1,

Ux̂ = Ux̂,i =
U(xi+1, yj)− U(xi, yj)

h̄i
, Uŷ = Uŷ,j =

U(xi, yj+1)− U(xi, yj)
k̄j

,

h̄i =
hi + hi+1

2
, h̄0 =

h1

2
, h̄2N =

h2N

2
, k̄j =

kj + kj+1

2
, k̄0 =

k1

2
, k̄N =

kN

2
,

Ux̄x̂ = Ux̄x̂,i = (Ux,i − Ux̄,i)/h̄i, Uȳŷ = Uȳŷ,j = (Uy,j − Uȳ,j)/k̄j ,

U◦
x

= U◦
x,i

=
hi+1Ux̄ + hiUx

hi + hi+1
, U◦

y
= U◦

y,j
=

kj+1Uȳ + kjUy

kj + kj+1
, U◦

x
◦
y

= (U◦
x
)◦
y
.

To discretize problem (1)–(2), first we use the standard central difference
scheme

ΛU = −ε2(Ux̄)x̂ − ε2(Uȳ)ŷx̆ + bx̆U =
{

f, xi �= 0, (xi, yj) ∈ ωh

fx̆ − 1
hK, xi = 0, (xi, yj) ∈ ωh

U = g, on the boundary ∂ωh,
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where

fx̆ = fx̆i(y) =
hif(xi−, y) + hi+1f(xi+, y)

hi + hi+1
.

Theorem 2. Let u ∈ C5+λ
(
Ω̄−)⋂C5+λ

(
Ω̄+
)⋂

C
(
Ω̄
)

and ∂iu
∂yi ∈ C

(
Ω̄
)
, i =

0, 1, 2, 3, 4. Then the error at the mesh points satisfies

‖ (u− U) (xi, yj)‖ ≤ C
(
N−1 lnN

)2
, (xi, yj) ∈ ωh. (3)

In [3] the following 9-points scheme is derived:

Λ′U = −ε2Ux̄x̂ − ε2Uȳŷ + bx̆U −
ε2

12

((
k2Ux̄x̂ȳ

)
ŷ

+
(
h2Uȳŷx̄

)
x̂

)
− ε2

6

(
[k]U

x̄x̂
◦
y

+ [h]U
ȳŷ

◦
x

)
+

1
12

((
h2(bU)x̄

)
x̂

+
(
k2(bU)ȳ

)
ŷ

)
+

1
6

(
[h] (bU)◦

x
+ [k] (bU)◦

y
+

2
3

[h] [k] (bU)◦
x

◦
y

)
(4)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f + 1
12

((
h2fx̄

)
x̂

+
(
k2fȳ

)
ŷ

)
+ 1

6

(
[h] f◦

x
+ [k] f◦

y
+ 2

3 [h] [k] f◦
x

◦
y

)
, xi �= 0,

f + 1
12

(
h2fx̄x̂ +

(
k2fȳ

)
ŷx̆

)
+ 1

6 [k] f◦
yx̆

+ h
12

[
∂f
∂x

]
x=0

−
(

h
12εbx̆ + ε

h

)
K + hε

12Kȳŷ − ε
12h

(
k2Kȳ

)
ŷ

− [k]
18

(
3ε
h K◦

y
+ h

ε bx̆K
′ − h

[
∂2f

∂x∂y

]
x=0

)
, xi = 0.

Table 1. The maximum error and the numerical order of convergence for ε =
2−2, ..., 2−12, 10−4 for the scheme (3) illustrate the estimate (3)

ε \ N 8 16 32 64 128 256 512

2−2 5,1200E-2 1,4900E-2 3,9000E-3 9,8717E-4 2,4750E-4 6,1920E-5 1,5483E-5

1,7808 1,9338 1,9821 1,9959 1,9990 1,9997

2−4 5,4780E-1 2,9160E-1 1,0530E-1 2,9800E-2 7,7000E-3 1,9000E-3 4,8667E-4

0,9097 1,4695 1,8211 1,9524 2,0189 1,9650

2−6 5,5480E-1 4,4530E-1 2,9290E-1 1,5200E-1 6,3700E-2 2,3100E-2 7,7000E-3

0,3172 0,6044 0,9463 1,2547 1,4634 1,5850

2−8 5,5550E-1 4,4540E-1 2,9290E-1 1,5200E-1 6,3700E-2 2,3100E-2 7,7000E-3

0,3187 0,6047 0,9463 1,2547 1,4634 1,5850

2−10 5,5550E-1 4,4540E-1 2,9290E-1 1,5200E-1 6,3700E-2 2,3100E-2 7,7000E-3

0,3187 0,6047 0,9463 1,2547 1,4634 1,5850

2−12 5,5550E-1 4,4540E-1 2,9290E-1 1,5200E-1 6,3700E-2 2,3100E-2 7,7000E-3

0,3187 0,6047 0,9463 1,2547 1,4634 1,5850

10−4 5,5550E-1 4,4540E-1 2,9290E-1 1,5200E-1 6,3700E-2 2,3100E-2 7,7000E-3

0,3187 0,6047 0,9463 1,2547 1,4634 1,5850
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4 Numerical Experiments

In this section we present numerical experiments obtained by applying the dif-
ference schemes (3), (4). The test problem is
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Fig. 2. Numerical solution and the local error for the scheme (3), ε = 2−5, N = 64
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Fig. 3. Numerical solution and the local error for the scheme (4), ε = 2−5, N = 64.
The right picture shows well the increase of the error near the interface corner layers.

Table 2. The maximum error and the numerical order of convergence for ε =
2−2, ..., 2−12, 10−4 for the scheme (4)

ε \ N 8 16 32 64 128 256

2−2 1.3402E-4 8.4042E-6 5.2576E-7 3.2868E-8 2.0544E-9 1.2852E-10

3.9952 3.9986 3.9996 3.9999 3.9987

2−4 1.7900E-2 1.4000E-3 8.9588E-5 5.6273E-6 3.5460E-7 2.2168E-8

3.6765 3.9660 3.9928 3.9882 3.9996

2−6 1.4580E-1 9.0100E-2 1.7900E-2 1.4000E-3 8.9588E-5 5.6273E-6

0.6944 2.3316 3.6765 3.9660 3.9928

2−8 1.3900E-1 9.0100E-2 3.3700E-2 6.9000E-3 8.1896E-4 8.9588E-5

0.6255 1.4188 2.2881 3.0747 3.1924

2−10 1.3630E-1 9.0100E-2 3.3700E-2 6.9000E-3 8.1896E-4 8.9588E-5

0.5972 1.4188 2.2881 3.0747 3.1924

2−12 1.3630E-1 9.0100E-2 3.3700E-2 6.9000E-3 8.1896E-4 8.9588E-5

0.5898 1.4188 2.2881 3.0747 3.1924

10−4 1.3550E-1 9.0100E-2 3.3700E-2 6.9000E-3 8.1896E-4 8.9588E-5

0.5887 1.4188 2.2881 3.0747 3.1924
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−ε2�u + u = f, x ∈ (−1, 0) ∪ (0, 1), y ∈ (0, 1), where

uε(x, y) =

(
1−

exp(− 1+x
/ε ) + exp(x

ε )

1 + exp(− 1
ε )

)(
1−

exp(− y
ε ) + exp(− 1−y

ε )
1 + exp(− 1

ε )

)
for (x, y) ∈ (−1, 0)× (0, 1),

uε(x, y) =
(

1−
exp(−x

ε ) + exp(− 1−x
ε )

1 + exp(− 1
ε )

)(
1−

exp(− y
ε ) + exp(− 1−y

ε )
1 + exp(− 1

ε )

)
for (x, y) ∈ (0, 1) × (0, 1), u(−1, y) = 0, u(1, y) = 0, u(x, 0) = 0, u(x, 1) = 0,
and f, K(y) = ε[∂u

∂x ]x=0(y) are calculated from the exact solution.
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Abstract. Second order immersed interface difference schemes for a
parabolic-elliptic interface problem arising in electromagnetism is pre-
sented. The numerical method uses uniform Cartesian meshes. The stan-
dard schemes are modified near the interface curve taking into account
the specific jump conditions for the solution and the flux. Convergence of
the method is discussed and numerical experiments, confirming second
order of accuracy are shown.

1 Introduction

Let Ω be a bounded domain in R2 with a piecewise smooth boundary ∂Ω and
Γ ⊂ Ω be a smooth curve, which splits the domain Ω into two separate regions
Ω+, Ω−, Ω = Ω+∪Ω−∪Γ . We consider the following parabolic-elliptic interface
problem

ut = ∆u + f(x, y, t) (x, y, t) ∈ Ω− × (0, T ], (1)
0 = ∆u + f(x, y, t) (x, y, t) ∈ Ω+ × (0, T ], (2)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄−, (3)
u(x, y, t) = uB(x, y, t), (x, y, t) ∈ ∂Ω × [0, T ], (4)

with conjugation conditions on the interface ΓT = Γ × [0, T ]

[u]Γ := u+(x(s), y(s), t) − u−(x(s), y(s), t) = ϕ(x(s), y(s), t), (5)

[
∂u

∂n

]
Γ

= ψ(x(s), y(s), t), (6)

where s is a parameter of Γ , the superscripts + and − denote the limiting values
of a function from one side in Ω+ and another side in Ω− respectively, and n is
the normal vector at the point (x(s), y(s)) ∈ Γ , directed from Ω− to Ω+. For
the initial data f , u0, uB, ϕ, ψ, and the solution u we assume to be sufficiently
smooth with the exception of f and u, that may have discontinuity on Γ .

The problem (1)–(6) arises, when we study the production of eddy currents
in a metallic cylinder due to particular type of external electromagnetic field as
a special case, see [1]. Existence and uniqueness of the solution has been studied
by MacCamy and Suri [11] and Al-Droubi [2]. The basic strategy is to solve the

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 661–669, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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exterior problem by use of potential theory and then to reduce the problem to
an interior problem.

Numerous methods have been developed for interface problems [8,10,15]. The
IIM proposed by LeVeque and Li [7] solves elliptic equations with jump relations
on Γ , which are known functions, defined on the interface. It has been success-
fully implemented for 1D and 2D linear and nonlinear elliptic and parabolic
equations [8,9]. Some 2D problems with jump conditions, that depend on the
solution on the interface are considered by Kandilarov and Vulkov [4,5,6,13]. The
main goal of this work is the application of the IIM to the proposed parabolic-
elliptic problem and theoretical validation of its implementation.

We present an algorithm for numerical solution of problem (1)–(6) which
consists in two parts. First, using Shortley-Weller approximation [3] of ∆u, we
solve an elliptic problem on Ω+ for t = 0. Next, a finite difference scheme
is constructed using IIM for the problem on the whole domain Ω. Convergence
properties of the proposed schemes are discussed. A comparison of the numerical
results against the exact solution shows that the method is near second order
accurate.

2 The Numerical Method

Let Ω be a unit square and let us introduce on ΩT = Ω × [0, T ] the uniform
mesh ωh,τ = ωh × ωτ , where ωh = ωh1 × ωh2 and

ωh1 = {xi = ih1, i = 0, 1, ...,M1, h1 = 1/M1},
ωh2 = {yj = jh2, j = 0, 1, ...,M2, h2 = 1/M2},

ωτ = {tn = nτ, n = 0, 1, ..., N, τ = T/N}.

Let ωh and ∂ωh be the sets of mesh points of Ω and ∂Ω respectively. Let also
ω+

h and ω−
h be the sets of mesh points of Ω+ and Ω−. With γh we denote the

points of ωh, that lie on the interface curve Γ . Then ωh = ω+
h ∪ ω−

h ∪ γh.
Let us introduce the level set function φ(x, y) for the curve Γ , such that

φ(x, y) = 0 when (x, y) ∈ Γ , φ(x, y) < 0 for (x, y) ∈ Ω− and φ(x, y) > 0 for
(x, y) ∈ Ω+. The outward normal n(n1, n2) of the curve Γ is directed from Ω−

to Ω+. We call the node (xi, yj) regular, if φ(xi, yj), φ(xi−1, yj), φ(xi+1, yj),
φ(xi, yj+1) and φ(xi, yj−1) are together positive (negative), i.e. the curve Γ
doesn’t intersect the stencil. The rest of the nodes we call irregular. The set of
irregular points is divided into three subsets: ω+

ir if the point (xi, yj) ∈ Ω+, ω−
ir

if (xi, yj) ∈ Ω− and γh if (xi, yj) ∈ Γ .
First stage of the algorithm. The function u0(x, y) is definite on Ω−, therefore

to have initial data on the whole domain Ω for t = 0 we must solve numerically
the elliptic problem for w(x, y) = u(x, y, 0) with Dirihlet boundary conditions:

−∆w = f(x, y, 0), (x, y) ∈ Ω+, (7)
w(x, y) = uB(x, y, 0), (x, y) ∈ ∂Ω, (8)
w(x, y) = u0(x, y) + ϕ(x, y, 0), (x, y) ∈ Γ. (9)
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Fig. 1. (a) The stencil at irregular point P = (xi, yj) for the Shortley-Weller approx-
imation; (b) The stencil for the IIM and local coordinate system at points (ξr, yj),
(xi, ξt), when the interface curve Γ intersects the right and top arm of the standard
5-point stencil

The interior boundary Γ is a curve. For the discretization of (7)–(9) we use
the well known Shortley-Weller approximation of the discrete Laplace operator
−∆hU , defined in [3,12]

−∆hU(P ) = −f(P ), P ∈ ω+
h ,

U(P ) = uB(P, 0), P ∈ ∂ωh, (10)
U(P ) = u0(P ) + ϕ(P, 0), P ∈ γh,

where

−∆hU(P ) =
(

2
hEhW

+
2

hNhS

)
U(P )− 2

hE(hE + hW )
U(E)

− 2
hW (hE + hW )

U(W )− 2
hN (hN + hS)

U(N)− 2
hS(hN + hS)

U(S).

This approximation is standard at regular grid points and then hE = hW = h1,
hN = hS = h2. At irregular grid points, which are closed to the interior boundary
Γ we must know the intersection points of the interface Γ with the grid lines
through the point P , see for an example the points E and N in Fig. 1(a), when
Γ crosses the right and top arm of the stencil.

Let h = min{h1, h2}, Tr0(P ) be the local truncation error (LTE) and e0(P ) =
U(P )− u(P, 0) be the error. Then the following results hold.

Theorem 1. Let u(x, y, 0), the solution of (1)–(6) at t = 0 belongs to C4(Ω+).
Then there exists a constant C > 0 such that the local truncation error Tr0(P )
of the scheme (10) at point P satisfies

|Tr0(P )| ≤ Ch2, P ∈ ω+
h \ω

+
ir,

|Tr0(P )| ≤ Ch, P ∈ ω+
ir.
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Theorem 2. Let the solution u(x, y, 0) of (1)–(6) at t = 0 belong to C4(Ω+).
Then there exists a constant C > 0 such that the error e0 satisfies

‖e0‖∞ ≤ Ch2, P ∈ ω+
h .

Remark 1. At the points P ∈ ω+
ir the super convergence property is satisfied [3]:

|e0(P )| ≤ Ch3, P ∈ ω+
ir.

Second stage of the algorithm. The main idea of the IIM is to modify the standard
finite difference schemes on uniform Cartesian grids at the irregular grid points,
using the jump conditions in order to decrease the LTE [9]. So, we need to know
the jumps of the derivatives [ux], [uy], [uxx], and [uyy] at the intersection points
of Γ by the grid lines. For this goal we use the idea of Z. Li from [7]. We introduce
local coordinate system at each intersection point of the interface curve with the
standard 5-point stencil, for example (ξr, yj) of the right arm, see Fig. 1(b),

ξ = (x− ξr) cos θr + (y − yj) sin θr, η = −(x− ξr) sin θr + (y − yj) cos θr.

Here θr is the angle between the axis Ox and the normal vector n = (cos θr, sin θr)
at the point (ξr , yj). Then Γ can be locally parameterized by ξ = χ(η) and η = η.
Note that χ(0) = 0 and for a smooth curve χ′(0) = 0.

For the first derivatives in the new directions we get

uξ = ux cos θr + uy sin θr, uη = −ux sin θr + uy cos θr. (11)

In a similar way we find the derivatives of second order and the jumps up to
second order in the new coordinates. After an inverse transformation we have at
the point (ξr, yj) (see also [6,9] for more details):

[ux] = ψ cos θr − ϕη sin θr, [uy] = ψ sin θr + ϕη cos θr, (12)
[uxx] = (χ′′ψ − ϕηη − [f ]− u−

t ) cos2 θr − 2(χ′′ϕη + ψη) cos θr sin θr

+(−χ′′ψ + ϕηη) sin2 θr, (13)
[uyy] = (χ′′ψ − ϕηη − [f ]− u−

t ) sin2 θr + 2(χ′′ϕη + ψη) cos θr sin θr

+(−χ′′ψ + ϕηη) cos2 θr,

where (.)η is the derivative in tangential direction, [f ] is the jump of f , χ′′ is the
curvature of Γ at the intersection point (ξr, yj) and u−

t is the limiting value of
the derivative in time at the same point.

At every irregular point we use the Taylor expansion. As example, for the
situation on Fig. 1(b) we have:

∂2u

∂x2 (xi, yj) =
ui+1,j − 2uij + ui−1,j

h2
1

(14)

+
[u]

h2
1

+
(xi+1 − ξr)

h2
1

[ux] +
(xi+1 − ξr)

2

2h2
1

[uxx] + O(h1),

∂2u

∂y2 (xi, yj) =
ui,j+1 − 2uij + ui,j−1

h2
2

(15)

+
[u]

h2
2

+
(yj+1 − ξt)

h2
2

[uy ] +
(yj+1 − ξt)

2

2h2
2

[uyy] + O(h2),
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where the jumps are evaluated at the points (ξr, yj) and (xi, ξt) respectively.
Using this expressions and (5), (12), (13), the implicit difference scheme with

the IIM can be written in the form:

σ
Un+1

ij − Un
ij

τ
=

Un+1
i+1,j − 2Un+1

ij + Un+1
i−1,j

h2
1

+ Dn+1
x,ij (16)

+
Un+1

i,j+1 − 2Un+1
ij + Un+1

i,j−1

h2
2

+ Dn+1
y,ij + fn+1

i,j , (xi, yj) ∈ ωh,

Un
i,j = uB(xi, yj , tn), (xi, yj) ∈ ∂ωh, (17)

U0
i,j = u0(xi, yj), (xi, yj) ∈ ω−

h ∪ γh, (18)

U0
i,j = U

0
(xi, yj), (xi, yj) ∈ ω+

h , (19)

where Un
ij approximates u(xi, yj , tn) and fn+1

i,j = f(xi, yj, tn+1). Here Dn+1
x,ij =

Dn+1
xl,ij + Dn+1

xr,ij and Dn+1
y,ij = Dn+1

yt,ij + Dn+1
yb,ij are additional terms chosen in order

to improve the LTE to the first order at the irregular points. By l, r, t, b, we
show the intersection of the interface curve, respectively, with the left, right, top
or bottom arm of the standard 5-point stencil for the discrete elliptic operator at
(xi, yj). The coefficient σ is: σ = 1 if (xi, yj) ∈ ω−

h \ω
−
ir; σ = 0 if (xi, yj) ∈ ω+

h \ω
+
ir;

σ = 1−
∑

k=l,r,t,b ρk if (xi, yj) ∈ ω−
ir ∪ γh; σ =

∑
k=l,r,t,b ρk if (xi, yj) ∈ ω+

ir and
ρk are the coefficients of the terms, including u−

t (see (13)). At irregular points of
ω+

ir one must use also the relation u+
t = u−

t −ϕt. If (xi, yj) ∈ γh, for definiteness
we choose Un

ij ≈ u+(xi, yj , tn), see [14].
The convergence results are based on the maximum principle, described in

[12], so we will also use the notation Un(P ) for the numerical solution at the
node (xi, yj, tn).

Theorem 3. Let the interface curve Γ ∈ C2 and the solution u(x, y, t) of (1)–
(6) belongs to C4,2((Ω+∪Ω−)×(0, T ]). Then there exists a constant C > 0 such
that the local truncation error Trn(P ) of the scheme (16)–(19) satisfies

|Trn(P )| ≤ C(τ + h2), P ∈ ω−
h \ω

−
ir,

|Trn(P )| ≤ C(στ + h), P ∈ ω−
ir ∪ ω+

ir ∪ γh,

|Trn(P )| ≤ Ch2, P ∈ ω+
h \ω

+
ir.

Proof. The first and third estimates are standard. The estimate for the LTE at
irregular grid nodes follows by construction, see (14)–(15), the jump conditions
(5), (12), (13), and the terms therein. �

Remark 2. If the mesh parameter h and the curvature χ′′ of Γ satisfy the in-
equality h ≤ 1/max |χ′′|, then for the parameter σ we have: 1/2 < σ < 1 if
P ∈ ω−

ir ∪ γh and 0 ≤ σ < 1/2 if P ∈ ω+
ir, and the constant C does not depend

on h and τ .
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Theorem 4. Let the interface curve Γ ∈ C2 and the solution u(x, y, t) of (1)–
(6) satisfy u ∈ C4,2((Ω+ ∪Ω−)× (0, T ]). Then the numerical solution U of the
scheme (16)–(19) converges to the solution of (1)–(6) and

‖Un(P )− u(xi, yj, tn)‖∞ ≤ C(τ + h), P ∈ ωh,τ . (20)

Proof. We outline the proof. Let for simplicity Ω = [−1, 1]2 and h1 = h2 = h.
We define the difference operator LhU

n+1(P ) in the form

LhUn+1(P ) := −σ
Un+1

ij − Un
ij

τ
+

Un+1
i+1,j + Un+1

i−1,j + Un+1
i,j+1 + Un+1

i,j−1 − 4Un+1
ij

h2 .

Then from (16) we have:

LhU
n+1(P ) + fn+1(P ) + gn+1(P ) = 0,

where gn+1(P ) = Dn+1
x,ij + Dn+1

y,ij at irregular grid points. For the error en(P ) =
Un(P )− u(xi, yj, tn) we obtain:

Lhe
n(P ) = Trn(P ), P ∈ ωh.

Let us define a barrier function Φn(P ) of the form

Φn(P ) := Atn + E1(2− x2
i − y2

j )/4 + E2, P = (xi, yj) ∈ ωh,

Then we apply the difference operator to en(P ) − Φn(P ). If the nonnegative
constants A and E1 satisfy A + E1 ≥ Trmax := maxn,ωh

|Trn(P )| it follows

Lh(en(P )− Φn(P )) = A + E1 + Trn(P ) ≥ 0, P ∈ ωh.

On the boundary en(P ) = 0 and Φn(P ) = Atn +E1(1− x2)/4 +E2 or Φn(P ) =
Atn + E1(1 − y2)/4 + E2, P ∈ ∂ωh. Similarly, on the zero time layer t0 =
0 Φ0(P ) = E1(2 − x2

i − y2
j )/4 + E2. If E2 = ‖e0‖∞ (see Theorem 2), then

en(P ) − Φn(P ) ≤ 0 on the boundary. The conditions of Theorem 6.1 of [12]
are fulfilled and therefore en(P )− Φn(P ) ≤ 0 at every mesh point of ωh,τ . The
same procedure for −en(P ) − Φn(P ) leads to −en(P ) − Φn(P ) ≤ 0 and hence
|en(P )| ≤ Φn(P ). Taking A = E1 = Trmax we obtain (20). �

3 Numerical Experiments

Example 1. On the region Ω = (−1, 1)2 \Γ = Ω− ∪Ω+ (Ω± = x2 + y2− r2
0 ≷ 0)

and interface curve Γ : x2 +y2 = r2
0 we consider the problem (1)–(2) with exact

solution

u(x, y, t) = exp(−t)
{

kJ0(r), (x, y) ∈ Ω−,
J0(r0)Y0(r)/Y0(r0), (x, y) ∈ Ω+,

where J0 and Y0 are the Bessel functions of order zero, r =
√

x2 + y2. The
boundary condition, the function u0(x, y), (x, y) ∈ Ω̄− and f(x, y, t) one obtains
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Table 1. Mesh refinement analysis for Example 1, where Γ is a circle with r0 = 0.505

M1 = M2 ‖Tr1‖∞ m ‖e1‖∞ m ‖eN‖∞ m

10 2.7103e-01 - 8.4659e-03 - 8.9430e-03 -

20 3.4306e-01 0.34 1.3527e-03 2.64 2.6852e-03 1.74

40 1.4364e-01 1.26 2.8032e-04 2.27 5.2057e-04 2.37

80 8.1532e-02 0.82 7.2053e-05 1.96 1.4589e-04 1.83

160 4.6742e-02 0.80 1.7409e-05 2.05 4.2135e-05 1.79
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Fig. 2. (a) The local truncation error Tr0 and (b) the error e0 of the numerical solution
for Example 1, when r0 = .505, k = 3, t = 0, M1 = M2 = 40
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Fig. 3. (a) The error eN and (b) the numerical solution U at final time T = 1 for
Example 1, M1 = M2 = 40, k = 3, τ/h2 = 10

from the exact solution. The solution is discontinuous (if k �= 1), as well as the
jumps of the normal derivative on the interface, of the function f and ut:

[u] = exp(−t)J0(r0)(1− k),
[

∂u
∂n

]
= exp(−t)

(
J0(r0)
Y0(r0)

Y ′
0(r) − kY ′

0(r)
)

[f ] = − exp(−t)J0(r0), [ut] = − exp(−t)J0(r0)(1 − k).

We choose k = 3 and circle interface with radius r0 = .505. Since the method
is expected to be of order O(τ + h2), to prevent the dominant influence of the
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parameter τ into the error we keep the ratio τ/h2 constant (in our example it is
equal to 10). The mesh refinement analysis is presented in Table 1. We control
the LTE ‖Tr‖∞ on the first time layer, and also the error on the first (t1 = τ)
and on the last time layer (tN = T ). The rate of convergence we denote by m.
The results show that the LTE is O(h). The second order of accuracy of the
method is also confirmed. In Fig. 2(a) the LTE and in Fig. 2(b) the error of the
solution at t0 = 0 are plotted, when M1 = M2 = 40. In Fig. 3(a) the error and
in Fig. 3(b) the numerical solution at final time T = 1 are shown with the same
data.

4 Conclusions

In this paper we have developed a finite difference method based on the immersed
interface method for a two-dimensional elliptic-parabolic problem with jump
conditions on the interface. Using maximum principle we prove convergence of
first order of the proposed difference scheme. The numerical results indicate
second order of accuracy.
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Abstract. Surface reconstruction, based on line integrals along seg-
ments of the unit disk is studied. Various methods concerning with this
problem are known. We consider here interpolation over regular schemes
of chords by polynomials. We find the interpolant in Lagrange form and
investigate some properties of Lagrange basis polynomials. Numerical
experiments for both surface and image reconstruction are presented.

1 Introduction and Preliminaries

There are a lot of practical problems, e.g. in tomography, electronic microscopy,
etc., in which information about the relevant function comes as values of its
Radon projections. Because of the importance of such non-destructive methods
for applications in medicine and technics they have been intensively investigated
by many mathematicians [2,5,10,11,12,13], and others. Part of the algorithms are
based on the inverse Radon transform (see [11,12] and the bibliography therein)
and others, like interpolation and smoothing (see [1,4,6,7,8,10]) are direct meth-
ods. It turns out that the smoothing problem and the interpolation problem are
closely related. In [7] it was shown that existence and uniqueness of the best
smoothing polynomial relies on a regularity property of the scheme of chords.

Here we express the interpolant of Radon type of data in Lagrange form and
investigate some properties of the corresponding Lagrange basis polynomials.
Similarly to the univariate case it is convenient to use Lagrange form of the
interpolant if one and the same configuration of chords should be used for a
large amount of calculations.

We denote by Π2
n the set of all algebraic polynomials in two variables of total

degree at most n and real coefficients. Then, Π2
n is a linear space of dimension(

n+2
2

)
and P ∈ Π2

n if and only if

P (x, y) =
∑

i+j≤n

αijx
iyj , αij ∈ R.

Let B := {x = (x, y) ∈ R2 : ‖x‖ ≤ 1} be the unit disk in the plane,
where ‖x‖ =

√
x2 + y2. Given t ∈ [−1, 1] and an angle of measure θ ∈ [0, π),

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 670–678, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the equation x cos θ + y sin θ − t = 0 defines a line � perpendicular to the vector
〈cos θ, sin θ〉 and passing through the point (t cos θ, t sin θ). The set I(θ, t) := �∩B
is a chord of the unit disk B which can be parameterized in the manner{

x = t cos θ − s sin θ,

y = t sin θ + s cos θ,
s ∈ [−

√
1− t2,

√
1− t2],

where the quantity θ is the direction of I(θ, t) and t is the distance of the chord
from the origin. Suppose that for a given function f : R2 → R the integrals of
f exist along all line segments on the unit disk B. Radon projection (or X-ray)
of the function f over the segment I(θ, t) is defined by

Rθ(f ; t) :=
∫

I(θ,t)

f(x) dx =
∫ √

1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Clearly, Rθ( · ; t) is a linear functional. Since I(θ, t) ≡ I(θ+π,−t) it follows that
Rθ(f ; t) = Rθ+π(f ;−t). Thus, the assumption above for the direction of the
chords 0 ≤ θ < π is not loss of generality.

It is well-known that the set of Radon projections{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
determines f uniquely (see [9,13]). According to a more recent result in [14], an
arbitrary function f ∈ L1(R2) with compact support in B is uniquely determined
by any infinite set of X-rays. Since the function f ≡ 0 has all its projections equal
to zero, it follows that the only function which has the zero Radon transform
is the constant zero function. It was shown by Marr [10] that every polynomial
P ∈ Π2

n can be reconstructed uniquely by its projections only on a finite number
of directions.

Another important property (see [10,3]) is the following: if P ∈ Π2
n then

for each fixed θ there exists a univariate polynomial p of degree n such that
Rθ(P ; t) =

√
1− t2 p(t), −1 ≤ t ≤ 1.

The space Π2
n has a standard basis of the power functions {xiyj}. Studying

various problems for functions on the unit disk it is often helpful to use some or-
thonormal basis. In [2] the following orthonormal basis was constructed. Denote
the Chebyshev polynomial of second kind of degree m as usual by

Um(t) :=
1√
π

sin(m + 1)ψ
sinψ

, t = cosψ.

If set ψmj := jπ
m+1 , m = 0, . . . , n, j = 0, . . . ,m, then the ridge polynomials

Umj(x) := Um(x cosψmj + y sinψmj), m = 0, . . . , n, j = 0, . . . ,m,

form an orthonormal basis in Π2
n.

The interpolation problem. For a given scheme of chords Ik, k = 1, . . . ,
(
n+2

2

)
,

of the unit circle ∂B, find a polynomial P ∈ Π2
n satisfying the conditions:∫

Ik

P (x) dx = γk, k = 1, . . . ,
(
n+2

2

)
. (1)
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If (1) has a unique solution for every given set of values {γk} the interpolation
problem is called poised and the scheme of chords — regular.

The first known scheme which is regular for every degree n of the interpolating
polynomial was found by Hakopian [8]. Hakopian’s scheme consists of all

(
n+2

2

)
chords, connecting given n+ 2 points on the unit circle ∂B. Bojanov and Xu [4]
proposed a regular scheme consisting of 2)n+1

2 * + 1 equally spaced directions
with )n

2 *+ 1 chords, associated with the zeros of the Chebyshev polynomials of
certain degree, in each direction.

Another family of regular schemes was provided by Bojanov and Georgieva
[1]. In this case the Radon projections are taken along a set of

(
n+2

2

)
chords

{I(θ, t)} of the unit circle, partitioned into n + 1 subsets, such that the k-th
subset consists of k + 1 parallel chords. More precisely, consider the scheme
(Θ, T ), where Θ := {θ0, θ1, . . . , θn}, θ0 < · · · < θn are in [0, π), and T := {tki} is
a triangular matrix of points with the distances tkk > · · · > tkn, associated with
the angle measures θk, k = 0, . . . , n:

θ0 → t00 t01 · · · t0n

θ1 → t11 · · · t1n

...
...

. . .
...

θn → tnn

.

The problem is to find a polynomial P ∈ Π2
n satisfying the interpolation

conditions ∫
I(θk,tki)

P (x) dx = γki, k = 0, . . . , n, i = k, . . . , n, (2)

A necessary and sufficient condition for regularity of the schemes of this type
is proved by Bojanov and Georgieva [1]. Nevertheless, given a set of points T , it
is often difficult to determine if the problem (2) has a unique solution.

Several regular schemes of this type were suggested by Georgieva and Ismail [6]
and by Georgieva and Uluchev [7]. We summarize these results in the following
theorem.

Theorem A. Let n be given positive integer, Θ = {θ0, θ1, . . . , θn}, θ0 < · · ·< θn

be arbitrary in [0, π), and let T = {tki}n n
k=0,i=k be one of the following:

(a) tki = ξi+1 = cos (2i+1)π
2(n+1) , i = k, . . . , n, are the zeros of the Chebyshev

polynomial of first kind Tn+1(x);
(b) tki = ηi+1 = cos (i+1)π

n+2 , i = k, . . . , n, are the zeros of the Chebyshev
polynomial of second kind Un+1(x);

(c) tki = cos (2i+1)π
2n+3 , i = k, . . . , n, are the zeros of the Jacobi polynomial

P
(1/2,−1/2)
n+1 (x);

(d) tki = cos 2(i+1)π
2n+3 , i = k, . . . , n, are the zeros of the Jacobi polynomial

P
(−1/2,1/2)
n+1 (x).

Then the interpolation problem (2) is poised, i.e., the interpolatory scheme (Θ, T )
is regular.
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2 Lagrange Form of the Interpolant

Let us consider interpolation problem (2) for a given regular scheme (Θ, T ). We
define the Lagrange basis polynomials {�ki(x, y)}n n

k=0,i=k for this configuration of
chords as follows: �ki(x, y) is the unique bivariate polynomial of degree at most
n such that

Rθj (�ki; tmj) = δkmδij , m = 0, . . . , n, j = m, . . . , n, (3)

δki being the Kroneker symbol. Then the interpolant can be written in the form

Ln(f ;x, y) =
n∑

k=0

n∑
i=k

�ki(x, y)Rθi(f ; tki).

It is a well-known property of the univariate Lagrange basis polynomials that
they sum up to 1. For some special choices of the distances {tki}n n

k=0,i=k of the
chords from the origin we prove a bivariate analogue of this result.

Theorem 1. Let (Θ, T ) be any of the regular schemes of chords specified in
Theorem A. Then the sum of all Lagrange basis polynomials {�ki(x, y)}n n

k=0,i=k

for this configuration of chords is a radial polynomial of degree 2
⌊

n
2

⌋
.

Proof. Let us set r =
⌊

n
2

⌋
, i.e., 2r = n if n is even and 2r = n − 1 for odd n.

We shall need the non-negative zeros 0 ≤ τr < τr−1 < · · · < τ0 < 1 of the
corresponding orthogonal polynomial of degree n+1. For example, for the scheme
from Theorem A, case (a),

{
τq

}r

q=0
are the non-negative zeros of the Chebyshev

polynomial of first kind Tn+1(x); for the scheme of case (b) we take the non-
negative zeros of the Chebyshev polynomial of second kind Un+1(x), etc.

Now we shall prove that there exists a unique radial polynomial

ϕ(x, y) =
r∑

ν=0

αν(x2 + y2)ν (4)

such that
R0

(
ϕ(x, y); τq

)
= 1, q = 0, 1, . . . , r. (5)

Note that ϕ ∈ Π2
n since 2r ≤ n. Moreover, θ = 0 in (5) means that we take all

chords perpendicular to the x-axis.
By the linearity of the functional Rθ( · ; t) conditions (5) are equivalent to the

linear system
r∑

ν=0

ανR0

(
(x2 + y2)ν ; τq

)
= 1, q = 0, 1, . . . , r, (6)

with respect to the coefficients {αν}. Along a chord perpendicular to the x-axis
and crossing the abscissa at x = τq we have

R0

(
(x2+y2)ν ; τq

)
=
∫ √1−τ2

q

−
√

1−τ2
q

(τ2
q +s2)ν ds = 2

√
1− τ2

q

ν∑
j=0

(
ν

j

)
τ2j
q (1− τ2

q )ν−j

2ν − 2j + 1
.
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Denote for convenience p2ν(t) := 2
ν∑

j=0

(
ν

j

)
t2j(1− t2)ν−j

2ν − 2j + 1
. Observe that p2ν(t)

is an even univariate polynomial of degree exactly 2ν (see also [3]) and the
coefficient of t2ν is

2 (2ν)!!
(2ν + 1)!!

> 0. (7)

Then
R0

(
(x2 + y2)ν ; τq

)
=
√

1− τ2
q p2ν(τq)

and the determinant of the system (6) is

∆ =

∣∣∣∣∣∣∣∣
√

1− τ2
0 p0(τ0)

√
1− τ2

0 p2(τ0) . . .
√

1− τ2
0 p2r(τ0)√

1− τ2
1 p0(τ1)

√
1− τ2

1 p2(τ1) . . .
√

1− τ2
1 p2r(τ1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .√
1− τ2

r p0(τr)
√

1− τ2
r p2(τr) . . .

√
1− τ2

r p2r(τr)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
p0(τ0) p2(τ0) . . . p2r(τ0)
p0(τ1) p2(τ1) . . . p2r(τ1)
. . . . . . . . . . . . . . . . . . . . . . . . . .
p0(τr) p2(τr) . . . p2r(τr)

∣∣∣∣∣∣∣∣ ·
r∏

q=0

√
1− τ2

q .

Having in mind that all polynomials p2ν(t) are even it follows from (7) that∣∣∣∣∣∣∣∣
p0(τ0) p2(τ0) . . . p2r(τ0)
p0(τ1) p2(τ1) . . . p2r(τ1)
. . . . . . . . . . . . . . . . . . . . . . . . . .
p0(τr) p2(τr) . . . p2r(τr)

∣∣∣∣∣∣∣∣ = 2r+1
r∏

ν=0

(2ν)!!
(2ν + 1)!!

∣∣∣∣∣∣∣∣
1 τ2

0 . . . τ2r
0

1 τ2
1 . . . τ2r

1

. . . . . . . . . . .
1 τ2

r . . . τ2r
r

∣∣∣∣∣∣∣∣ .
The last determinant is Vandermondeian, since 0 ≤ τ2

r < τ2
r−1 < · · · < τ2

0 < 1.
Therefore

∆ = 2r+1
r∏

q=0

√
1− τ2

q ·
r∏

ν=0

(2ν)!!
(2ν + 1)!!

·
∏

0≤l<m<r

(τ2
l − τ2

m) > 0.

Consider now the sum of all Lagrange basis polynomials of degree n con-
structed for the given scheme of chords

Φ(x, y) =
n∑

k=0

n∑
i=k

�ki(x, y).

Clearly Φ(x, y) ∈ Π2
n and

Rθk

(
Φ; tki

)
= Rθk

(
�ki; tki

)
= 1, k = 0, . . . , n, i = k, . . . , n, (8)

Since ϕ(x, y) is a radial polynomial, from (5) it follows that

Rθk

(
ϕ; tki

)
= R0

(
ϕ; tki

)
=

{
R0

(
ϕ; τi

)
= 1, i ≤ )n

2 *,
R0

(
ϕ;−τn−i

)
= R0

(
ϕ; τn−i

)
= 1, i > )n

2 *.
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Therefore ϕ(x, y) satisfies the interpolatory conditions (8). Moreover ϕ(x, y) is
a polynomial of degree 2r ≤ n, hence ϕ ∈ Π2

n. The regularity of the scheme of
chords (Θ, T ) implies uniqueness of the interpolatory polynomial of degree n for
(8), hence Φ(x, y) ≡ ϕ(x, y). The proof is complete.

3 Numerical Experiments

Here we give results from some numerical experiments made with the Mathe-
matica software developed by Wolfram Research Inc.

A regular scheme of chords based on the zeros of Un+1 with θk = (k+1)π
n+2 ,

k = 0, . . . , n and
{
tki = cos (i+1)π

n+2

}n

i=k
, k = 0, . . . , n, is used in all examples.

Example 1. We give the Lagrange basis polynomials {�ki(x, y)}n n
k=0,i=k of degree

n = 2 defined with (3). We have θ0 = π
4 , t00 = 1√

2
, t01 = 0, t02 = −1√

2
, θ1 =

π
2 , t11 = 0, t12 = −1√

2
, θ2 = 3π

4 , t22 = −1√
2

for the chords and

�00(x, y) =− 0.042893 + 0.207107x+ 0.12868x2 + 0.5y + 0.62132xy + 0.75y2,

�01(x, y) =− 0.06066− 0.707107x+ 0.181981x2 + 0.707107y− 2.12132xy

+ 1.06066y2,

�02(x, y) =− 1.103553− 1.207107x+ 3.31066x2 + 0.5y − 1.5xy + 1.81066y2,

�11(x, y) =1.06066 + 0.707107x− 1.681981x2 − 0.707107y + 2.12132xy

− 2.56066y2,

�12(x, y) =1.5 + x− 4.5x2 − y + 3xy − 1.5y2,

�22(x, y) =− 1.06066 + 3.181981x2 − 2.12132xy + 1.06066y2.

E.g., for the function f(x, y) = sinxy the Radon projections along the above
chords are: γ00 = 0.234023, γ01 = −0.32748, γ02 = 0.234023, γ11 = γ12 = 0,
γ22 = −0.234023, γki = Rθk

(f ; tki). Now we can write the interpolation poly-
nomial of degree n = 2 for the problem (2) in Lagrange form:

P (x, y) = 0.234023�00(x, y)− 0.3274�01(x, y) + 0.234023�02(x, y) + 0 �11(x, y)
+ 0 �12(x, y)− 0.234023�22(x, y).

Hence,

P (x, y) = −0.00021− 0.0025x+ 0.00064x2 + 0.0025y + 0.98539xy + 0.00374y2.

The relative L2-norm of the error on the unit disk is ‖f − P‖2/‖f‖2 = 0.01579.

Example 2. We interpolate the function

f(x, y) = ln(x2 + y + 1.5) cos(5x + y)

using N =
(
42
2

)
= 861 pieces of Radon projections by polynomial of degree

n = 40. The surface z = f(x, y), its reconstruction by the interpolant P (x, y),
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Original surface Reconstructed surface The error
z = f(x, y) z = P (x, y) z = f(x, y) − P (x, y)
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Fig. 1. f(x, y) = ln(x2 + y + 1.5) cos(5x + y)

and the error function f(x, y)− P (x, y) are presented in Figure 1. The relative
L2-norm of the error function on the unit disk is ‖f −P‖2/‖f‖2 = 0.000110356.

Example 3. A gray-scale image is recovered by interpolation method. The orig-
inal image and its reconstruction by polynomial of degree n = 40 are shown in
Figure 2.

Example 4. Here we reconstruct the surface z = f(x, y), where

f(x, y) = sin(6x) cos(4y + 2x),

using N =
(
52
2

)
= 1326 pieces of Radon projections by polynomial P (x, y) of

degree n = 50. The surface, its grey-scale image, and their reconstructions are
presented in Figure 3. The relative L2-norm of the error function on the unit
disk is ‖f − P‖2/‖f‖2 = 0.000156029.

Original image Reconstructed image
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Original surface z = f(x, y) Original grey-scale image
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Fig. 3. f(x, y) = sin(6x) cos(4y + 2x)
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1 Introduction

In this paper we construct a finite-difference scheme that has second order of
accuracy for an elliptic equation of the form

∇(β(x, y)∇u) − k(x, y)u = f(x, y), (x, y) ∈ Ω\Γ (1)

with an embedded interface Γ . For simplicity we assume Ω to be a rectangle
and impose Dirichlet boundary conditions. The curve Γ separates two disjoint
sub-domains Ω

+
and Ω

−
with Ω = (Ω

+ ∪ Ω
−

)\Γ , see Figure 1 (a) for an
illustration. Along the interface Γ we prescribe jump conditions of a generalized
proper lumped source:

r−(x, y)u−
n + r+(x, y)u+

n = [u] + g1(x, y), (x, y) ∈ Γ (2)

[β(x, y)un]Γ = δ(α+(x, y)u+ − α−(x, y)u−) + g2(x, y), (x, y) ∈ Γ, (3)

where the symbol [v] stands for the jump of the function v across Γ , i.e.,

[v] = v+ − v−, v+(x, y) = lim
ζ→(x,y),ζ∈Ω+

v(ζ), v−(x, y) = lim
ζ→(x,y),ζ∈Ω−

v(ζ), (4)

r−(x, y), r+(x, y) and δ are given nonnegative functions. Moreover, r− and r+

do not simultaneously vanish, α+ = r−/(r− + r+), α− = r+/(r− + r+), un =
(∇u.n) and n = (n1,n2) is the unit normal vector on Γ , pointing from Ω+ to
Ω−. Note that, for g1 = 0 and δ = 0, the transmission conditions (2) and (3)
become the nonhomogeneous conditions of nonperfect contact [5,6].

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 679–687, 2008.
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In the literature one can find a great number of different approaches for the nu-
merical solution of elliptic interface problems. We limit our discussion here to the
immersed interface method (IIM). It is a second order finite difference method
on Cartesian grids for second order elliptic and parabolic equations with variable
coefficients, see [2]. The finite element IIM, based on Cartesian triangulations,
is developed in [2,3]. Starting with an idea of P. Vabischevich [6], for piecewise
linear approximation of the interface curve in the integrointerpolation method
(≡ FVM), we use as in [4] piecewise bilinear functions on Cartesian grid, which
makes our method similar to the finite element method FEM.

To obtain finite volume formulation of (1)-(4), we integrate the equation (1)
over an arbitrary control volume e ∈ Ω̄ and for irregular control volumes (inter-
sected by the interface) we have∫

∂e

β∇u · ndS −
∫

e

kudV =
∫

e+
fdV +

∫
e−

fdV −
∫

Γe

[βun]dS, (5)

where Γe is the part of the embedded interface Γ , lying inside e and ∂e =
(∂e+

⋃
∂e−) \ Γe.

The finite volume method (FVM) is based on a ’balance’ approach and orig-
inates from the integrointerpolation difference scheme method of Samarskii [5],
designed first of all to be locally conservative. Some of the important features
of the FVM are similar to those of the FEM: it may be used on arbitrary geome-
tries, using structured or unstructured meshes and it leads to robust schemes.
The survey paper [1], is devoted to a review of principles of the FVM and to the
analysis tools for the mathematical study of cell centered finite volume schemes
in the past years.

In the next section we describe the numerical method. Numerical results are
discussed in Section 3. Finally, some conclusions are formulated.

2 Numerical Method

We develop some ideas, presented in [4,6] for (1)–(4) in the case k = r− = r+ =
δ ≡ 0. The discretization of (5) is on uniform grid with h1 and h2 grid spacing in
x and y-directions (see Figure 1) and the numerical solution is denoted by uij at
point (xi, yj). The control volumes eij are centered around the corresponding grid
nodes (i, j), having edges of length h1 and h2. LetMij be the set of rectangles,
called cells in this work, adjacent to the node (i, j) (I–IV, Figure 1 (a)). The
discrete form of (5) for the control volume eij now reads as∑

N∈Mij

2∑
k=1

∫
lNk

β∇u · ndS −
∫

eij

kudV =
∫

eij

fdV −
∫

Γeij

[βun]dS, (6)

where lNk , k = 1, 2 are the two boundary edges with normals n1 and n2 of ∂eij ,
lying inside N .

To evaluate the left hand side of (6) we apply a finite element approach with
piecewise bilinear functions for u on each rectangular cell N ∈ Mij . The local
coordinate systems ((ξ, η) and (ξ̃, η̃)) are involved:
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Fig. 1. (a): Control volume eij . Regular cells II , III , irregular cells I , IV ; (b): Irreg-
ular cell type A; (c): Irregular cell type B in local ξ − η coordinate system.

ξ = (x− xN
0 )/h1 = 1− ξ̃, η = (y − yN

0 )/h2 = 1− η̃, with ξ, η ∈ [0, 1]. (7)

Here (xN
0 , yN

0 ) denotes the origin of the local (ξ, η)-coordinate system in global
(x, y) space. Irregular cells can always be mapped onto one of the two unit-square
cells, shown on Figure 1 (b) and (c). A cell with an interface cutting the two adja-
cent edges of the upper right corner, we call type A (Figure 1 (b)) and type B (Fig-
ure 1 (c)), otherwise. The interface curve is assumed to be a straight line within
the cell and is given by the zero level set of a signed normal distance function Φ(x).
For any cell N ∈Mij we apply a bilinear local ansatz (eB ≡ 0 in regular cell):

uU(ξ, η) = a0 + a1ξ + a2η + a3ξη, ξ, η ∈ eU , (8)

uB(ξ̃, η̃) = b0 + b1ξ̃ + b2η̃ + b3ξ̃η̃, ξ̃, η̃ ∈ eB. (9)

The procedure of obtaining the eight (only first four in regular case) unknown
coefficients û = [a0, a1, a2, a3, b0, b1, b2, b3]T is given below. The idea is to write
û as a linear combination of the four unknown corner values ui, i = 1...4,
i.e. û = Mb, b = [u1, u2, u3, u4, b̄]T , where b̄ = [−g1(xA, yA),−g1(xB , yB), g2(xA,
yA), g2(xB , yB)] for irregular case and b̄ ≡ 0 for regular case or irregular case
with g1(x, y) = g2(x, y) = 0.

Now, using (8)–(9) we can evaluate any one of the two integrals on the left
hand size of (6) analytically on each irregular (and regular) cell. As an example
(for the first integral), consider cell I ( Figure 1 (a)), which is irregular of type
B. For boundary edge lI1 with unit normal vector n = [nx, ny]T = [0, 1]T we have∫

lI1

βuydx =
h1

h2

(∫ ξ∗

0

βUuU
η dξ +

∫ 1/2

ξ̃∗
βBuB

η̃ dξ̃

)

=
βUh1

h2

(
a2ξ

∗ + a3
ξ∗

2

2

)
+

βBh1

h2

(
b2

(
1
2
− ξ̃∗

)
+ b3

(
1
8
− ξ̃∗

2

2

))
.

For regular case the same integral is valid with ξ∗ = 0.5 and ξ̃∗ = 0.5, ξ̃∗ is the
corresponding value of ξ∗ in (ξ̃, η̃) coordinates. For the second integral in the
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left hand size of (6), in the case of Figure 1 (a)(eU and eB are as on Figure 1 (b)
and (c) ), we obtain∫

eij

kudV =
∫

eU
ij

kudV +
∫

eB
ij

kudV

= h1h2

(
k(ξUc , ηUc )

∫
eU

ij

uU(ξ, η)dξdη + k(ξ̃Bc , η̃Bc )
∫

eB
ij

uB(ξ̃, η̃)dξ̃dη̃

)
,

where (ξ̃Bc , η̃Bc ) and (ξUc , ηUc ) denote the barycenters in local coordinates of eBij
and eUij , respectively. The remainder integrals in (6) are calculated as follows:∫

Γeij

[βun]dS =
∑

N∈Mij

[βun]lΓ
eN

ij

, (10)

where lΓ
eN

ij

is the part of the interface ΓeN
ij

in cell N , which belongs to the control

volume eN
ij . The flux jump in (10) we substitute, using (3), (7)-(9). Next,∫

eij

fdV = |eUij |fU (xU
c , yUc ) + |eBij |fB(xB

c , y
B
c ),

where (xU or B
c , yU or B

c ) is the barycenter of eU or B
ij , respectively. Now, we shall

discuss the technique of obtaining û.

• In regular case, the four unknown coefficients (ai) are uniquely determined
by the four corner values of u, matrix M = M̄ , M̄ is given in the Appendix.
• In irregular case: To avoid the singularities (along a line parallel to any

of the two coordinate axes, i. e. ξ = const or η = const and along a line
with nξ = ±nη, see [4] for details), instead of (8)–(9), we propose a two-step
asymptotic approach, [4].

uU(ξ, η) = u(U ,0)(ξ, η) + εu(U ,1)(ξ, η),

uB(ξ̃, η̃) = u(B,0)(ξ̃, η̃) + εu(B,1)(ξ̃, η̃),

where ε is a properly defined small parameter. We also present the jump
conditions [u]C = ([u]A + [u]B)/2 and [βun]C = ([βun]A + [βun]B)/2. The
point C is in the middle of the segment AB and is involved in order to avoid
the above mentioned singularities.

→ Irregular cell of type A: Let ε = min(ã, b̃) where ã = 1− a and b̃ = 1− b.
We define [u]A = [u]B, if ε = 0 and b̃ = 0, also [u]B = [u]A, if ε = 0 and
ã = 0. For û, [4], û = P b̂, where P =

[
MA

0 + ε(MA
1 )−1 (

BA
1 MA

0 + BA
2

)]
, see

Appendix.
Now, for problem (1)–(4), substituting (2) and (3) in b̂, we obtain M =

(S)−1P̃ , where for i = 1, . . . , 8 and E — 8× 8 unit matrix:
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P̃ (i, 1) = P (i, 1)− µ1P (i, 5)− µ̄1P (i, 6) + ρ1P (i, 7) + ρ̄1P (i, 8),

P̃ (i, 2) = P (i, 2)− µ2P (i, 5)− µ̄2P (i, 6) + ρ2P (i, 7) + ρ̄2P (i, 8),

P̃ (i, 3) = P (i, 3) + ρ3P (i, 7) + ρ̄3P (i, 8),

P̃ (i, 4) = P (i, 4)− µ4P (i, 5)− µ̄4P (i, 6) + ρ4P (i, 7) + ρ̄4P (i, 8),

P̃ (i, j) = P (i, j), j = 5, . . . , 8,

S(i, j) = E +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ3P (i, 5) + µ̄3P (i, 6)− ρ5P (i, 7)− ρ̄5P (i, 8), j = 4,
−ν1P (i, 5)− ν̄1P (i, 6) + ρ6P (i, 7) + ρ̄6P (i, 8), j = 6,
−ν2P (i, 5)− ν̄2P (i, 6) + ρ7P (i, 7) + ρ̄7P (i, 8), j = 7,
−ν3P (i, 5)− ν̄3P (i, 6) j = 8,
0, otherwise.

The following notations are used (variables with bars are computed at point
B, ρ̄ = ρ̄(B), variables without bars are computed at point A, ρ = ρ(A)):
ν1 = rBβBnξ̃/ãh1, ν2 = rBβBnη̃/b̃h2, ν3 = rBβBnξ̃/b̃h2, ν̄1 = rBβBnξ̃/ãh1,

ν̄2 = rBβBnη̃/b̃h2, ν̄3 = rBβBεnξ̃/ãh2, µ1 = µ2 + µ4, µ2 = rUβUnξ/h1, µ3 =
rUβU (anξ/h1 + nη/h2), µ4 = rUβUnη/h2, µ̄1 = µ̄2 + µ̄4, µ̄2 = rUβUnξ/h1,
µ̄3 = rUβU (nξ/h1 + bnη/h2), µ̄4 = rUβUnη/h2, ρ1 = ±δαU(1 − ξ − η), ρ2 =
±δαUξ, ρ3 = ±δαUη, ρ4 = ±δαB, ρ5 = ±δαUξη, ρ6 = ±δαBξ̃/b̃, ρ7 = ±δαBη̃/ã,
ρ̄1 = ±δαU (1 − ξ − η), ρ̄2 = ±δαUξ, ρ̄3 = ±δαUη, ρ̄4 = ±δαB, ρ̄5 = ±δαUξη,
ρ̄6 = ±δαBξ̃/b̃, ρ̄7 = ±δαBη̃/ã, where the sign is ’+’, if e+

ij ≡ eUij (then e−ij ≡ eBij)
and ’−’, otherwise.

→ Irregular cell of type B: Now ε = (a − b). The leading order solutions
u(U ,0) and u(B,0) are determined by the four corner values of u and the jump
conditions [u]Ā, [u]B̄, [βun]Ā, and [βun]B̄. The points Ā and B̄ are defined to
have the same ξ-coordinate as point C, i.e. ξĀ = ξB̄ = ξC̄ = (a + b)/2, so that
Ā = A and B̄ = B in the limit ε = 0, see Figure 2 (a). The matrix equation
û = P b̂ is valid, with P =

[
MB

0 + (MB
1 )−1 (

BB
1 MB

0 + BB
2

)]
, see Appendix.

Now, for M = (S)−1P̃ , i = 1, . . . , 8 we obtain

P̃ (i, 1) = P (i, 1)− µ4P (i, 5)− µ̄4P (i, 6) + ρ11P (i, 7) + ρ̄11P (i, 8),

P̃ (i, 2) = P (i, 2) + ν2P (i, 5) + ν̄2P (i, 6)− ρ9P (i, 7)− ρ̄9P (i, 8),

P̃ (i, 3) = P (i, 3)− ν2P (i, 7)− ν̄2P (i, 8)− ρ10P (i, 7)− ρ̄10P (i, 8),

P̃ (i, 4) = P (i, 4) + µ4P (i, 5) + µ̄4P (i, 6) + ρ11P (i, 7) + ρ̄11P (i, 8),

P̃ (i, j) = P (i, j), j = 5, . . . , 8,

S(i, j)=E−

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ2P (i, 5) + µ̄2P (i, 6) + ρ2P (i, 7) + ρ̄2P (i, 8), j = 2,
µ5P (i, 5) + (µ̄2 + µ̄5)P (i, 6) + ρ5P (i, 7) + ρ̄5P (i, 8), j = 4,
ν1P (i, 5) + ν̄1P (i, 6)− ρ6P (i, 7)− ρ̄6P (i, 8), j = 6,
(ν1 + ν3)P (i, 5) + ν̄3P (i, 6)− ρ8P (i, 7)− ρ̄8P (i, 8), j = 7,
0, otherwise.
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The following notations are involved or redefined: µ5 = aµ4, µ̄5 = bµ̄4,
ρ6 = ±δαBξ̃, ρ8 = ±δαBξ̃η̃, ρ9 = ±δαB η̃, ρ10 = 1−ρ9, ρ11 = 1−ρ3, ρ̄6 = ±δαB ξ̃,
ρ̄8 = ±δαBξ̃η̃, ρ̄9 = ±δαBη̃, ρ̄10 = 1 − ρ̄9, ρ̄11 = 1 − ρ̄3, ν1 = rBβBnξ̃/h1,

ν2 = rBβBnη̃/h2, ν3 = ãν2, ν̄1 = rBβBnξ̃/h1, ν̄2 = rBβBnη̃/h2, ν̄3 = ãbν̄2.

3 Numerical Results

From physical point of view, the problem (1)–(4), where δ = g1(x, y) = g2(x, y) =
r−(x, y) ≡ 0 and r+(x, y) = g(x, y)β+ is of interest, see [5,6]. This will be our
test example. Let f± = (4 − kβ±(x2 + y2))/β+β−, g = 0.5(β− − β+)(x2 +
y2)/(xn1 + yn2), k(x, y) ≡ 1, −1 ≤ x, y ≤ 1 and Dirihlet boundary conditions
are defined by the exact solution: u− = (x2 + y2)/β+, u+ = (x2 + y2)/β−. The
interface is a simple circle with radius

√
0.23 and midpoint (0, 0). The level set

Table 1. Convergence results and error in the L2 and L∞-norm

β− = 1000, β+ = 1 β− = 1, β+ = 0.005

N L∞ CR L2 CR L∞ CR L2 CR

40 3.08591e-4 2.1078 2.74498e-4 2.1205 6.27347e-2 2.1244 5.18968e-2 2.1302

80 8.34144e-5 1.8873 7.29559e-5 1.9117 1.67619e-2 1.9040 1.36504e-2 1.9267

160 2.01086e-5 2.0524 1.74572e-5 2.0632 4.57867e-3 1.8721 3.68324e-3 1.8899

320 5.40968e-6 1.8942 4.58033e-6 1.9303 1.17416e-3 1.9633 9.27085e-4 1.9902

640 1.35148e-6 2.0010 1.13379e-6 2.0143 3.15569e-4 1.8956 2.47770e-4 1.9037
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Fig. 2. Numerical solution (left) and absolute error (right), N = 80, β− = 1, β+ =
0.005
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function is Φ =
√

x2 + y2−
√

0.23, Φ(x) > 0 in Ω+ and Φ(x) ≤ 0 in Ω−. Figure 2
plots the numerical solution and absolute error. In Table 1 convergence results
and error in the L2 and L∞-norm are given on grid set: h1 = h2 = h, N = 1/h.
The rate of convergence (CR) is computed, using double mesh principle.

4 Conclusions

We used FVM instead of finite difference method or FEM. Our algorithm always
automatically achieves second order accuracy on compact 9-point stencil. We
used piecewise bilinear functions on the Cartesian grid instead of piecewise linear
functions on triangles, as is in IIM-FEM of [2]. The method can handle the
problems when the solution and/or interfaces are weaker than C2. For example,
u ∈ H2(Ω∓), Γ is Lipschitz continuous.

To date, we have not been able to treat the theoretic framework of the method.
Matrix theoretic considerations must be done, in order to obtain a variant of the
discrete maximum principle.
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Appendix

M̄ =

⎡⎢⎢⎣
1 0 0 0
−1 1 0 0
−1 0 0 1
1 −1 1 −1

⎤⎥⎥⎦, BA
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
1
ε

1
ε

a
ε

a
ε − 1

ε 0 0 0
1
ε

b
ε

1
ε

b
ε − 1

ε 0 0 0
1
ε

1+b
2ε

1+a
2ε

(1+a)(1+b)
4ε − 1

ε 0 0 0
0 βUnξ

h1

βUnη

h2

βUnξ(1+a)
2h1

+ βUnη(1+b)
2h2

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

BB
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
−1 −a 0 0 1 ã 1 ã

−1 −b −1 −b 1 b̃ 0 0
0 0 0 − 1

4 0 0 0 1
4

0 −βU nξ

h1

−βU nη

h2
tU 0 −βBnξ

h1

−βBnη

h2
tB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

tU = −βUnξ

2h1
− βU nη(a+b)

2h2
,

tB = −βBnξ

2h1
− βBnη(a+b)

2h2
,

BA
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . 1

ε 0 0 0
0 0 . . . 0 1

ε 0 0
0 0 . . . 1

2ε
1
2ε 0 0

0 0 . . . 0 0 1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, BB

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . 1 0 0 0
0 0 . . . 0 1 0 0
0 0 . . . 0 0 0 0
0 0 . . . 0 0 1

2
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

MA
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0
1 −1 1 −1 1

2
1
2 0 0

0 0 1 0 0 0 0 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0
0 0 . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

[u]A
[u]b

[βun]A
[βun]B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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MA
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 a 0 0 −1 0
0 0 0 b 0 −1 0 0
0 0 0 (1+a)(1+b)

4 0 − 1
2 − 1

2 − 1
4

0 0 0 εβU nξ(1+a)
2h1

+ εβU nη(1+b)
2h2

0 εβBnξ

b̃h1

εβBnη

ãh2

εβBnξ

2b̃h1
+ εβBnη

2ãh2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

MB
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−sU sU 0 0 sU 0 sUqU 0
−1 0 0 1 0 0 0 0
sU −sU sU −sU −sU sU −sUqU sUqU

0 0 1 0 0 0 0 0
0 0 sB −sB 0 sB 0 −sBqB
0 1 −1 0 0 0 0 0
−sB sB −sB sB sB −sB −sBqB sBqB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

sU = βU

ξCβB+ξ̃CβU ,

sB = − βB

ξCβB+ξ̃CβU ,

qU = ξ̃Ch1
βB ,

qB = ξCh1
βU ,

MB
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 a 0 0 0 −ã 0 −ã
0 b 0 b 0 −b̃ 0 0
0 0 0 1/4 0 0 0 −1/4

0 βU nξ

h1
0 βU nξ

2h1
+ βUnη(a+b)

2h2
0 βBnξ

h1

βBnξ

2h1
+ βBnη(ã+b̃)

2h2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 1. In MA
1 , BA

1 , MB
1 , and BB

1 : nξ and nη are computed at point C.
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Abstract. In this study, the topics of grid generation and FEM appli-
cations are studied together following their natural synergy. We consider
the following three grid generators: NETGEN, TetGen and Gmsh. The
qualitative analysis is based on the range of the dihedral angles of the
triangulation of a given domain. After that, the performance of two dis-
placement decomposition (DD) preconditioners that exploit modified in-
complete Cholesky factorization MIC(0) is studied in the case of FEM
matrices arising from the discretization of the three-dimensional equa-
tions of elasticity on unstructured tetrahedral grids.

Keywords: finite element method, preconditioned conjugate gradient
method, MIC(0), displacement decomposition.

1 Introduction

Mesh generation techniques are now widely employed in various scientific and
engineering fields that make use of physical models based on partial differential
equations. While there are a lot of works devoted to finite element methods
(FEM) and their applications, it appears that the issues of meshing technologies
in this context are less investigated. Thus, in the best cases, this aspect is briefly
mentioned as a technical point that is possibly non-trivial.

In this paper we consider the problem of linear elasticity with isotropic ma-
terials. Let Ω ⊂ R3 be a bounded domain with boundary Γ = ∂Ω and u =
(u1, u2, u3) the displacement in Ω. The components of the small strain tensor
are

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, 1 ≤ i, j ≤ 3

and the components of the Cauchy stress tensor are

τij =
3∑

k,l=1

cijklεkl(u), 1 ≤ i, j ≤ 3 ,

where the coefficients cijkl describe the behavior of the material. In the case of
isotropic material the only non-zero coefficients are

ciiii = λ + 2µ, ciijj = λ, cijij = cijji = µ .

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 688–695, 2008.
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Now, we can introduce the Lamé’s system of linear elasticity (see, e.g., [2])

(λ + µ)
3∑

k=1

∂2uk

∂xk∂xi
+ µ

3∑
k=1

∂2ui

∂x2
k

+ Fi = 0, 1 ≤ i ≤ 3 (1)

equipped with boundary conditions

ui(x) = gi(x), x ∈ ΓD ⊂ ∂Ω ,
3∑

j=1

τij(x)nj(x) = hi(x), x ∈ ΓN ⊂ ∂Ω ,

where nj(x) denotes the components of the outward unit normal vector n onto
the boundary x ∈ ΓN . The finite element method (FEM) is applied for dis-
cretization of (1) where linear finite elements on a triangulation T are used.
The preconditioned conjugate gradient (PCG) [1] method will be used for the
solution of the arising linear algebraic system Kuh = fh.

2 MIC(0) DD Preconditioning

We first recall some known facts about the modified incomplete Cholesky fac-
torization MIC(0), see, e.g. [4,5]. Let A = (aij) be a symmetric n × n matrix
and let

A = D − L− LT ,

where D is the diagonal and −L is the strictly lower triangular part of A. Then
we consider the factorization

CMIC(0) = (X − L)X−1(X − L)T ,

where X = diag(x1, . . . , xn) is a diagonal matrix, such that the row sums of
CMIC(0) and A are equal

CMIC(0)e = Ae, e = (1, . . . , 1) ∈ Rn .

Theorem 1. Let A = (aij) be a symmetric n× n matrix and let

L ≥ 0
Ae ≥ 0

Ae + LTe > 0 where e = (1, . . . , 1)T .

Then there exists a stable MIC(0) factorization of A, defined by the diagonal
matrix X = diag(x1, . . . , xn), where

xi = aii −
i−1∑
k=1

aik

xk

n∑
j=k+1

akj > 0 .



690 N. Kosturski

It is known, that due to the positive offdiagonal entries of the coupled stiffness
matrix K, the MIC(0) factorization is not directly applicable to precondition
the FEM elasticity system. Here we consider a composed algorithm based on a
separable displacement three-by-three block representation⎡⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤⎦uh = fh .

In this setting, the stiffness matrix K is spectrally equivalent to the block-
diagonal approximations CSDC and CISO

CSDC =

⎡⎣K11

K22

K33

⎤⎦ , CISO =

⎡⎣ A
A

A

⎤⎦ , (2)

where A =
1
3
(K11+K22+K33). The theoretical background of this displacement

decomposition (DD) step is provided by the second Korn’s inequality [2]. Now
the MIC(0) factorization is applied to the blocks of (2). In what follows, the
related preconditioners will be referred to as CSDC-MIC(0) and CISO-MIC(0), cf.
[2,4,6].

3 Diagonal Compensation

The blocks K11, K22, K33 and A correspond to a certain FEM elliptic problem
on the triangulation T . Here, we will restrict our analysis to the case of isotropic
DD, i.e., we will consider the piece-wise Laplacian matrix

A =
∑
e∈T

Ae

where the summation sign stands for the standard FEM assembling procedure.
In the presence of positive offdiagonal entries in the matrix, the conditions of
Theorem 1 are not met. To meet these conditions we use diagonal compensation
to substitute the matrix A by a proper M -matrix Ā. After that the MIC(0)
factorization is applied to Ā. The procedure consists of replacing the positive
offdiagonal entries in A with 0 in Ā and adding them to the diagonal, so that
Ae = Āe.

The following important geometric interpretation of the current element stiff-
ness matrix holds (see, e.g., in [7])

Ae =
Pe

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
1�=i<j

�ij cot θij −�34 cot θ34 −�24 cot θ24 −�23 cot θ23

−�34 cot θ34

∑
2�=i<j �=2

�ij cot θij −�14 cot θ14 −�13 cot θ13

−�24 cot θ24 −�14 cot θ14

∑
3�=i<j �=3

�ij cot θij −�12 cot θ12

−�23 cot θ23 −�13 cot θ13 −�12 cot θ12

∑
i<j �=4

�ij cot θij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Pe is some constant, depending on the material coefficents, �ij denotes
the length of the edge connecting vertices vi and vj of the tetrahedron e and
θij denotes the dihedral angle at that edge. This interpretation shows that each
positive offdiagonal entry in the element stiffness matrix corresponds to an ob-
tuse dihedral angle in the tetrahedron e. Also a positive entry tends to infinity
when the dihedral angle tends to 180 ◦. In the presence of very large dihedral
angles, the relative condition number κ(Ā−1A) may become very large. Since
the MIC(0) factorization is applied to the auxilary matrix Ā, the performance
of the preconditioner strongly depends on this relative condifion number. In the
two-dimensional case an uniform estimate of the condition number, depending
only on the minimal angle was derived (see [6]). In the three-dimensional case,
however, it is much harder to obtain an uniform estimate, since the element
matrices depend not only on the shape of the elements, but also on elements
sizes.

4 Comparison of Mesh Generators

In this section we compare the following three mesh generators:

– NETGEN v.4.4 (http://www.hpfem.jku.at/netgen/);
– Tetgen v.1.4.1 (http://tetgen.berlios.de/);
– Gmsh v.2.0.0 (http://geuz.org/gmsh/).

In the previous section we have seen the impact of very large dihedral angles
on the preconditioning. Very small and very large angles also affect the accuracy
of the FEM approximation as well as the condition number of the related stiffness
matrix.

The domain we chose for this comparison is

Ω = {(x, y, z) | 0.1 ≤ x2 + y2 + z2 ≤ 1, x, y, z ≥ 0} . (3)

Different parameters of the grid generators may affect the quality of the result-
ing meshes. Some generated meshes are shown in Fig. 1 and the minimal and

(a) (b) (c)

Fig. 1. Meshes, generated by: (a) NETGEN; (b) TetGen; (c) Gmsh
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Table 1. Resulting Mesh Properties

Generator Parameters Min Angle Max Angle Elements Nodes

NETGEN grading = 1 14.3553 ◦ 151.997 ◦ 436 189
NETGEN grading = 0.5 19.3608 ◦ 142.821 ◦ 650 245
NETGEN grading = 0.2 26.1134 ◦ 135.173 ◦ 1882 504
TetGen ratio = 2 5.06703 ◦ 166.432 ◦ 474 197
TetGen ratio = 1.5 6.26918 ◦ 169.619 ◦ 714 251
TetGen ratio = 1.2 6.12442 ◦ 168.717 ◦ 1484 417
Gmsh h = 0.05, H = 0.5 13.3345 ◦ 143.297 ◦ 1192 344
Gmsh h = 0.03, H = 0.3 20.9614 ◦ 144.173 ◦ 1553 436
Gmsh h = 0.015, H = 0.15 18.7442 ◦ 137.373 ◦ 3718 940

maximal angles and numbers of nodes and elements for the three considered
mesh generators with various values of the parameters are given in Table 1.

The mesh quality in NETGEN highly depends on the mesh-size grading pa-
rameter. Decreasing the value of this parameter leads to a mesh with better
dihedral angles at the expense of larger number of elements and nodes. In Tet-
Gen, the mesh element quality criterion is based on the minimum radius-edge
ratio, which limits the ratio between the radius of the circumsphere of the tetra-
hedron and the shortest edge length. It seems, however, that this parameter does
not directly reflect on the dihedral angles. With all tested values the resulting
meshes contained both very small and very large dihedral angles. For Gmsh,
the parameters h and H correspond to the characteristic lengths, assigned re-
spectively to the vertices on the inner and the outer spherical boundary of the
domain.

The results show that NETGEN generally achieved better dihedral angles
than TetGen. Gmsh achieved similar dihedral angles, but with considerably
larger number of elements/nodes than NETGEN.

5 Numerical Experiments

The presented numerical test illustrate the PCG convergence rate of the two
studied displacement decomposition algorithms. The number of iterations for
the CG method are also given for comparison. A relative PCG stopping criterion
in the form rT

k C−1rk ≤ ε2rT
0 C−1r0 is employed. Here rk is the residual vector

at the k-th iteration and C is the preconditioner.

Remark 1. The experiments are performed using the perturbed version of the
MIC(0) algorithm, where the incomplete factorization is applied to the matrix
Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . , d̃n) is defined
as follows:

d̃i =
{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi
,

where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .
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Table 2. Model Problem in the Unit Cube, ε = 10−6

Mesh Elements Nodes CG ISO-MIC(0) SDC-MIC(0)

1 384 125 26 13 13
2 3 072 729 53 17 15
3 24 576 4 913 110 26 22
4 196 608 35 937 192 38 33
5 1 572 864 274 625 459 53 51

Remark 2. A generalized coordinate-wise ordering is used to ensure the condi-
tions for a stable MIC(0) factorization.

Remark 3. Uniform refinement of the meshes in not used in the experiments,
since it does not preserve the dihedral angles. For example let us consider the
platonic tetrahedron (with dihedral angles ≈ 70.5288 ◦). After splitting it in 8
new tetrahedrons we obtain a mesh with dihedral angles ranging from 54.7356 ◦

to 109.471 ◦. Four of the new tetrahedrons are similar to the original one, and all
the other four have one obtuse dihedral angle. The numbers of elements in the
experiments with unstructured meshes, thus do not increase exactly 8 times.

5.1 Model Problem in the Unit Cube

We first consider a model pure displacement problem in the unit cube Ω = [0, 1]3

and ΓD = ∂Ω. The material is homogeneous with λ = 1 and µ = 1.5, and
the right-hand side corresponds to the given solution u1 = x3 + sin(y + z),
u2 = y3 + z2− sin(x− z), u3 = x2 + z3 + sin(x− y). An uniform initial (coarsest)
triangulation with a mesh size h = 1/4 is used. The resulting convergence rates
are given in Table 2.

5.2 Model Problem in a Curvilinear Domain

We consider the same model problem, but on the domain (3) (see Fig. 1(a)). The
resulting convergence rates are given in Table 3. NETGEN is used to generate
the meshes for this experiment.

Table 3. Model Problem in the Curvilinear Domain, ε = 10−6

Mesh Elements Nodes CG ISO-MIC(0) SDC-MIC(0)

1 1 882 504 54 16 16
2 13 953 3 022 117 17 16
3 107 530 20 589 291 23 21
4 843 040 150 934 715 31 31
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L1

L2

L3

L4

ΓD

F1 F2

(a) (b)

(c) (d)

Fig. 2. Pile Foundation System: (a) Geometry; (b) A Mesh with Local Refinement;
(c) Vertical Displacements; (d) Vertical Stresses

5.3 Computer Simulation of a Pile Foundation System

We consider the simulation of a foundation system in multi-layer soil media.
The system consists of two piles with a linking plate. Fig. 2 (a) shows the ge-
ometry of Ω and the related weak soil layers. The generator used here is NET-
GEN. Meshes are locally refined in areas with expected concentration of stresses,
see Fig. 2 (b). The material characteristics of the concrete (piles) are λp =
7666.67 MPa, µp = 11500 MPa. The related parameters for the soil layers are as
follows: λL1 = 28.58 MPa, µL1 = 7.14 MPa, λL2 = 9.51 MPa, µL2 = 4.07 MPa,
λL3 = 2.8 MPa, µL3 = 2.8 MPa, λL4 = 1.28 MPa, µL4 = 1.92 MPa. The forces,
acting on the top cross-sections of the piles are F1 = (150 kN, 2000 kN, 0) and
F2 = (150 kN, 4000 kN, 0). Dirichlet boundary conditions are applied on the bot-
tom side. Fig. 2 (c) and (d) show contour plots of the solution. Table 4 contains
the PCG convergence rate for Jacobi (the diagonal of the original matrix is used
as a preconditioner) and the two MIC(0) DD preconditioners.
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Table 4. Pile Foundation System, ε = 10−6

Mesh Elements Nodes Jaccobi ISO-MIC(0) SDC-MIC(0)

1 24 232 4 389 942 376 307
2 136 955 24 190 1680 564 505
3 859 895 149 111 3150 783 668
4 6 137 972 1 052 306 5416 972 929

5.4 Concluding Remarks

The rigorous theory of MIC(0) preconditioning is applicable to the first test
problem only. For a structured grid with a mesh size h and smoothly varying
material coefficients, the estimate κ(C−1

h Ah) = O(h−1) = O(N1/3) holds, where
Ch is the SDC-MIC(0) or ISO-MIC(0) preconditioner. The number of PCG
iterations in this case is nit = O(N1/6). The reported number of iterations
fully confirm this estimate. Moreover, we observe the same asymptotics of the
PCG iterations for the next two problems, which is not supported by the theory
up to now. As we see, the considered algorithms have a stable behaviour for
unstructured meshes in a curvilinear domain (see Fig. 1(a)). The robustness in
the case of local refinement and strong jumps of the coefficients is well illustrated
by the last test problem.

Acknowledgment. The author gratefully acknowledges the support provided
via EC INCO Grant BIS-21++ 016639/2005.
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Abstract. In this work, an exact approach to solve the Error Correc-
ting Code problem is presented. For the implementation, the Branch and
Bound skeleton of the MaLLBa library has been applied. This tool pro-
vides a hierarchy of C++ classes which must be adapted to the specific
requirements of the problem. Then, it generates two parallel solvers: one
based on the message passing paradigm and other designed on the basis
of a shared memory model. For both parallel proposals the sequential al-
gorithm follows the same principles. Note that with a single and simple
specification of the problem, the tool gives the user two different parallel
approaches. Computational results obtained with the openmp and mpi

tools are shown.

1 Introduction

In the transmission of a message in binary code, interferences may appear. In-
terferences may cause to receive a message different from the one originally sent.
If the error is detected, one possible solution is to request to the emitter the re-
transmission of the complete data block. However, there are many applications
where the data retransmission is not possible or is not convenient in efficiency
terms. In these cases, the message must be corrected by the receiver. For these
particular situations Error Correcting Codes [6,8] are used. There are many types
of error correcting codes: block (linear or cyclic) codes, convolutional codes, etc.
This work is focused on block codes.

Due to the algorithmic complexity of the problem, most of the related works
in the literature propose heuristics approaches [2,4]. In this work, an approach
based on exact techniques will be exposed. A C++ tool for the implementation
of problems by using Branch and Bound strategies has been used. This tool
is provided by the MaLLBa skeleton library [1]. The way how MaLLBa::BnB
skeleton [5,7] has been applied to solve the Error Correcting Code problem is
shown.

The article contents are organized in the following way: section 2 gives a brief
definition of the problem. The exact algorithm principles and its implementa-
tion are explained in section 3. Section 4 is devoted to expose the definition of
the problem through the MaLLBa Branch and Bound skeleton. Also, the op-
eration mode of the generated openmp and mpi parallelizations are described.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 696–704, 2008.
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Computational results are shown in section 5. Finally, the conclusions are given
in section 6.

2 Error Correcting Code Problem

Let A = {a1, a2, ..., ar} be a set of r elements. Such set is called the alphabet
of the code and its elements are known as the symbols of the code. A r − ary
block code C over an alphabet A is a not empty subset of An, where An is the
set of all the words of fixed length n over A. The elements in C are denoted
codewords and n represents the length of the code. The number of M words in
the code C (that is the cardinality of the subset) is called the size of the code.
The messages to be transmitted consist of sequences of such M codewords. The
Hamming distance between two sequences vi and vj is the number of different
code symbols between them. The minimum distance of the code C is denoted
as d(C) and it is defined as the minimum Hamming distance between all the
different codewords:

d(C) = min{d(ci, cj)|ci, cj ∈ C, ci �= cj}.

A code with M words of length n over an alphabet of r symbols and a mi-
nimum distance dmin is designated as a r-ary (n,M, dmin) code. The minimum
distance dmin is related to the capacity of the code C to detect and correct errors
[6]. A code C is able to detect v errors if and only if dmin ≥ v + 1. A code C
is able to correct e errors if and only if dmin ≥ 2e + 1. Then, if a code C has a
minimum distance of dmin, C will be able to detect dmin − 1 errors and correct
)(dmin − 1)/2* errors in any word of the code. The error correcting is based
on the maximum likeliness principle. This principle establishes that: when the
receiver gets a codeword W ′ that is not included in the code C, the criterion
to follow is to select as the correct codeword W the nearest codeword to W ′.
The nearest codeword to W ′ is the word of the code with the minimum distance
to W ′:

d(W,W ′) < d(Y,W ′), ∀Y ∈ C;Y �= W.

When designing an error correcting code the objectives are:

– Minimize n. Find the codewords with minimum length in order to decrease
the time invested in the message transmission.

– Maximize dmin. The Hamming distance between the codewords must be
maximum to guarantee a high level of correction at the receiver. If the code-
words are very different one from each other, it would be very unlikely to
appear so many errors to transform one codeword into a different one.

– Maximize M . Maximize the number of codewords in the code (the final
objective is to be as near as possible to An).

Even though, these objectives are incompatible, so, what it is usually done is
to optimize one of the parameters (n, M or dmin) giving a specific fixed value
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for the other two. The most common approach for the problem is to maximize
dmin for given n and M .

The problem solved here is posed as follows: starting with fixed values for the
parameters M and n, it is necessary to get (from all the possible codes that can
be generated) the code with the maximum minimum distance. The total number
of possible codes with M codewords of n bits is equal to

(
2n

M

)
. Depending on the

problem parameters (M and n), this value could be very high. In such cases, the
approach to the problem could be almost unfeasible in terms of computational
resources. The execution time grows exponentially with the increase of any of
the parameters M or n.

3 Exact Algorithm

The approach followed to get the code of M words of n bits with the maximum
minimum distance is based on the Subset Building Algorithm [3]. This exact
algorithm allows to generate all the possible codes with M words of length n.
From all the possible codes, the one with the best minimum distance will be
chosen as the final solution. Note that several codes with the same best distance
can be obtained.

Taking into account some properties of the algorithm, several particularities
have been applied to the implementation in order to reduce the total search
space. One way to reduce the computational effort needed by the exhaustive
search consists in forcing the implementation to generate only the subsets con-
taining the word “00...00” (of n bits). As a result, the depth of the search tree
is reduced (now only M − 1 words have to be selected). Another improvement
introduced to the original algorithm consists in generating only non-equivalent
codeword subsets.

The problem search space can be represented as a general search tree. The
algorithm applied is similar to an exhaustive tree search strategy. By this rea-
son, the principles of a Branch and Bound technique are introduced in order
to avoid exploring branches that will never get to an optimal solution. When
the algorithm gets a solution code with a certain minimum distance, it will
be set as the current best solution. In the future, branches with current mi-
nimum distance lower or equal to the current best distance, will be bound.
Moreover, the expected code must be able to correct a certain number of errors,
so that, all the branches representing codes that break this constraint will be
pruned.

Initially, an ad-hoc C++ implementation of the algorithm described in the pre-
vious paragraph was developed. This sequential approximation was not
enough efficient to afford some of the problem big instances. But an exact so-
lution to the problem is needed in order to verify the quality of the non-exact
approximations. So, to improve the efficiency of the exact algorithm some kind
of parallel techniques might be applied.
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4 Problem Implementation with MaLLBa

In order to simplify the development of a solution to the problem and also with
the aim of obtaining more efficient schemes, MaLLBa skeleton library [1] has
been used. MaLLBa library consists of a set of algorithmic skeletons for solving
combinatorial optimization problems. They provide an important advantage in
comparison to a direct implementation of the algorithm from the beginning, not
only in terms of code reuse but also in methodology and concept clarity. In this
case, MaLLBa::BnB skeleton [5,7] has been applied to solve the Error Correcting
Code problem.

The process of building all the possible codeword sets proposed in section 3
can be represented by using a tree structure. A tree node would represent a
possible set of codewords (code). At every iteration, one node of the tree is
chosen and branched. Branching a node consists in building all the new possible
codeword sets by adding a new codeword to the current set. Nodes representing
a possible solution code are identified to finally choose the best one. Note that
the implementation follows a scheme very similar to a general Branch and Bound
strategy. By this reason, instead of directly implement the algorithm from the
beginning, MaLLBa::BnB skeleton will be tested. MaLLBa::BnB [5] implements
a Branch and Bound technique over the problem search space. It needs some
functions to calculate upper and lower bounds of each subproblem, in order to
avoid exploring the hole search space. It explores the tree space, branching each
subproblem and pruning the worse branches. When the exploration finishes, the
solver returns the best solution found.

In general, the software that supplies skeletons presents declarations of empty
classes. The user must fill these empty classes to adapt the given scheme for
the resolution of a particular problem. In particular, MaLLBa::BnB requires to
the user the specification of three classes: Problem stores the characteristics of
the problem to solve, Solution defines how to represent the solutions and Sub-
Problem represents a node in the tree or search space. This last class defines
the search for a particular problem and it must contain a field of type Solution
in which store the (partial) solution. The methods to define for this class are:
initSubProblem(pbm, subpbms) creates the initial subproblem or subproblems
from the original problem, lower bound(pbm) calculates the subproblem accu-
mulated cost, upper bound(pbm, sol) calculates the subproblem estimated total
cost, branch(pbm, subpbms) generates a set of new subproblems from the current
one. The structure of the skeleton required classes for the implementation of the
Error Correcting Code problem is shown in Figure 1.

The skeleton provides to the user two classes: Setup is used to configure all the
search parameters and skeleton properties and Solver implements the strategy
to do (a Branch and Bound in this case). Usually, each skeleton provides several
solvers. Some of them are sequential and other are parallel. MaLLBa::BnB pro-
vides one sequential solver and two parallel solvers. The user can modify certain
characteristics of the search by using the provided configuration class Setup and
depending on the definition done for some methods of the SubProblem class.
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class Problem {
unsigned int M; // Number of codewords in the code
static int n; // Codewords length (in bits)
unsigned int numError; // Minimum number of errors to correct
int bestD; // Current higher minimum distance
unsigned int maxSet; // Maximum number of obtainable codewords
...

}

class Solution {
set<int> cw; // Set of codewords in the code
...

}

class SubProblem {
int d; // Minimum distance of the subproblem code
Solution sol; // Solution represented by the subproblem
...

}

Fig. 1. MaLLBa Classes Definition

One of the advantages of using MaLLBa skeletons consists in the fact that
with only one definition of the corresponding classes and methods, the user
gets several implementations: some sequential and other parallel. In particular,
MaLLBa::BnB provides one sequential solver and two parallel ones. Besides, the
user can tune the type of search to do by the skeleton. Giving certain values to
the configuration parameters, the user can obtain a simple Branch and Bound
algorithm or any type of search algorithm (i.e. an A* search).

MaLLBa::BnB uses a structure to store the nodes that are pending to be
analyzed. First, all the initial subproblems are inserted into the list of pending
nodes. At each step of the process, the first node in the list is removed and
branched: all the new subproblems generated from the current one are inserted
into the list of nodes. The type of insertions to do into the list of nodes depends
on the type of search algorithm that is being implemented. The process ends
when the list of nodes is empty. From all the suitable solutions reached during
the search, the best one will be selected.

In order to improve the efficiency of the application, the two parallel approa-
ches provided by the tool have been tested. The first parallel solver is based on
the message passing paradigm and the second one relies on a shared memory
scheme. The message passing parallelization has been implemented with mpi [10]
while the shared memory approach uses openmp [9].

4.1 MPI Solver

This parallel design is based on a master-slave paradigm. The master sends to
every slave a node from which generate new subproblems. Each initial node
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represents the first codeword from which begin to generate possible words sub-
sets. Each slave generates all the possible subsets beginning from the codeword
sent by the master. That is, each slave explores all the search space created
from the initial received node. Between all the codeword subsets reached, the
slave sends to the master the best solution found. The master receives all the
solutions reached by each slave. Among them, the master will select the best
one (the code with the higher minimum distance). In this implementation, the
master distributes the work load between the slaves but it does not participate
in the nodes branching.

In order to maintain always the best current solution updated, some extra
communications are necessary between the master and the threads. Each time
a slave reaches a better current solution, it must notify it to the master. Then,
the master will transmit the value of the new higher minimum distance to the
others slaves. Having the best current solution always updated allows the slaves
to avoid exploring unnecessary areas.

4.2 OpenMP Solver

In this parallel implementation, the data structures to manage the nodes are
stored in shared memory. The parallelization scheme is also based on a master-
slave model. During the search, several slave threads can branch different sub-
problems at the same time. Meanwhile, at each step, the master thread is in
charge of removing one node from the list of pending nodes and insert its corres-
ponding new subproblems (previously created by a slave thread) into the same
list. If the master removes an unbranched node, it will have to do the branching
of the subproblem. Thus, the master removes nodes from the list and inserts
their new subproblems while the slaves are branching the pending nodes in the
list. The problem of this scheme lies in the fact that the master is modifying the
list of nodes at the same time that the slave threads are accessing it to look for
job to do. By this reason, special synchronization mechanisms between threads
had to be designed. Synchronization tasks require a considerable computational
effort, that is why it can seriously affect to the algorithm behaviour. Anyway,
the user does not have to worry about these features, just try what the library
gives. That is one of the great advantages of using the proposed tool.

The value of the current higher minimum distance is 0 updated by all the
threads. That allows the threads to avoid exploring branches that will never get
to a solution better than the current one.

5 Computational Results

For the computational study, several instances of the Error Correcting Code
problem have been selected. For these instances, various values for n and M
have been defined. The minimum number of errors to correct in all the instan-
ces is one. Thus, the efficiency of the implementations for solving instances with
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Table 1. Sequential Results

C++ Ad Hoc Implementation MaLLBa::BnB Implementation
Problem Time Nodes Time Nodes

n = 9 M = 17 206.326 255 223.79 221
n = 10 M = 12 25.034 511 24.614 469
n = 13 M = 5 4330,789 4095 4238.540 4022
n = 8 M = 18 2035.620 127 2332.458 100

Table 2. Parallel openmp Results

2 threads 4 threads 8 threads 16 threads
Problem Time Nodes Time Nodes Time Nodes Time Nodes

n = 9 M = 17 244.32 221 743.55 221 13.75 221 13.65 221
n = 10 M = 12 25.726 469 23.255 469 23.942 469 33.801 469
n = 13 M = 5 4279.372 4022 1717.342 4022 954.083 4022 627.311 4022
n = 8 M = 18 5149.484 100 9403.328 100 8605.960 100 733.830 100

Table 3. Parallel mpi Results

2 processors 4 processors 8 processors 16 processors
Problem Time Nodes Time Nodes Time Nodes Time Nodes

n = 9 M = 17 205.039 255 203.398 255 209.971 255 198.532 255
n = 10 M = 12 24.040 511 8.378 511 3.954 511 2.198 511
n = 13 M = 5 4167.337 4095 1394.192 4095 602.862 4095 283.006 4095
n = 8 M = 18 2034.787 127 1819.053 127 1785.241 127 1702.547 127

different computational efforts will be analyzed. The experiments have been run
over an Origin 3800.

Table 1 shows the execution times (in seconds) and the number of computed
nodes, that is, the number of branched nodes, for the sequential C++ ad hoc
implementation and for the sequential MaLLBa::BnB solver. The obtained results
are very similar, so the skeleton does not introduce too much overhead to the
algorithm. Tables 2 and 3 show the execution times and the number of computed
nodes for the parallel openmp and mpi implementations.

Figure 2 represents the speedups gotten with the parallel solvers. mpi speedup
have a better behaviour than the ones obtained for the openmp version. Results
for the mpi implementation do not always improve the sequential times but
the behaviour of this version is more stable and predictable. For the openmp

implementation, some strange behaviours could appear. Results for the pro-
blem instance “n=9, M=17” presents a case of superlinearity. This is due to
an algorithmic speedup. It is important to take into account that a Branch and
Bound strategy has been implemented and, for this particular instance, one of
the threads found the solution immediately, making possible to avoid exploring
the whole search space. In the sequential case, most of the tree branches would
have to be explored before finding the problem solution.
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Fig. 2. Speedup

Fig. 3. Computed Nodes

Figure 3 shows the number of computed nodes per processor for the openmp

and mpi implementations for the problem instance “n=13, M=5”. In both cases,
the load distribution between the processors is quite fair. In the mpi implementa-
tion, the load is distributed among the slaves but in the openmp case the master
can also collaborate with its slaves.

6 Conclusions

Through this work, an exact algorithm for the Error Correcting Code problem
has been presented. The algorithm follows a scheme very similar to a Branch and
Bound strategy. For this reason, the algorithm has been implemented using the
MaLLBa::BnB library. The flexibility, efficiency and simplicity of MaLLBa tools
have been proved.
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The sequential and parallel solvers provided by the skeleton have been tested.
Computational results show that, in general, the mpi implementation presents
a better behaviour. Although, the most important issue is that the user directly
obtains three different implementations (one sequential and two parallel) from a
single and simple problem specification. The parallel implementations are based
on very different memory schemes, so that, the user can choose between them
considering the parallel architecture of the available machines.

Currently, work is focused on the improvement of the exact algorithm through
the introduction of an upper bound. In this way, some extra branches could be
pruned and a first-best search strategy could be tried.
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Abstract. In this paper we consider numerical solution of 3D linear
elasticity equations described by a coupled system of second order ellip-
tic partial differential equations. This system is discretized by trilinear
parallelepipedal finite elements. Preconditioned Conjugate Gradient it-
erative method is used for solving large-scale linear algebraic systems
arising after the Finite Element Method (FEM) discretization of the
problem. The displacement decomposition technique is applied at the
first step to construct a preconditioner using the decoupled block di-
agonal part of the original matrix. Then circulant block factorization is
used to precondition thus obtained block diagonal matrix. Since both pre-
conditioning techniques, displacement decomposition and circulant block
factorization, are highly parallelizable, a portable parallel FEM code uti-
lizing MPI for communication is implemented. Results of numerical tests
performed on a number of modern parallel computers using real life en-
gineering problems from the geosciences (geomechanics in particular) are
reported and discussed.

1 Introduction

Our work concerns development and implementation of efficient parallel algo-
rithms for solving elasticity problems arising in geosciences. Typical application
problems include simulations of foundations of engineering constructions (which
transfer and distribute the total loading into the bed of soil) and multilayer
media with strongly varying material characteristics. Here, the spatial frame-
work of the construction produces a complex stressed-strained state in the active
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interaction zones. The modern design of cost-efficient construction with a suf-
ficient guaranteed reliability requires determining parameters of this stressed-
strained state.

These engineering problems are described mathematically by a system of
three-dimensional nonlinear partial differential equations. A finite element (or fi-
nite difference) discretization reduces the partial differential equation problem to
a system of linear equations Kx = f , where the stiffness matrix K is large, sparse
and symmetric positive definite. The Conjugate Gradient (CG) type methods
are recognized as the most cost-effective way to solve problems of this type [1].
To accelerate the iteration convergence a preconditioner M is combined with the
CG algorithm. To make a reliable prediction of the construction safety, which
is sensitive to soil deformations, a very accurate model is required. In the real-
life applications, the linear system can be very large, containing up to several
millions of unknowns. Hence, these problems have to be solved by robust and
efficient parallel iterative methods on powerful multiprocessor computers.

Note that the numerical solution of linear systems is a fundamental oper-
ation in computer modeling of elasticity problems. Specifically, solving these
linear systems is usually very time-consuming (requiring up to 90% of the to-
tal solution time). Hence, developing fast solvers for linear equations is essential.
Furthermore, such algorithms can significantly speed up the simulation processes
of real application problems. Due to the size of the system, an efficient itera-
tive solver should not only have a fast convergence rate but also high parallel
efficiency. Moreover, the resulting program has to be efficiently implementable
on modern shared-memory, distributed memory, and shared-distributed memory
parallel computers.

2 Elasticity Problems

For simplicity, in this work we focus our attention on 3D linear elasticity prob-
lems following two basic assumptions: (1) displacements are small, and (2)
material properties are isotropic. A precise mathematical formulation of the
considered problem is described in [5]; the 3D elasticity problem in the stressed-
strained state can be described by a coupled system of three differential equa-
tions. This system of three linear differential equations is often referred to as
Lamé equations.

We restrict our considerations to the case when the computational domain Ω
is a rectangular parallelogram Ω = [0, xmax

1 ] × [0, xmax
2 ] × [0, xmax

3 ], where the
boundary conditions on each wall of Ω are of fixed type.

Benchmark problems from [4] are used in numerical tests reported here. The
engineering problems are as follows: a) single pile in a homogeneous sandy
clay soil (see Fig. 1(a)) and b) two piles in an inhomogeneous sandy clay soil
(Fig. 1(b)). In the solution process, uniform grid is used with n1, n2 and n3 grid
points along the coordinate directions.
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(a) Problem 1; Cross section of
the computational domain Ω.
Esoil = 10 MPa, νsoil = 0.3,
Epile = 31500 MPa, νpile = 0.2
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(b) Problem 2; Cross section of
the computational domain Ω.
EL1 = 5.2 MPa, νL1 = 0.4,
EL2 = 9.4 MPa, νL2 = 0.35,
EL3 = 14.0 MPa, νL3 = 0.25,
EL4 = 21.4 MPa, νL4 = 0.2.

Fig. 1. Benchmark problems

3 Displacement Decomposition Circulant Block
Factorization Preconditioner

There exists a substantial body of work dealing with preconditioning of itera-
tive solution methods for elasticity systems discretized using the Finite Element
Method. For instance, in [2] Axelsson and Gustafson construct their precondi-
tioners based on the point-ILU (Incomplete LU) factorization of the displacement
decoupled block-diagonal part of the original matrix. This approach is known as
displacement decomposition (see, e.g., [3]). In [6] circulant block-factorization is
used for preconditioning of the obtained block-diagonal matrix and a displace-
ment decomposition circulant block factorization preconditioner is constructed.
The estimate of the condition number of the proposed preconditioner shows that
DD CBF solver is asymptotically as fast as preconditioners based on the point-
ILU factorization [5,6]. Moreover DD CBF solver has a good parallel efficiency
(see, e.g., [5,6]).

4 Benchmarking Performance Analysis

To solve the above described problems, a portable parallel FEM code was de-
signed and implemented in C, while the parallelization has been facilitated using
the MPI library [7,8]. The parallel code has been tested on cluster computers
located in the National Energy Research Scientific Computing Center (NERSC),
Oklahoma Supercomputing Center (OSCER), and in Bologna, Italy (CINECA).
In our experiments, times have been collected using the MPI provided timer
and report the best results from multiple runs. We report the elapsed time Tp

in seconds on p processors, the speed-up Sp = T1/Tp, and the parallel efficiency
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Table 1. Experimental results on Jacquard

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 12.5 50.4 64 812.9 1277.8
2 6.6 1.90 0.950 25.7 1.96 0.981 416.8 1.95 0.975 675.2 1.89 0.946
4 3.5 3.55 0.886 14.3 3.53 0.883 217.2 3.74 0.936 351.3 3.64 0.909
8 1.8 6.81 0.852 7.4 6.78 0.848 111.7 7.28 0.910 185.1 6.90 0.863
16 1.2 10.64 0.665 4.7 10.82 0.676 56.4 14.42 0.901 92.7 13.79 0.862
32 0.8 15.93 0.498 3.1 16.28 0.509 35.2 23.11 0.722 57.7 22.16 0.692
64 25.4 32.01 0.500 43.1 29.68 0.464

1 48 326.5 608.7 96 5259.8 8702.3
2 165.9 1.97 0.984 303.1 2.01 1.004 2704.7 1.94 0.972 4503.9 1.93 0.966
3 115.1 2.84 0.946 212.2 2.87 0.956 1833.1 2.87 0.956 3083.6 2.82 0.941
4 87.0 3.75 0.939 158.3 3.85 0.961 1388.3 3.79 0.947 2331.9 3.73 0.933
6 59.3 5.51 0.918 107.9 5.64 0.940 952.7 5.52 0.920 1588.3 5.48 0.913
8 44.2 7.39 0.924 80.5 7.56 0.945 714.8 7.36 0.920 1188.9 7.32 0.915
12 30.1 10.85 0.904 54.9 11.09 0.924 480.3 10.95 0.913 796.3 10.93 0.911
16 25.9 12.62 0.789 47.0 12.96 0.810 358.1 14.69 0.918 590.5 14.74 0.921
24 17.7 18.47 0.769 32.1 18.94 0.789 240.1 21.91 0.913 399.9 21.76 0.907
32 182.8 28.77 0.899 299.8 29.03 0.907
48 12.5 26.21 0.546 23.6 25.80 0.537 177.2 29.69 0.618 293.0 29.70 0.619
96 140.0 37.58 0.391 231.5 37.58 0.392

Ep = Sp/p. For the benchmark problems described in Section 2, we used dis-
cretization with n1 = n2 = n3 = n where n = 32, 48, 64, and 96, while sizes of
discrete problems were 3n3.

In Table 1 we present results of experiments performed on Jacquard (see
http://www.nersc.gov/nusers/resources/jacquard/). It is a 712-CPU (356
dual-processor nodes) Opteron Linux cluster. Each processor runs at 2.2 GHz,
and has a theoretical peak performance of 4.4 GFlop/s. Processors on each node
share 6 GB of memory. The nodes are interconnected with a high-speed Infini-
Band network. Shared file storage is provided by a GPFS file system. We have
used the ACML Optimized Math Library and compiled the code using “mpicc
-Ofast $ACML” command. The “-Ofast” option is a generic option leading to
vendor suggested aggressive optimization.

As expected, parallel efficiency improves with the size of the discrete problems.
For the largest problems in this set of experiments (n = 96), parallel efficiency is
above 90% on up to 32 processors which confirms our general expectations that
the proposed approach parallelizes very well.

Table 2 shows execution time on Topdawg. It is Dell Pentium4 Xeon64 Linux
cluster (see http://www.oscer.ou.edu/resources.php). It has 512 dual-pro-
cessor nodes. Each processor runs at 3.2 GHz and has a theoretical peak perfor-
mance of 6.4 GFlop/s. Processors within each node share 4 GB of memory, while
nodes are interconnected with a high-speed InfiniBand network. We have used
Intel C compiler and compiled the code with the following options: “-O3 -parallel
-ipo -tpp7 -xP” (collection of options for aggressive optimization suggested by
Henry Neeman of OSCER).

http://www.nersc.gov/nusers/resources/jacquard/
http://www.oscer.ou.edu/resources.php
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Table 2. Experimental results on Topdawg

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 10.0 38.0 64 536.0 852.0
2 6.0 1.67 0.83 22.0 1.73 0.86 359.0 1.49 0.75 592.0 1.44 0.72
4 3.1 3.23 0.81 11.0 3.45 0.86 180.0 2.98 0.74 293.0 2.91 0.73
8 1.8 5.56 0.69 6.3 6.03 0.75 82.0 6.54 0.82 236.0 3.61 0.45
16 1.2 8.47 0.53 3.9 9.84 0.62 44.0 12.18 0.76 71.0 12.00 0.75
32 1.1 9.09 0.28 3.5 10.86 0.34 24.0 22.33 0.70 39.0 21.85 0.68
64 18.0 29.78 0.47 29.0 29.38 0.46

1 48 244.0 444.0 96 4074.0 6766.0
2 146.0 1.67 0.84 267.0 1.66 0.83 2353.0 1.73 0.87 3817.0 1.77 0.89
3 96.0 2.54 0.85 177.0 2.51 0.84 1538.0 2.65 0.88 2557.0 2.65 0.88
4 71.0 3.44 0.86 131.0 3.39 0.85 1207.0 3.38 0.84 1996.0 3.39 0.85
6 46.0 5.30 0.88 84.0 5.29 0.88 805.0 5.06 0.84 1344.0 5.03 0.84
8 34.0 7.18 0.90 62.0 7.16 0.90 602.0 6.77 0.85 999.0 6.77 0.85
12 24.0 10.17 0.85 41.0 10.83 0.90 406.0 10.03 0.84 675.0 10.02 0.84
16 19.0 12.84 0.80 34.0 13.06 0.82 307.0 13.27 0.83 509.0 13.29 0.83
24 13.0 18.77 0.78 24.0 18.50 0.77 207.0 19.68 0.82 343.0 19.73 0.82
32 158.0 25.78 0.81 262.0 25.82 0.81
48 9.7 25.15 0.52 18.0 24.67 0.51 115.0 35.43 0.74 190.0 35.61 0.74
96 70.0 58.20 0.61 115.0 58.83 0.61

The execution time on Topdawg is substantially smaller than that on Jac-
quard (in computations that are primarily floating point arithmetic, Xeon64
processors running at 3.2 GHz are more efficient than Opteron processors at 2.2
GHz; which can be also seen comparing their theoretical peak performance). The
communication time on both clusters is approximately the same (they both use
InfiniBand network) and this is one of the reasons for higher parallel efficiency of
Jacquard (slower processors combined with equally fast network). Again, parallel
efficiency increases with the size of the discrete problems and for the largest
problems reaches 60% on 96 processors.

Table 3 contains execution times collected on an IBM Linux Cluster 1350 made
of 512 2-way IBM X335 nodes. Each computing node contains 2 Xeon Pentium
IV processors running at 3 GHz and 2 GB of RAM. Nodes are interconnected
via a Myrinet network with a maximum bandwidth of 256 Mb/s. We have used
IBM Visual Age compiler and a “-O3” option.

The execution time on one processor is larger than the results from earlier
mentioned computer systems. While the run-time on IBM Linux cluster is much
longer than on Jacquard and Topdawg, its parallel efficiency is higher — it is
higher than 50% for full set of experiments reported here. This indicates that
the decrease in processor speed offsets the slower interconnection network.

Finally, Table 4 reports execution times collected on an IBM SP Cluster
1600 made of 64 nodes p5-575 (see http://www.ibm.com/servers/eserver/
pseries/library/sp books/). A p5-575 node contains 8 IBM Power5 proces-
sors running at 1.9 GHz and has 16 GB of RAM. Nodes are interconnected

http://www.ibm.com/servers/eserver/pseries/lidiscretionary {-}{}{}brary/sp_books/
http://www.ibm.com/servers/eserver/pseries/lidiscretionary {-}{}{}brary/sp_books/
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Table 3. Experimental results for the IBM Linux Cluster

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 22.7 90.3 64 1384.1 2232.3
2 12.5 1.81 0.906 49.5 1.82 0.911 730.2 1.90 0.948 1195.9 1.87 0.933
4 6.5 3.50 0.876 25.7 3.51 0.877 393.3 3.52 0.880 633.5 3.52 0.881
8 3.4 6.75 0.843 13.2 6.84 0.855 208.8 6.63 0.829 339.6 6.57 0.822
16 1.9 12.03 0.752 7.3 12.33 0.771 99.0 13.99 0.874 164.9 13.54 0.846
32 1.4 16.02 0.501 5.6 16.21 0.507 54.1 25.59 0.800 86.5 25.80 0.806
64 33.6 41.20 0.644 54.5 40.96 0.640

1 48 600.6 1104.2 96 10080.4 17648.8
2 323.6 1.86 0.928 594.3 1.86 0.929 5401.3 1.87 0.933 8953.1 1.97 0.986
3 220.2 2.73 0.909 399.0 2.77 0.922 3654.3 2.76 0.919 6061.5 2.91 0.971
4 168.4 3.57 0.892 311.0 3.55 0.888 2794.2 3.61 0.902 4633.8 3.81 0.952
6 115.8 5.19 0.864 214.2 5.15 0.859 1900.2 5.30 0.884 3158.8 5.59 0.931
8 84.7 7.09 0.887 155.6 7.10 0.887 1454.9 6.93 0.866 2415.8 7.31 0.913
12 57.5 10.44 0.870 105.1 10.50 0.875 972.7 10.36 0.864 1604.4 11.00 0.917
16 43.7 13.75 0.860 80.2 13.78 0.861 754.2 13.37 0.835 1249.0 14.13 0.883
24 30.2 19.86 0.827 55.5 19.91 0.830 477.2 21.13 0.880 793.5 22.24 0.927
32 355.7 28.34 0.886 589.3 29.95 0.936
48 18.9 31.72 0.661 35.1 31.46 0.655 248.0 40.65 0.847 411.8 42.86 0.893
96 151.3 66.64 0.694 251.8 70.08 0.730

Table 4. Experimental results for the IBM SP cluster

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 21.8 86.8 64 1257.8 2056.8
2 10.7 2.03 1.015 43.1 2.01 1.007 670.2 1.88 0.938 989.9 2.08 1.039
4 5.4 4.03 1.006 21.1 4.11 1.027 313.0 4.02 1.005 527.4 3.90 0.975
8 2.7 8.04 1.005 10.6 8.22 1.027 152.1 8.27 1.034 252.4 8.15 1.019
16 1.5 15.01 0.938 5.9 14.70 0.919 76.6 16.43 1.027 126.2 16.29 1.018
32 1.0 21.68 0.677 3.1 28.18 0.881 39.3 31.98 0.999 65.1 31.58 0.987
64 21.0 60.01 0.938 34.2 60.19 0.940

1 48 541.7 993.6 96 9100.5 12338.7
2 278.2 1.95 0.974 500.7 1.98 0.992 4501.5 2.02 1.011 6771.2 1.82 0.911
3 182.4 2.97 0.990 337.5 2.94 0.981 3001.4 3.03 1.011 3988.2 3.09 1.031
4 137.9 3.93 0.982 252.7 3.93 0.983 2313.5 3.93 0.983 2982.7 4.14 1.034
6 90.1 6.01 1.002 159.3 6.24 1.039 1477.4 6.16 1.027 1961.8 6.29 1.048
8 67.3 8.05 1.006 122.9 8.08 1.010 1095.2 8.31 1.039 1473.9 8.37 1.046
12 45.1 12.00 1.000 82.4 12.06 1.005 740.3 12.29 1.024 1016.5 12.14 1.012
16 34.2 15.84 0.990 58.6 16.96 1.060 560.5 16.24 1.015 774.3 15.94 0.996
24 24.2 22.35 0.931 43.8 22.67 0.945 382.2 23.81 0.992 512.6 24.07 1.003
32 283.6 32.09 1.003 383.5 32.17 1.005
48 12.4 43.78 0.912 21.2 46.79 0.975 193.8 46.96 0.978 258.0 47.82 0.996
96 100.9 90.20 0.940 146.5 84.21 0.877
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Fig. 3. Speed-up for one iteration on the parallel computer systems

with a pair of connections to the Federation High Performance Switch (HPS).
The HPS interconnect is capable of a unidirectional bandwidth of up to 2 Gb/s.
We have used the IBM Visual Age compiler and compiled the code using “-O4
-qipa=inline” options. One can see that for relatively large problems the speed-
up is close to the theoretical limit — the number of processors. This result was
expected because communications between processors is not only very fast, but
also its start-up time is faster than in the case of other machines. Interestingly,
a super-linear speed-up is observed in some cases. The main reasons for this
fact can be related to splitting the entire problem into subproblems which helps
memory management in the case of 8 processor nodes; in particular it allows for
better usage of cache memories of individual parallel processors. Interestingly,
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this machine is only slightly faster that the IBM Linux Cluster, but remains
slower than the first two clusters. This seems also to show the age of this ma-
chine, which is the oldest of the four.

A comparison of parallel performance of the developed C+MPI code obtained
on all four above mentioned computer systems can be seen in Figures 2 and 3.
In Figure 2 we depict the execution time of a single PCG iteration (n = 32, 96)
of our code, while in Figure 3 we represent parallel speed-up of a single iteration
(n = 32, 96). What is particularly revealing is the fact that all four systems have
very similar speed-up.

However, the fact that the largest speed-up was obtained on the IBM SP ma-
chine indicates that as far as large clusters are concerned it is till the processing
power that is winning the race with the network throughput. It is much easier
to solve problems fast on a single processor than build a well-balanced parallel
computer.
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Re-engineering Technology and Software Tools

for Distributed Computations Using Local Area
Network
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Abstract. A new technology is proposed for integration the old stan-
dalone Fortran — written computational programs into more large dis-
tributed computer systems. This is a re-engineering technology, because
the main developer’s tool becames a F2F program for source modules
converting. This converter provides the maintenance of all rules, needed
for transformed program, created initially for monoprocessor computer
systems, into Computational Server, working in distributed network area.
The principles of F2F converter and details of communications between
Client and Server are discussed.

Starting from the early 90-s of XX century the object-oriented programming
technologies, based on C++ and Pascal languages, have been intensively pro-
gressed. Now it is already impossible to imagine a serious application, working
in an old MS-DOS style, i.e. with no mouse and modern windowed graphics.
But the large amount of numeric programs, fundamental for modern applied
systems, comes into PC-world from an antique epoch of mainframes. Actually it
means that these programs were Fortran-written.

The static nature of Fortran does not allow it to be the general tool for
object-oriented programming. Moreover, the current generation of programmers
prefers C++ and Delphi, i.e. more dynamic languages. On the other hand, all
the difficulties in numeric algorithms programming does not depend upon a
language used, but only depend on understanding the algorithms themselves.
As for a serious numeric program, to redesign it from Fortran to C++, one
needs to know all delicate details of it, i.e. to be its author, but the author
is most likely to be very far from active programming now! Using of language
converters like F2C [1] cannot resolve the problem because:

– the program is still remaining a “black box” as it was before;
– there are no converters from Fortran to C++ or Pascal.

That’s why we can suppose that the large numeric programs made in the old
days using Fortran, will be forced to stay in their Fortran-incarnation in the
foreseeable future. Some of these programs, being very popular in the past, still
stay indispensable at present, because they personify the unique experience of
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Fig. 1. The distributed system for large computational job

outstanding specialists. Below we intend to discuss namely about such kind of
programs. Let us call them for short “unique programs”.

Another particular feature of the present-day programming is the tendency
to distribute calculation between several computers in the computer networks.
In general they may be even of different types. The existing technologies of par-
allelization, such as OpenMP and MPI [2], are oriented to decomposition of the
whole computational job onto a number of smaller processes. As a rule, this
decomposition is performed manually while software development or moderniza-
tion. At the same time, there is no technology to integrate the large standalone
made computational blocks into huge-scale distributed systems.

Here we are proposing a new technology for integration of unique programs
onto more large distributed systems. This is a re-engineering technology, be-
cause the main developer’s tool becames a program for converting of standalone-
developed Fortran-written programs onto integrated parts of large distributed
computer systems. The general architecture of the proposed distributed compu-
tational system also seems to be quite non-traditional (see Fig.1). User’s work-
station contains a single Client-process, one of whose aims is to distribute jobs
among a number of independent Computational Servers. Each of them is a sep-
arate process, which executes a corresponding program and works, in a general
case, on separate computer. All the requests on input-output operations, needed
for each Computational Server, are re-addressed to Client and interpreted by it.

The key idea is the automation of building the Computational Server from
standalone unique programs, without any manual transformation of their source
modules. Exactly this idea we call here “re-engeneering”. This offers an oppor-
tunity to integrate well tested during long time old programs, made by bygone
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generation of experienced programmers, into large-scale modern present-day sys-
tems of data processing, including advanced visualization facilities, databases
and others mechanisms for human-computer communications.

Our approach to integration is not a general solution, we do not pretend to
universal usage, as the Service-Oriented Architecture (SOA) does. Our main aim
is to propose the technology and software tools namely for the unique programs,
mentioned above, without any modification of their source codes. Moreover, the
terms “Client” and “Server” themselves are here rather relative, to not invent
a new substances. They designate only two processes, which communicate with
each other in Local Area Network or even inside the single computer.

The Server’s aim is to solve a specific computational job, ordered by Client.
While executing this job, Server can consume the external data from standalone-
made files or directly from Client. Server can produce output data for Client.
All needed input-output operations are ordered in Server’s side using traditional
Fortran operators Read/Write, but will be interpreted on Client’s side.

User’s workstation executes a Client-program, distributing the whole task
between a number of independent Computational Servers. Besides launching
Servers and processing of their input-output requests, Client is the single point
for communication with User. This way offers an opportunity for full separation
of two stages: solving of computational problem and interpretation of results.
Therefore, for each of these stages we can use both the most appropriate tools
and the different and independent groups of developers.

A special F2F (Fortran-To-Fortran) converter has been created for transfor-
mation of old unique programs into Computational Server, mentioned above.
The converted program works in own separate address-space, maybe in remote
computer. Particularly, this increases the reliability of the whole system, be-
cause possible errors on Client-side cannot influence errors on Server-side. F2F
organizes all needed environment for interaction with Client. F2F automatically
substitutes all Input/Output operators in Fortran source modules for calling
special subroutines, realizing a Client-Server interaction protocol. The auxiliary
information is built into these subroutines: current running Input/Output oper-
ator, source line number, name of current data file and current processed record
number. It gives an opportunity to get a detailed information about possible
I/O-Errors, that’s why the converted program becomes even better than the
original one. Besides, F2F substitutes all operators OPEN of opening data files
for calling special subroutine, which can search specified files following various
rules. Further, F2F builds into all I/O operators catching possible errors for
preventing the Server against unexpected “hanging” in it. Another quite attrac-
tive F2F feature is the ability to built into converted program the debugging
information about subroutines calling. It is useful while looking for errors in
computational program.

This is an example of how F2F works:

Subroutine S !here is fragment of the original:
c=sin(a)+cos(b) !some computations
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Open(unit=Lun,file=’myfile.dat’,status=’old’)
Write(1),a,b,c !binary output to file
Write(*,*),a,b,c !consoleoutput
Read(*,’(i5)’,err=9)n !console input with own error catching
Stop
End

Subroutine S !The result of converting:
Use ComFort !here is all environment and interface with Client
c=sin(a)+cos(b) !of course all computations remains intact !
mess=’subroutine S,line14:Open(unit=Lun,file="myfile.dat",...’
Call Open_File(Lun,’myfile.dat’,’old’,’formatted’)
if(fo_error.ne.0) goto 123
mess = ’subroutine S, line 15: Write(1),a,b,c’
Write(1, err=123) a,b,c !catching of possible I/O errors
mess =’subroutine S, line 16: Write(*,*),a,b,c’
Write (iobuf,err=123)a,b,c !format transformation
Call InterfaceIO (jwrite) !then output re-addressing
mess =’subroutine S, line 17: Read(*,"(i5)",err=9),n’
Call InterfaceIO(jread) !input re-addressing
Read(iobuf,’(i5)’,err=9) n !then format transformation
Call Instead_Of_Stop !normal finish of Server

123 Call IOError(mess) !abnormal finish of Server
End

The aim of the F2F converter is to transform a program, destined for interaction
directly with human, into a program for interaction with the Client-process
while working in a distributed computer system. Actually, F2F is a translator
from Fortran to Fortran. Namely, F2F is the basic re-engeneering tool in our
technology (Fig.2).

Though F2F has to perform rather a deep syntactical analysis of the program
being converted, it works more quickly than a native Fortran-compiler. Initially,
we supposed to exploit F2F only in a semi-automatic mode, because Fortran
has a very complicated syntax and has no grammar at all. In some cases the
human-help assumed. However, we had managed all the syntactical problems.
Now F2F does not need any manual revision for resulted Fortran-code. Capacity
F2F for work was practically tested on a lot of real numeric programs with huge
size.

1 Communications Interface between Client and
Computational Server

A simple symmetric model is proposed for communications between Client-
program and any of its Servers. The single basic unit in this model is a line
of text, i.e. a sequence of chars with a special char at the end. Analyzing the
input line, both sides can monosemantically interpret what to do.



Re-engineering Technology and Software Tools 717

Fig. 2. Building an Computational Server from standalone unique program

For example, requests from Client to Server:

Execute MyFavoriteJob.dll - run specified program
Take Line <arbitrary line> - answer for text input
Give Time - request of elapsed time
Suspend
Resume
Stop

The similar requests from Server to Client:

Take Line <arbitrary line > - text output
Give Line - waiting for text input

The only structural requirement to these communications is to be non-synch-
ronous. This allows for both sides to stay permanently active, not being in wait-
ing status without special necessity. To meet this requirement, there is enough
to use classical socket mechanism, which appeared for the first time in OS UNIX
and then was successfully transferred into Windows.

Moreover, having chosen Delphi as the main tool for programming in both
sides, the whole Client and Server’s communication level, we used TServerSocket
and TClientSocket classes from rich Delphi Component Palette. These classes
were developed by Borland Inc. specially for using in inter-computer commu-
nications based on socket mechanism. They ensure required non-synchronosity,
because they can process specific event “OnSocketRead”.

While working in a network area, the most serious problem is a non-predicted
size of information, being received by consumer in the single input. Therefore,
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if, for example, two lines were sent into the socket entry, there will be before-
hand unknown number of “OnSocketRead” events on consumer’s side (one, two
or more)! In other words, information must be received “piece-by-piece”, then
“glued” and finally again separated into two lines! This trouble can be very ele-
gantly avoided, if we will use the following rules while programming “OnSocke-
tRead” event handler:

– there is a buffer, initially empty, containing the beginning part of line, being
already received;

– current received portion of chars is entirely added to the buffer. If the buffer
doesn’t contain now the end of line — “OnSocketRead” error declared as
not happened, i.e. is not processed;

– if the end of line appeared in the buffer — the first line will be entirely with-
drawed from buffer, processed, then “OnSocketRead” event will be called
recursively.

Corresponding code for these rules got even shorter than their verbal descrip-
tion! Usage of the socket mechanism offers to Client and Server to be absolutely
independent upon their mutual location — in the same computer or in the differ-
ent computers in a network. As for Server — there is up to it, who is connecting
with it. As for Client, being forced to specify the address or name of Server, there
is enough to specify the keyword “localhost” to designate the Server, located in
the same computer.

The described above interface is the second basis of the proposed technology
for the distributed system building. We ought to specify, that this technology
does not oblige to build the Server part of system namely from the standalone
Fortran-written programs. If the Computational Server is developed “from zero”,
the developer can choose:

1. to use his own tools observing non-burdensome requirements of our interface;
2. to use good old Fortran with habitual operators for Input/Output, and then

convert his program via F2F.

This approach particularly allows one to involve into Computational Servers
development the experienced specialists on numeric methods, not wishing to
exceed the framework of their habitual Fortran, while the young developers
can concentrate on the Client development with usage of more contemporary
technologies.

Below we want to illustrate the proposed methodics of automated build-
ing the remote Computational Server from standalone Fortran-written numeric
program.

MINUIT [3] — the program for general kind functions minimizing, was cre-
ated by F. James (CERN) about 40 years ago, but still stays the most popular
tool while solving wide class of problems. It is a typical “unique program” in
our terminology. The Fortran-written source module (about 7500 lines), get-
ting directly from the author, without any manual changes was processed by
our F2F-converter. After that all communications between MINUIT and outer
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Fig. 3. The tiny Client for MINUIT program, performing visualization of convergence
to the minimum of function

world got switched to rather ordinary (120 lines) Client-program. This Client
was written using Delphi. It engaged in an interpretation of all I/O requests
from MINUIT and in visualization of a convergence to the minimum. Of course,
that visualization was not foreseen in original MINUIT.

Thus this example (Fig.3) demonstrates the following advantages of F2F-
technology:

– the ability to integrate old Fortran-written programs with modern graphical
applications;

– the simplicity in buildings a Client-applications, based on proposed stan-
dards;

– the appearance of new, attractive properties in old computational programs.

2 Further Perspectives

The idea of automatic source modules converting seems to be extremely produc-
tive. Particularly, many source transformations needed to integrate with MPI-
package, may be successfully performed by our F2F converter. For example, all
MPI-programs must perform Input/Output operations not for all processes, as
MPI-paradigm SPMD requires, but as the rule — by the single master-process
[2]. All needed checkings, broadcastings, initial and final MPI-operations can be
automatically added by F2F-converter while porting the program under MPI-
package. Such automation of routined works while parallelization of unique pro-
grams, initially developed for execution on single processor, can be an important
direction for the F2F-technology evolution.
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3 Conclusions

The re-engeneering technology is proposed and developed for automation of dis-
tributed computational system building from standalone Fortran-written pro-
grams. The essential features of this technology are:

– usage of the specially developed F2F-converter to automate Computational
Servers generation;

– usage of the specially developed standard for communications between Client
and Server;

– the ability for Client to communicate at the same time to several Servers.
This allows dynamically build large-scaled computational systems.

It is important for us to remark, that the programmatic achievement for all
elements of the proposed F2F — technology was performed exclusively by our
own efforts, without usage of any foreigner, especially commercial, software.
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Abstract. Large sparse linear systems Ax = b arise in many scien-
tific applications. Krylov subspace iterative methods are often used for
solving such linear systems. Preconditioning techniques are efficient to
reduce the number of iterations of Krylov subspace methods. The coeffi-
cient matrix of the linear system is transformed into MA or AM in the
left or right preconditioning, where M is a preconditioning matrix. In this
paper, we analyze the influence of perturbation in the computation of
preconditioning of Krylov subspace methods. We show that the pertur-
bation of preconditioner does not affect the accuracy of the approximate
solution when the right preconditioning is used. Some numerical exper-
iments illustrate the influence of preconditioners with single precision
arithmetic.

1 Introduction

Large and sparse linear systems

Ax = b, (1)

where A is a nonsingular and non-Hermitian n×n matrix, appear in many sci-
entific fields. Since almost all of the computational time is spent to solve linear
systems (1) of these applications, fast solvers are desired.

It is known that Krylov subspace iterative methods are efficient [2,7,9] for
solving such linear systems. Preconditioning techniques are often used to im-
prove the convergence rate of Krylov subspace methods. Several preconditioning
techniques such as the incomplete LU factorization (ILU) preconditioner [7] and
the sparse approximate inverse (SAI) preconditioner [4] have been proposed [3].
It has been verified by many numerical experiments that these preconditioners
are effective. However, the computational cost of the preconditioning part is
sometimes large. Thus, it is valuable to reduce the computational time of this
part.

Recently, the calculation techniques using the Cell processor and the graphics
processing unit (GPU) have attracted attention for wide area of scientific com-
puting. These processors provide high performance in single precision arithmetic.

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 721–728, 2008.
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The purpose of this study is to consider the influence of the preconditioners per-
formed with single precision arithmetic.

This paper is organized as follows. In the next section, we describe left and
right preconditioners. In addition, the polynomial preconditioner and the vari-
able preconditioner are also described. In Section 3, we analyze the influence
of the perturbation which occurs in the preconditioning part. Some numerical
experiments illustrate the influence of the single precision preconditioners in
Section 4. Finally, we present concluding remarks and future works in Section 5.

2 Preconditioners for Krylov Subspace Iterative Methods

In this section, we briefly describe preconditioners of Krylov subspace iterative
methods which we will use. The rate of convergence of Krylov subspace meth-
ods depends on the coefficient matrix A. It is known that the residual of these
methods converges in a few iterations when the coefficient matrix is close to the
identity matrix. In order to improve the convergence rate, the coefficient matrix
is transformed to MA or AM , where M is an n×n preconditioning matrix. They
are called left preconditioning and right preconditioning, respectively.

The linear systems (1) are transformed to

MAx = Mb

by the left preconditioning. In a similar way, we can obtain the right precondi-
tioned linear systems

AMy = b, y = M−1x. (2)

The algorithms of the BiCGSTAB method with the left and right preconditioners
are shown in Fig. 1. Here, ε is a small constant for stopping criterion.

2.1 Polynomial Preconditioners

In the polynomial preconditioners, the preconditioning matrix M is defined by
a polynomial of A. As one of these polynomials, the Neumann series expansion
[7] is known.

We assume that ‖I − A‖ < 1, where I is the n×n identity matrix. The
Neumann series expansion of A−1 is represented as follows:

A−1 = (I − (I −A))−1 =
∞∑

j=0

(I −A)j .

The truncated polynomial of degree m

A−1 ≈M =
m∑

j=0

(I −A)j ,

has been used as the preconditioning matrix M . Since the product of the matrix
M by a vector is computed by the product of the coefficient matrix A by the
vector, M is not computed explicitly.
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x0 is an initial guess,
compute r0 = M(b − Ax0),
set p0 = r0,
choose r∗

0 such that (r∗

0 , r0) �= 0,
for k = 0, 1, . . . , until ‖rk‖2 ≤ ε‖b‖2 do:
begin

uk = Apk,
vk = Muk,

αk =
(r∗

0 , rk)

(r∗

0 , vk)
,

tk = rk − αkvk,
sk = Atk,
qk = Msk,

ζk =
(qk, tk)

(qk, qk)
,

xk+1 = xk + αkpk + ζktk,
rk+1 = tk − ζkqk,

βk =
αk

ζk

·
(r∗

0 , rk+1)

(r∗

0 , rk)
,

pk+1 = rk+1 + βk(pk − ζkvk),
end

(a) Left preconditioning.

x0 is an initial guess,
compute r0 = b − Ax0,
set p0 = r0,
choose r∗

0 such that (r∗

0 , r0) �= 0,
for k = 0, 1, . . . , until ‖rk‖2 ≤ ε‖b‖2 do:
begin

uk = Mpk,
vk = Auk,

αk =
(r∗

0 , rk)

(r∗

0 , vk)
,

tk = rk − αkvk,
sk = Mtk,
qk = Ask,

ζk =
(qk, tk)

(qk, qk)
,

xk+1 = xk + αkuk + ζksk,
rk+1 = tk − ζkqk,

βk =
αk

ζk

·
(r∗

0 , rk+1)

(r∗

0 , rk)
,

pk+1 = rk+1 + βk(pk − ζkvk),
end

(b) Right preconditioning.

Fig. 1. The preconditioned BiCGSTAB method

2.2 Variable Preconditioner

As one of the flexible preconditioners, the variable preconditioning [1] has been
proposed by Abe et al. in 2001. In this preconditioner, the linear systems of the
form Az = w are solved approximately instead of computing the product of M
by a vector. As solutions of these linear systems, various iterative methods (e.g.,
stationary iterative methods, Krylov subspace methods) can be applied. This
part is called the inner-loop.

The iteration of the inner-loop is stopped by one of the following conditions:

‖z(�) − z(�−1)‖∞/‖z(�)‖∞ ≤ γ, (3)
‖w −Az(�)‖2/‖w‖2 ≤ γ, (4)

where z(�) denotes the �-th approximate solution of Az = w, and γ is a posi-
tive number. The condition (3) is employed when stationary iterative methods
are used as the solutions of the inner-loop. When the linear systems Az = w
are solved by Krylov subspace methods, condition (4) is used. In addition, the
iteration of the inner-loop is stopped when the number of iteration exceeds Nmax.

3 The Influence of the Perturbation in the
Preconditioning Part

In this section, we describe the influence of the perturbation in the precondi-
tioning part. First, we describe the case of left preconditioner. We assume that
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the first (k−1) steps of the left preconditioned BiCGSTAB have been already
computed without the perturbation. Moreover, we assume that the perturbation
occurs in the preconditioning parts of the kth step of BiCGSTAB. Let ṽk and
q̃k be

ṽk = vk + δvk, q̃k = qk + δqk,

respectively. The vectors δvk and δqk denote the perturbation of vk and qk.
Throughout this section, the scalars and vectors which include the perturbation
are denoted with the symbol ˜. The (k+1)-th approximate solution x̃k+1 is
computed by

x̃k+1 = xk + α̃kpk + ζ̃k t̃k.

On the other hand, the (k+1)-th residual r̃k+1 is obtained as follows:

r̃k+1 = t̃k − ζ̃kq̃k

= rk − α̃k(MApk + δvk)− ζ̃k(MAt̃k + δqk)
= M [b−A(xk + α̃kpk + ζ̃k t̃k)]− α̃kδvk − ζ̃kδqk

= M(b−Ax̃k+1)− α̃kδvk − ζ̃kδqk.

Thus, the relation r̃k+1 = M(b−Ax̃k+1) between the approximate solution and
the residual no longer holds.

Next, we describe the case of right preconditioner. In a similar way, we as-
sume that the first (k−1) steps of the right preconditioned BiCGSTAB have
been already computed without perturbation. In addition, we assume that the
perturbation occurs in the preconditioning parts of the k-th step of BiCGSTAB.
Let ũk and s̃k be

ũk = uk + δuk, s̃k = sk + δsk.

The vectors δuk and δsk denote the perturbation of uk and sk. The (k+1)-th
approximate solution x̃k+1 is computed by

x̃k+1 = xk + α̃kũk + ζ̃ks̃k.

The (k+1)-th residual r̃k+1 is denoted as follows:

r̃k+1 = t̃k − ζ̃kq̃k

= rk − α̃kAũk − ζ̃kAs̃k

= b−A(xk + α̃kũk + ζ̃ks̃k)
= b−Ax̃k+1.

As a consequence, the relation r̃k+1 = b − Ax̃k+1 between the approximate
solution and the residual holds. This implies that the preconditioning can be
performed with single precision arithmetic.

From (2), the (k+1)-th approximate solution xk+1 of the right preconditioned
BiCGSTAB can be computed as follows:

yk+1 = yk + αkpk + ζktk,
xk+1 = Myk+1.

However, the accuracy of the approximate solution deteriorates if these equations
are used.
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4 Numerical Experiments

In this section, we present several numerical experiments to investigate the in-
fluence of single precision preconditioner. These examples carried out on Dell
Precision Workstation 470 (CPU: Intel Xeon 3.2 GHz, RAM: 2.0 GBytes, OS:
Red Hat Enterprise Linux WS 4, Compiler: Intel Fortran ver. 9.1, Compile op-
tion: -O3 -xP). We used the preconditioned BiCGSTAB method [8] for solv-
ing linear systems. The polynomial preconditioner and the variable precondi-
tioner were used. In the inner-loop of the variable preconditioner, the Jacobi
method was used. These preconditioners were performed with single precision
arithmetic. Other parts were performed with double precision arithmetic. Itera-
tion was started with x0 = 0 and r∗

0 = r0. The iteration of the BiCGSTAB were
stopped when ‖rk‖2/‖b‖2 ≤ 10−15. The degree m of polynomial preconditioner
was 5. The parameters γ and Nmax of the variable preconditioner were 10−1 and
5, respectively.

In numerical experiments, we consider the linear system derived from the
Quantum Chromodynamics (QCD). As a coefficient matrix A of the linear sys-
tem, we used conf5.4-00l8x8-1000 [6]. The size n of A is 49, 152, and the
right-hand vector b was given by b = [5.4, 5.4, . . . , 5.4]T. This linear system has
a coefficient matrix A of the form

A = In − κD, D =
[
D00 D01

D10 D11

]
,

where In is the n×n identity matrix and κ is a scalar. In the following examples,
we used κ = 0.182. The nonzero structure of A is shown in Fig. 2(a).

We can obtain the reordered coefficient matrix Ã of the form

Ã = In − κD̃, D̃ =
[

O D̃01

D̃10 O

]
,

by using the Red-Black reordering. In Fig. 2(b), the nonzero structure of Ã
is shown. In addition, the SSOR preconditioner [5] was used for reducing the
number of iterations. The coefficient matrix Â after applying the SSOR precon-
ditioner is represented by

Â = (In + L)−1Ã(In + U)−1 = (In − L)Ã(In − U) = In − κ2D̂,

where, the matrices L, U , and D̂ are denoted by

L =
[

O O

−κD̃10 O

]
, U =

[
O −κD̃01

O O

]
, D̂ =

[
O O

O D̃10D̃01

]
,

respectively. Hence, the coefficient matrix Â and the vectors x̂, b̂ of the precon-
ditioned linear system Âx̂ = b̂ are represented by

Â =
[
In/2 O

O In/2 − κ2D̃10D̃01

]
, x̂ =

[
x̂(0)

x̂(1)

]
, b̂ =

[
b̂(0)

b̂(1)

]
. (5)
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(a) Natural ordering. (b) Red-Black ordering.

Fig. 2. Nonzero structures of the coefficient matrix
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(b) Right preconditioning.

Fig. 3. Relative residual norm histories for the BiCGSTAB with the polynomial pre-
conditioner. •: computed relative residual norm, 	: true relative residual norm.

From (5), the upper part x̂(0) of the solution x̂ is given by b̂(0). Therefore, we
solved the reduced linear system

(In/2 − κ2D̃10D̃01)x̂(1) = b̂(1)

in numerical experiments.
The relative residual norm histories of the BiCGSTAB with the polynomial

preconditioner are shown in Fig. 3. The horizontal axis and the vertical axis
denote the iteration number and the relative residual norm, respectively. The
symbol • in graphs denotes the relative residual norm ‖rk‖2/‖b̂(1)‖2 computed
by the recurrence relation of rk in Fig. 1. This value is called the computed rela-
tive residual norm. The symbol 	 denotes the true relative residual norm (TRR).
The TRR was computed by ‖M [b̂(1) − (In/2 − κ2D̃10D̃01)x̂

(1)
k ]‖2/‖b̂(1)‖2 in the

BiCGSTAB with left preconditioning. In the BiCGSTAB with right precondi-
tioning, the TRR was computed by ‖b̂(1) − (In/2 − κ2D̃10D̃01)x̂

(1)
k ‖2/‖b̂(1)‖2.

The computed relative residual norm converged when using the left precon-
ditioning of single precision. However, the true relative residual norm stagnated
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Fig. 4. Relative residual norm histories for the BiCGSTAB with the variable precon-
ditioner. •: computed relative residual norm, 	: true relative residual norm.

Table 1. Comparison of CPU Time [s]

(a) Polynomial preconditioner.

Single precision Double precision

Left preconditioning 12.55 14.10

Right preconditioning 12.91 14.59

(b) Variable preconditioner.

Single precision Double precision

Left preconditioning 16.06 17.86

Right preconditioning 15.18 17.55

around 10−6. On the other hand, in the right preconditioning, the true relative
residual norm reached 10−15 in spite of using the single precision preconditioner.

In Fig. 4, we show the relative residual histories of the BiCGSTAB with the
variable preconditioner. In the left preconditioned BiCGSTAB, the accuracy of
the approximate solution stagnated. The true relative residual norm of the right
preconditioned BiCGSTAB satisfied the stopping criterion.

The CPU time of the single precision preconditioner and the double precision
preconditioner are tabulated in Table 1. By using the single precision precondi-
tioner, the CPU time decreased by about 1.5 seconds. We can expect to reduce
the computation time of single precision arithmetic by using the inline assembler.

5 Conclusions

In this paper, we have considered the influence of the perturbation occurred
in the preconditioning part of the Krylov subspace methods. In the left pre-
conditioned BiCGSTAB, the relation between the approximate solution and the
residual lost when the perturbation occurred in the preconditioning part. On the
other hand, in the right hand preconditioned BiCGSTAB, the relation between
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the approximate solution and the residual was held even if the perturbation
occurred in the preconditioning part. Through the numerical experiments, we
have verified that the accuracy of the approximate solution generated by the
BiCGSTAB with single precision right preconditioner is equivalent to results
obtained with the double precision arithmetic.
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Abstract. We present a parallel algorithm for multiple-precision divi-
sion by a single-precision integer. This short division includes a first-order
recurrence. Although the first-order recurrence cannot be parallelized
easily, we can apply the parallel cyclic reduction method. The experi-
mental results of multiple-precision parallel division by a single-precision
integer on a 32-node Intel Xeon 3 GHz PC cluster are reported.

1 Introduction

Many multiple-precision division algorithms have been thoroughly studied [10,
12,13,15,16]. Knuth [11] described classical algorithms for n-digit division. These
methods require O(n2) operations.

Division of two n-digit numbers can be performed by using the Newton iter-
ation [13, 1, 10]. This scheme requires O(M(n)) operations, where M(n) is the
number of operations used to multiply two n-digit numbers.

Multiple-precision multiplication of n-digit numbers requires M(n) = O(n2)
operations using an ordinary multiplication algorithm [11]. Karatsuba’s algo-
rithm [9] reduces the number of operations to M(n) = O(nlog2 3). It is known that
multiplication of n-bit numbers can be performed in M(n) = O(n log n log logn)
bit operations by using the Schönhage-Strassen algorithm [14] which is based on
the fast Fourier transform (FFT) [4].

Parallel implementation of multiple-precision division of two n-digit numbers
has been proposed [18]. This scheme requires O(M(n)/P ) operations on a par-
allel computer with P processors [18].

On the other hand, multiple-precision division by a single-precision integer is
often used in multiple-precision arithmetic because it is much faster than the
division of two multiple-precision numbers.

Several multiple-precision arithmetic packages [1,2, 3,7, 17] include a routine
for multiple-precision division by a single-precision integer. We call such a routine
short division.

Parallel implementation of the multiple-precision arithmetic on a shared mem-
ory machine have been presented by Weber [19]. Weber modified the MPFUN
multiple-precision arithmetic package [1] to run in parallel on a shared mem-
ory multiprocessor. Fagin also implemented the multiple-precision addition [5]

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 729–736, 2008.
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and multiplication [6] on the Connection Machine CM-2. However, a parallel
algorithm for short division has not yet been presented.

In this paper, a parallel algorithm for multiple-precision division by a single-
precision integer is presented.

We implemented the parallel algorithm for multiple-precision division by a
single-precision integer on a 32-node Intel Xeon PC cluster, and the experimental
results are reported herein.

Section 2 describes the algorithm for multiple-precision division by a single-
precision integer. Section 3 describes the parallelization of multiple-precision by
a single-precision integer. Section 4 gives experimental results. In section 5, we
provide some concluding remarks.

2 Multiple-Precision Division by a Single-Precision
Integer

In this paper, we discuss multiple-precision arithmetic with radix-b for the di-
vision of an n-digit dividend by an O(1)-digit divisor, which gives an n-digit
quotient and an O(1)-digit remainder. For simplicity, we assume that we are
working with a nonnegative integer.

Let us define an n-digit dividend u =
∑n−1

i=0 uib
i and an O(1)-digit divisor v

in radix-b notation, where 0 ≤ ui < b and 1 ≤ v < b.
The quotient q can be expressed as follows:

q = )u/v* =
n−1∑
i=0

qib
i, (1)

where 0 ≤ qi < b.
The remainder r and the partial remainder ri can be expressed as follows:

r = u− vq, (2)
ri = bri+1 + ui − vqi, i = n− 1, n− 2, · · · , 0, (3)

where 0 ≤ ri < v and we assume rn = 0.
Then, the partial quotient qi and the partial remainder ri can be expressed

as follows:

qi = )(bri+1 + ui)/v*, i = n− 1, n− 2, · · · , 0, (4)
ri = (bri+1 + ui) mod v, i = n− 1, n− 2, · · · , 0. (5)

We note that (5) includes the first-order recurrence. Then, the remainder r is
given by r = r0.

The first-order recurrence of (5) can be evaluated sequentially by the definition
of the recurrence with the following FORTRAN 77 code:

r(n)=0
do 10 i=n-1,0,-1

r(i)=mod(b*r(i+1)+u(i),v)
10 continue
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where r and u have been declared as arrays. The arithmetic operation count of
this algorithm is clearly O(n).

3 Parallelization of Multiple-Precision Division by a
Single-Precision Integer

Although the first-order recurrence cannot be parallelized easily, we can apply
the parallel cyclic reduction method [8] to (5).

The first-order recurrence of (5) for the two successive terms can be written
as follows:

ri = (bri+1 + ui) mod v, (6)
ri+1 = (bri+2 + ui+1) mod v. (7)

Substituting (7) into (6), we obtain

ri = (b2ri+2 + bui+1 + ui) mod v

= (b(1)ri+2 + u
(1)
i ) mod v, (8)

where

b(1) = b2 mod v, (9)

u
(1)
i = (bui+1 + ui) mod v. (10)

By repeated application of the above procedure, we obtain

ri = (b(k)ri+2k + u
(k)
i ) mod v

{
k = 0, 1, · · · , +log2 n,
i = 0, 1, · · · , n− 1, (11)

where

b(k) = (b(k−1))2 mod v, (12)

u
(k)
i = (b(k−1)u

(k−1)

i+2k−1 + u
(k−1)
i ) mod v, (13)

and initially

b(0) = b mod v, (14)

u
(0)
i = ui mod v. (15)

We assume ri and ui are zero in (5) when i ≥ n. Moreover, when k = +log2 n,, the
subscript of ri+2k = ri+2
log2 n� in (11) is outside the defined range 0 ≤ i ≤ n−1.
Therefore, all references to ri+2k = ri+2
log2 n� are also zero in (11).

Finally, the solution to the recurrence is given by

ri = u
(�log2 n�)
i mod v. (16)

Fig. 1 shows the communication diagram for the evaluation of ri on a parallel
computer with 8 processors.

The parallel algorithm for the first-order recurrence can be implemented in a
parallel form of Fortran90, as follows:
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Fig. 1. The communication diagram for (13)

bmod=mod(b,v)
r(0:n-1)=mod(u(0:n-1),v)
do k=1,ceiling(log2(n))

if (bmod .eq. 0) exit
r(0:n-1)=mod(bmod*eoshift(r(0:n-1),2**(k-1))+r(0:n-1),v)
bmod=mod(bmod**2,v)

end do

where r and u have been declared as arrays.
When b(j) mod v (j = 0, 1, · · · , +log2 n,−1) is zero, all references to b(k) mod

v (k = j + 1, j + 2, · · · , +log2 n,) are also zero in (12), and ri = u
(j)
i mod v in

(11). Therefore, the do loop of the above program can be interrupted when
b(k) mod v = 0.

In particular, when a radix b is a multiple of a divisor v, b(0) mod v = 0.
In this case, the arithmetic operation count of this algorithm is O(n/P ) on a
parallel computer with P processors. On the other hand, when a radix b is not a
multiple of a divisor v, we can compute the first-order recurrence in serial on an
intraprocessor and also compute the first-order recurrence by using the parallel
cyclic reduction method on an interprocessor. Therefore, the upper bound of the
arithmetic operation count of this algorithm is O((n/P ) logP ).

Finally, we can obtain the quotient q in parallel by the following Fortran90
code:
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q(0:n-1)=floor((b*eoshift(r(0:n-1),1)+u(0:n-1))/v)

where q, r and u have been declared as arrays.
Then, the remainder r is given by r(0).

4 Experimental Results

In order to evaluate the parallel algorithm for multiple-precision division by a
single-precision integer, the decimal digit n and the number of processors P
were varied. We averaged the elapsed times obtained from 10 executions of the
multiple-precision parallel division by single-precision integers (π/2 and π/3).
We note that the respective values of n-digit π were prepared in advance. The
selection of these values has no particular significance here, but was convenient
to establish definite test cases, the results of which were used as randomized test
data.

A 32-node Intel Xeon PC cluster (Irwindale 3 GHz, 12Kuops L1 instruction
cache, 16KB L1 data cache, 2 MB L2 cache, 1 GB DDR2-400 SDRAM main
memory per node, Intel E7520, Linux 2.6.19-1.2911.6.4.fc6) was used. The nodes
on the PC cluster are interconnected through a 1000Base-T Gigabit Ethernet
switch. Open MPI 1.1.4 was used as a communication library. All routines were
written in FORTRAN 77 with MPI.

The compiler used was g77 version 3.4.6. The compiler options used were
specified as “g77 -O3 -fomit-frame-pointer.”All programs were run in 64-bit
mode. The radix of the multiple-precision number is 108. The multiple-precision
number is stored with block distribution in the array of 32-bit integers.

Table 1 shows the average execution times of multiple-precision parallel di-
vision by a single-precision integer, π/2. The column with the n heading shows
the decimal digits. The next six columns contain the average elapsed time in
seconds.

Fig. 2 shows the speedup of multiple-precision parallel division by a single-
precision integer (π/2) relative to the one-processor execution time. For n = 226

and P = 32, the speedup is approximately 31.9 times. The arithmetic operation
count is O(n/P ) in the division of π/2, because the radix (= 108) is a multiple
of the divisor (= 2). Moreover, interprocessor communications for the partial

Table 1. Execution time of multiple-precision parallel division by a single-precision
integer (π/2) (in seconds), n = number of decimal digits

n P = 1 P = 2 P = 4 P = 8 P = 16 P = 32

216 0.00281 0.00176 0.00105 0.00065 0.00046 0.00039
218 0.01137 0.00603 0.00302 0.00166 0.00100 0.00066
220 0.04521 0.02298 0.01161 0.00601 0.00315 0.00175
222 0.18109 0.09087 0.04558 0.02294 0.01158 0.00601
224 0.72608 0.36308 0.18168 0.09107 0.04563 0.02299
226 2.90455 1.45305 0.72716 0.36293 0.18208 0.09107
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Fig. 2. Speedup of multiple-precision parallel division by a single-precision integer
(π/2), n = number of decimal digits

Table 2. Execution time of multiple-precision parallel division by a single-precision
integer (π/3) (in seconds), n = number of decimal digits

n P = 1 P = 2 P = 4 P = 8 P = 16 P = 32

216 0.00284 0.00301 0.00254 0.00200 0.00216 0.00262
218 0.01132 0.00973 0.00707 0.00546 0.00399 0.00340
220 0.04535 0.03701 0.02589 0.01712 0.01118 0.00740
222 0.18112 0.14773 0.10149 0.06525 0.04064 0.02487
224 0.72807 0.59019 0.40603 0.25957 0.15827 0.09380
226 2.91205 2.34418 1.63208 1.03915 0.63284 0.37224

remainder occurs just twice. These are two reasons why the speedup of the
computation of π/2 is nearly a linear speedup for larger digits.

Table 2 shows the average execution times of multiple-precision parallel divi-
sion by a single-precision integer (π/3). The column with the n heading shows
the decimal digits. The next six columns contain the average elapsed time in
seconds.

Fig. 3 shows the speedup of multiple-precision parallel division by a single-
precision integer (π/3) relative to the one-processor execution time. For n = 216,
the speedup is under 1.0 on 2 processors, as shown in Fig. 3. Its speedup loss
comes mainly from communication overhead. For n = 226 and P = 32, the
speedup is approximately 7.8 times. The arithmetic operation count is pro-
portional to (n/P ) logP in the division of π/3, because the radix (= 108) is
not a multiple of the divisor (= 3). Therefore, the speedup ratio is limited to
O(P/ logP ). This is the reason why the computation of π/3 shows poor speedup.
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The computation of π/2 is up to approximately 4.1 times faster than that of
π/3 when n = 230 and P = 32. This is mainly because the computation of π/2
has less arithmetic operations O(n/P ) compared with the computation of π/3.

5 Conclusion

This paper has presented a parallel algorithm for multiple-precision division by
a single-precision integer. This short division can be derived from the first-order
recurrence, which can be parallelized by the parallel cyclic reduction method.

In particular, when a radix b is a multiple of a divisor v, the arithmetic
operation of the multiple-precision parallel division of an n-digit number by a
single-precision integer is O(n/P ) on a parallel computer with P processors. On
the other hand, when a radix b is not a multiple of a divisor v, the upper bound
of the arithmetic operation of this algorithm is O((n/P ) logP ).

We implemented the parallel algorithm for multiple-precision division by a
single-precision integer on a 32-node Intel Xeon PC cluster. The experimental
results show that speedups of 31.9 times and 7.8 times for n = 226 decimal digits
π/2 and π/3, respectively, on a 32-node Intel Xeon PC cluster.
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Abstract. We present an extension of an update technique for precondi-
tioners for sequences of non-symmetric linear systems that was proposed
in [5]. In addition, we describe an idea to improve the implementation
of the update technique. We demonstrate the superiority of the new ap-
proaches in numerical experiments with a model problem.

1 Introduction

Sequences of linear systems with large and sparse matrices arise in many ap-
plications like computational fluid dynamics, structural mechanics, numerical
optimization as well as in solving non-PDE problems. In many cases, one or
more systems of nonlinear equations are solved by a Newton or Broyden-type
method [6], and each nonlinear equation leads to a sequence of linear systems.
The solution of sequences of linear systems is the main bottleneck in many of
the above mentioned applications. For example, some solvers need strong pre-
conditioners to be efficient and computing preconditioners for individual systems
separately may be very expensive.

In recent years, a few attempts to update preconditioners for sequences of
large sparse systems have been made. If a sequence of linear systems arises from
a quasi-Newton method, straightforward approximate small rank updates can
be useful (this has been done in the SPD case in [9,3]). For shifted SPD lin-
ear systems, an update technique was proposed in [8] and a different one can
be found in [2]. The latter technique, based on approximate diagonal updates,
has been extended to sequences of parametric complex symmetric linear sys-
tems (see [4]). This technique, in turn, was generalized to approximate (possibly
permuted) triangular updates for nonsymmetric sequences [5]. In addition, recy-
cling of Krylov subspaces by using adaptive information generated during pre-
vious runs has been used to update both preconditioners and Krylov subspace
iterations (see [7,10,1]).

In this paper we address two ways to improve the triangular updates of pre-
conditioners for nonsymmetric sequences of linear systems from [5]. It was dis-
cussed in [5] that triangular updates may be particularly beneficial under three
types of circumstances: first, if preconditioner recomputation is for some rea-
son expensive (e.g. in parallel computations, matrix-free environment); second,
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if recomputed preconditioners suffer from instability and the updates relate to
a more stable reference factorization; third, if the update is dominant, at least
structurally, that is, if it covers a significant part of the difference between the
current and reference matrix. Our first contribution is motivated by the third
case. The updates from [5] exhibit this property whenever a permutation can be
found such that one triangular part of the permuted difference matrix clearly
dominates the other part. Experiments given there show that this is the case
in many types of applications where the permutation may not even be needed.
Nevertheless, these techniques neglect one of the two triangular parts of the
(permuted) difference matrix and possibly useful information contained in this
part is lost. We will describe here how both triangular parts can be taken into
account by considering a simple but effective extension of the original technique.
We compare the new idea with the original strategy and experiments demon-
strate its improved power on a model problem. Our second contribution is of a
more technical nature. We present a different implementation for the triangular
updates. The important time savings with respect to the strategy used in [5]
confirm what we only assumed there, and reveal more about the potential of the
preconditioner updates.

In the next section we address the first improvement and Section 3 describes
the second one. Numerical experiments are presented in Section 4. We denote
by ‖ · ‖ an arbitrary, unspecified matrix norm.

2 Gauss-Seidel Type Updates

We consider a system Ax = b with a factorized preconditioner M = LDU and let
A+x+ = b+ be a system of the same dimension, and denote the difference matrix
A−A+ by B . We search for an updated preconditioner M+ for A+x+ = b+. We
have ‖A−M‖ = ‖A+ − (M −B)‖, hence the norm of the difference A+ −M+

with M+ ≡M −B, called the accuracy of M+ (with respect to A+), is the same
as that of M with respect to A. If M+ = M −B is the preconditioner, we need
to solve systems with M −B as system matrix in every iteration of the iterative
solver. Clearly, for general B the preconditioner M+ = M−B cannot be used in
practice since the systems are too expensive to solve. Instead, we will consider
cheap approximations of M −B. If M −B is nonsingular, we approximate it by
a product of factors which are easier to invert. The approximation consists of
two steps. First, we approximate M −B as

M −B = L(DU − L−1B) ≈ L(DU −B), (1)

or by
M −B = (LD −BU−1)U ≈ (LD −B)U. (2)

The choice between (1) and (2) is based on the distance of L and U to identity.
If ‖I − L‖ < ‖I − U‖ then we will base our updates on (1) and in the following
C will denote the matrix DU −B. If on the other hand ‖I−L‖ > ‖I−U‖, then
we will use (2) and we define C by C ≡ LD − B. Our implementation chooses
the appropriate strategy adaptively.
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Our next goal is to find an approximation of C that can be used as a precon-
ditioner. We split C as C = LC +DC +UC ,where LC , DC , UC denote the strict
lower triangular, the main diagonal and the strict upper triangular part of C,
respectively. In [5], C was approximated by a single triangular factor LC +DC or
UC + DC . In this paper we propose a Gauss-Seidel type of approach that takes
into account both triangular parts of C. We will use the classical symmetric
Gauss-Seidel approximation C ≈ (LC + DC)D−1

C (UC + DC). Putting the two
approximation steps together, we obtain an updated preconditioner of the form

M+ = L(LC + DC)D−1
C (UC + DC), C = DU −B, (3)

when ‖I − L‖ < ‖I − U‖, and otherwise we use

M+ = (LC + DC)D−1
C (UC + DC)U, C = LD −B. (4)

These updates can be cheaply obtained. C is a difference of two sparse matri-
ces, the splitting of C is trivial. The updated preconditioner has one additional
factor compared with the original factorization LDU , hence its application is
a little more expensive. In cases where the sparsity patterns of B and L or U
differ significantly, the solves with the updated factors are also more expensive
than with the original factors. The choice between (3) and (4) can be based on
comparing the Frobenius norms of I − L and I − U , which is very cheap with
sparse factors. As for storage costs, the original factorization and the reference
matrix A must be available when applying updates of this form.

We showed in [5] that the accuracy of the updates introduced there increases
with a factor L (or U) closer to identity and with a smaller error ‖C − DC −
UC‖ (or ‖C − DC − LC‖). Also stability increases with these properties. Our
theoretical results explained why the updates are often more powerful than old
factorizations and may even be, in favorable cases, more powerful than newly
computed factorizations. For the updates introduced in this paper, similar results
hold. We will now concentrate on comparison of the new Gauss-Seidel updates
with the original technique. The updates from [5] can be written as

M+ = L (DC + UC) , C = DU −B, (5)

and
M+ = (LC + DC) U, C = LD −B. (6)

Intuitively it is clear that the Gauss-Seidel type updates may be expected to be
more powerful than (5) and (6) if their approximation of C is stronger than with
one triangular part only. Let E = A − LDU denote the accuracy error of the
preconditioner for A and let G = C − (LC + DC)D−1

C (UC + DC) = LCD−1
C UC

be the approximation error of C for the Gauss-Seidel update. We split B as B =
LB + DB + UB,where LB, DB, UB denote the strict lower triangular, the main
diagonal and the strict upper triangular part of B, respectively. The accuracy
of (6) can then be written as

‖A+−(LC +DC)U‖ = ‖A−LDU−B+(LB +DB)U‖ = ‖E−B(I−U)−UBU‖,

where we used that LC +DC = LD−LB −DB. Similarly, the accuracy of (4) is
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‖A+ − (LC + DC)(D−1
C UC + I)U‖ =

‖E − UB − (LB + DB)(I − U)− (LCD−1
C + I)UCU‖ =

‖E − UB − (LB + DB)(I − U) + UB U −G · U‖ =
‖E −B(I − U)−G · U‖.

Hence the accuracies of (4) and (6) are of the form ‖X −GU‖ and ‖X −UBU‖,
where X = E − B(I − U). As UB is nothing but the error to approximate C
according to (6), here we see the effect of the approximation errors G and UB

with the two update techniques. The updates (5) and (3) share a similar relation.
Now let us denote by striu the strict upper triangular part and by tril the

lower triangular part of a matrix (including the main diagonal). In the Frobenius
norm, denoted by ‖ · ‖F , positive influence of the Gauss-Seidel technique can be
expressed as follows. Assume that

‖tril(E −B(I − U)−G · U)‖2F + (7)
‖striu(E −B + (B −G) · U)‖2F ≤ (8)

‖tril (E −B(I − U)) ‖2F + (9)
‖striu (E −B + (LB + DB)U) ‖2F , (10)

then

‖A+ − (LC + DC)(D−1
C UC + I)U‖2F =

‖tril(E −B(I − U)−G · U)‖2F + ‖striu(E −B + (B −G) · U)‖2F ≤
‖tril (E −B(I − U)) ‖2F + ‖striu (E −B + (LB + DB)U) ‖2F =

‖A+ − (DC + LC) U‖2F .

The last equality follows from striu(BU) = striu((UB + LB + DB)U) =
striu(UBU) + striu((LB + DB)U) = UBU + striu((LB + DB)U). Thus superi-
ority of the Gauss-Seidel type update (6) may be expected if the contribution of
−GU to the lower triangular part of X reduces the entries of this part and if the
contribution of (B − G)U to the strict upper triangular part of X reduces the
entries more than the contribution of (LB +DB)U to this part. We will confirm
exactly this behavior in the experiments in Section 4.

3 Alternative Implementation

The update (5) (or (6)) in [5] was implemented with two backward (or forward)
solves. In the upper triangular case (5), the solve step with DC + UC , which is
equal to DU−(DB +UB), used separate loops with DU and with DB +UB in [5].
These loops were tied together by scaling with the sum of the diagonal entries
of DU and B. In detail: Let the entries of DU and B be denoted by (du)ij and
bij , respectively, and consider a linear system (DU −DB − UB) z = y. Then for
i = n, n− 1, . . . , 1 the subsequent cycles
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zi = yi −
∑
j>i

(du)ijzj , zi = zi −
∑
j>i

bijzj , (11)

were used, followed by putting

zi =
zi

(du)ii + bii
. (12)

A first advantage of this implementation is that the solution process is straight-
forward. The sparsity patterns of DU and DB + UB, which are immediately
available, do not need to be further processed. Another advantage of this imple-
mentation is that the difference matrix B may be sparsified in a different way
for different matrices of a sequence. It was mentioned repeatedly in [5], however,
that merging the two matrices DU and DB +UB may yield better timings. Here
we present results of experiments with merged factors which formed the sum
DU −DB − UB, or its lower triangular counterpart, explicitly. This sum needs
to be formed only once at the beginning of the solve process of the linear sys-
tem, that is in our case, before the preconditioned iterations start. Every time
the preconditioner is applied, the backward solve step with the merged factors
may be significantly cheaper than with (11)–(12) if the sparsity patterns of DU
and DB + UB are close enough. In our experiments we confirm this.

4 Numerical Experiments

Our model problem is a two-dimensional nonlinear convection-diffusion model
problem. It has the form (see, e.g. [6])

−∆u + Ru

(
∂u

∂x
+

∂u

∂y

)
= 2000x(1− x)y(1 − y), (13)

on the unit square, discretized by 5-point finite differences on a uniform grid. The
initial approximation is the discretization of u0(x, y) = 0. In contrast with [5] we
use here R = 100 and different grid sizes. We solve the resulting linear systems
with the BiCGSTAB [11] iterative method with right preconditioning. Iterations
were stopped when the Euclidean norm of the residual was decreased by seven
orders of magnitude. Other stopping criteria yield qualitatively the same results.

In Table 1 we consider a 70 × 70 grid, yielding a sequence of 13 matrices of
dimension 4900 with 24220 nonzeros each. We precondition with ILU(0), which
has the same sparsity pattern as the matrix it preconditions. This experiment
was performed in Matlab 7.1. We display the number of BiCGSTAB iterations
for the individual systems and the overall time to solve the whole sequence. The
first column determines the matrix of the sequence which is preconditioned. The
second column gives the results when ILU(0) is recomputed for every system of
the sequence. In the third column ILU(0) is computed only for the first system
and reused (frozen) for the whole sequence. In the remaining columns this first
factorization is updated. ’Triang’ stays for the triangular updates from [5], that
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Table 1. Nonlinear convection-diffusion model problem with n=4900, ILU(0)

ILU(0), psize ≈ 24000
Matrix Recomp Freeze Triang GS

A(0) 40 40 40 40

A(1) 25 37 37 27

A(2) 24 41 27 27

A(3) 20 48 26 19

A(4) 17 56 30 21

A(5) 16 85 32 25

A(6) 15 97 35 29

A(7) 14 106 43 31

A(8) 13 97 44 40

A(9) 13 108 45 38

A(10) 13 94 50 44

A(11) 15 104 45 35

A(12) 13 156 49 42

overall time 13 s 13 s 7.5 s 6.5 s

Table 2. Nonlinear convection-diffusion problem with n=4900: Accuracies and values
(7)–(10)

i ‖A(i) − M
(i)
GS‖2

F ‖A(i) − M
(i)
TR‖2

F value of (7) value of (9) value of (8) value of (10)

1 852 857 ∗ ∗ ∗ ∗
2 938 1785 377 679 560 1105

3 1102 2506 373 843 729 1663

4 1252 3033 383 957 869 2076

5 1581 3975 432 1155 1149 2820

6 1844 4699 496 1303 1388 3395

7 2316 5590 610 1484 1706 4106

8 2731 6326 738 1631 1993 4695

9 2736 6372 735 1642 2002 4731

10 2760 6413 742 1650 2018 4763

11 2760 6415 742 1650 2018 4765

12 2760 6415 742 1650 2018 4765

is for adaptive choice between (5) and (6). The last column presents results for
the Gauss-Seidel (GS) updates (3) and (4). The abbreviation ’psize’ gives the
average number of nonzeros of the preconditioners.

As expected from [5], freezing yields much higher iteration counts than any
updated preconditioning. On the other hand, recomputation gives low iteration
counts but it is time inefficient. The new GS strategy from Section 2 improves
the power of the original triangular update. Table 2 displays the accuracies of
(4) (here denoted by MGS) and (6) (denoted by MTR) in the Frobenius norm
and the values of (7-10). These values reflect the efficiencies of the two updates
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Table 3. Nonlinear convection-diffusion model problem with n=49729, ILUT(0.2/5)

ILUT(0.2/5), psize ≈ 475000, ptime ≈ 0.05
Matrix Recomp Freeze Triang GS

A(0) 113/2.02 113/2.02 113/2.02/2.02 113/2.02

A(1) 119/2.06 112/1.94 104/1.95/1.81 122/2.26

A(2) 111/1.94 111/1.95 104/1.91/1.78 100/1.84

A(3) 94/1.66 115/2.00 92/1.64/1.45 96/1.77

A(4) 85/1.44 116/2.00 92/1.77/1.55 90/1.67

A(5) 81/1.45 138/2.44 93/1.73/1.47 83/1.55

A(6) 72/1.28 158/2.75 101/1.89/1.63 85/1.59

A(7) 72/1.28 163/2.86 101/1.91/1.59 92/1.69

A(8) 78/1.36 161/2.84 94/1.77/1.53 82/1.48

A(9) 72/1.23 159/2.72 92/1.72/1.73 80/1.55

A(10) 73/1.27 153/2.66 97/1.91/1.61 82/1.48

and confirm the remarks made after (7-10). Note that the first update in this
sequence is based on (3), resp. (5) and thus the values (7-10) do not apply here.

In Table 3 we use the grid size 223 and obtain a sequence of 11 linear systems
with matrices of dimension 49729 and with 247753 nonzeros. The preconditioner
is ILUT(0.2,5), that is incomplete LU decomposition with drop tolerance 0.2 and
number of additional nonzeros per row 5. This experiment was implemented in
Fortran 90 in order to show improvements in timings for the alternative imple-
mentation strategy discussed in Section 3. The columns contain the BiCGSTAB
iteration counts, followed by the time to solve the linear system, including the
time to compute the (updated or new) factorization. In the column ’Triang’ the
last number corresponds to the implementation with merged factors as explained
above and ’ptime’ denotes the average time to recompute preconditioners.

The benefit of merging is considerable. Still, even with this improved im-
plementation, the Gauss-Seidel type of updates happens to be faster than the
standard triangular updates for several systems of the sequence. As for the
BiCGSTAB iteration counts, for the majority of the linear systems Gauss-Seidel
updates are more efficient. We have included in this table the results based on
recomputation as well. In contrast to the results of the previous example, the de-
composition routines are very efficient and exhibit typically in-cache behaviour.
Then they often provide the best overall timings. This does not need to be the
case in other environments like matrix-free or parallel implementations, or in
cases where preconditioners are computed directly on grids.

5 Conclusion

In this paper we considered new ways for improving triangular updates of fac-
torized preconditioners introduced in [5]. We proposed a Gauss-Seidel type of
approach to replace the triangular strategy, and we introduced a more efficient
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implementation of adaptive triangular updates. We showed on a model nonlin-
ear problem that both techniques may be beneficial. As a logical consequence,
it seems worth to combine the two improvements by adapting the new imple-
mentation strategy for Gauss-Seidel updates. We expect this to yield even more
efficient updates. For conciseness, we did not present some promising results
with the Gauss-Seidel approach generalized by adding a relaxation parameter.
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Abstract. A new parallel preconditioning algorithm for 3D noncon-
forming FEM elasticity systems is presented. The preconditioner is con-
structed in two steps. First, displacement decomposition of the stiffness
matrix is used. Then MIC(0) factorization is applied to a proper auxiliary
M-matrix to get an approximate factorization of the obtained block-
diagonal matrix. The auxiliary matrix has a special block structure —
its diagonal blocks are diagonal matrices themselves. This allows the
solution of the preconditioning system to be performed efficiently in par-
allel. Estimates for the parallel times, speedups and efficiencies are de-
rived. The performed parallel tests are in total agreement with them.
The robustness of the proposed algorithm is confirmed by the presented
experiments solving problems with strong coefficient jumps.

Keywords: nonconforming finite element method, preconditioned con-
jugate gradient method, MIC(0), parallel algorithms.

1 Introduction

We consider the weak formulation of the linear elasticity problem in the form:
find u ∈ [H1

E(Ω)]3 = {v ∈ [H1(Ω)]3 : vΓD = uS} such that∫
Ω

[2µε(u) : ε(v) + λdiv u divv]dΩ =
∫

Ω

f tvdΩ +
∫

ΓN

gtvdΓ, (1)

∀v ∈ [H1
0 (Ω)]3 = {v = [H1(Ω)]3 : vΓD = 0}, with the positive constants λ and

µ of Lamé, the symmetric strains ε(u) := 0.5(∇u+ (∇u)t), the volume forces f ,
and the boundary tractions g, ΓN ∪ ΓD = ∂Ω. Nonconforming rotated trilinear
elements of Rannacher-Turek [6] are used for the discretization of (1).

To obtain a stable saddle-point system one usually uses a mixed formulation
for u and divu. By the choice of non-continuous finite elements for the dual
variable, it can be eliminated at the macroelement level, and we get a symmetric
positive definite finite element system in displacement variables. This approach
is known as reduced and selective integration (RSI) technique, see [5].

Let ΩH = wH
1 ×wH

2 ×wH
3 be a regular coarser decomposition of the domain

Ω ⊂ R3 into hexahedrons, and let the finer decomposition Ωh = wh
1 × wh

2 × wh
3

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 745–752, 2008.
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be obtained by a regular refinement of each macro element E ∈ ΩH into
eight similar hexahedrons. The cube ê = [−1, 1]3 is used as a reference ele-
ment in the parametric definition of the rotated trilinear elements. For each
e ∈ Ωh, let ψe : ê → e be the trilinear 1–1 transformation. Then the nodal
basis functions are defined by the relations {φi}6i=1 = {φ̂i ◦ ψ−1

e }6i=1, where
φ̂i ∈ span{1, ξj, ξ

2
j − ξ2

j+1, j = 1, 2, 3}. Mid-point (MP) and integral mid-value
(MV) interpolation conditions can be used for determining the reference ele-
ment basis functions {φ̂i}6i=1. This leads to two different finite element spaces
V h, referred as Algorithm MP and Algorithm MV.

The RSI finite element method (FEM) discretization reads as follows: find
uh ∈ V h

E such that∑
e∈Ωh

∫
e

[
2µε∗(uh) : ε∗(vh) + λ divuh divvh

]
de =

∫
Ω

f tvhdΩ +
∫

ΓN

gtvhdΓ,

(2)
∀vh ∈ V h

0 , where ε∗(u) := ∇u − 0.5IQH

L [∇u − (∇u)t], V h
0 is the FEM space,

satisfying (in nodalwise sense) homogeneous boundary conditions on ΓD, the
operator IQH

L denotes the L2–orthogonal projection onto QH , the space of piece-
wise constant functions on the coarser decomposition ΩH of Ω. Then a standard
computational procedure leads to a system of linear equations⎡⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤⎦⎡⎣u1
h

u2
h

u3
h

⎤⎦ =

⎡⎣ f1
h

f2
h

f3
h

⎤⎦ . (3)

Here the stiffness matrix K is written in block form corresponding to a separate
displacements components ordering of the vector of nodal unknowns. Since K
is sparse, symmetric and positive definite, we use the preconditioned conjugate
gradient (PCG) method to solve the system (3). PCG is known to be the best
solution method for such systems [2].

2 DD MIC(0) Preconditioning

Let us first recall some well known facts about the modified incomplete factor-
ization MIC(0). Let us split the real N ×N matrix A = (aij) in the form

A = D − L− LT ,

where D is the diagonal and (−L) is the strictly lower triangular part of A. Then
we consider the approximate factorization of A which has the following form:

CMIC(0)(A) = (X − L)X−1(X − L)T ,

where X = diag(x1, . . . , xN ) is a diagonal matrix determined such that A and
CMIC(0) have equal row sums. For the purpose of preconditioning we restrict
ourselves to the case when X > 0, i.e., when CMIC(0) is positive definite. In this
case, the MIC(0) factorization is called stable. Concerning the stability of the
MIC(0) factorization, we have the following theorem [4].
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Theorem 1. Let A = (aij) be a symmetric real N × N matrix and let A =
D − L− LT be a splitting of A. Let us assume that (in an elementwise sense)

L ≥ 0, Ae ≥ 0, Ae + LTe > 0, e = (1, · · · , 1)T ∈ RN ,

i.e., that A is a weakly diagonally dominant matrix with nonpositive offdiagonal
entries and that A + LT = D − L is strictly diagonally dominant. Then the
relation

xi = aii −
i−1∑
k=1

aik

xk

N∑
j=k+1

akj > 0 (4)

holds and the diagonal matrix X = diag(x1, · · · , xN ) defines a stable MIC(0)
factorization of A.

Remark 1. The numerical tests presented in this work are performed using the
perturbed version of MIC(0) algorithm, where the incomplete factorization is
applied to the matrix Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) =
diag(d̃1, . . . d̃N ) is defined as follows: d̃i = ξaii if aii ≥ 2wi, and d̃i = ξ1/2aii

otherwise, where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .

We use PCG with an isotropic displacement decomposition (DD) MIC(0) fac-
torization preconditioner in the form:

CDDMIC(0)(K) =

⎡⎣CMIC(0)(B)
CMIC(0)(B)

CMIC(0)(B)

⎤⎦
Matrix B is a modification of the stiffness matrix A corresponding to the bilinear
form

a(uh, vh) =
∑

e∈Ωh

∫
e

E

(
3∑

i=1

∂uh

∂xi

∂vh

∂xi

)
de.

Here E is the modulus of elasticity. Such DD preconditioning for the coupled
matrix K is theoretically motivated by the Korn’s inequality which holds for the
RSI FEM discretization under consideration [3]. The auxiliary matrix B is con-
structed element-by-element: Following the standard FEM assembling procedure
we write A in the form A =

∑
e∈Ωh LT

e AeLe, where Le stands for the restriction
mapping of the global vector of unknowns to the local one corresponding to the
current element e and Ae = {aij}6i,j=1 is the element stiffness matrix The local
node numbering and connectivity pattern is displayed in Fig. 1 (a). Now we will
introduce the structure of two variants for local approximations Be. They will
later be referred to as Variant B1 and Variant B2.

Variant B1 Variant B2

Be =

⎡⎢⎢⎢⎢⎢⎢⎣
b11 a13 a14 a15 a16

b22 a23 a24 a25 a26

a31 a32 b33 a35 a36

a41 a42 b44 a45 a46

a51 a52 a53 a54 b55
a61 a62 a63 a64 b66

⎤⎥⎥⎥⎥⎥⎥⎦ Be =

⎡⎢⎢⎢⎢⎢⎢⎣
b11 a13 a14 a15 a16

b22 a23 a24 a25 a26

a31 a32 b33
a41 a42 b44
a51 a52 b55
a61 a62 b66

⎤⎥⎥⎥⎥⎥⎥⎦
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1 2

3

6

4

5

(a) (b)

Fig. 1. (a) Local node numbering and connectivity pattern; (b) Sparsity pattern of the
matrices A and B (both variants) for a division of Ω into 2x2x6 hexahedrons. Non-zero
elements are drawn with boxes: 	 non-zero in A and B (both variants), 	 non-zero in
A and B Variant B1, 	 non-zero only in A. With thicker lines are bordered blocks in
the matrix B Variant B2.

The matrices Be are symmetric and positive semidefinite, with nonpositive off-
diagonal entries, such that Bee = Aee, eT = (1, 1, 1, 1, 1, 1). Then we construct
the global matrix B =

∑
e∈Ωh

λ
(1)
e LT

e BeLe, where {λ(i)
e }5i=1 are the nontriv-

ial eigenvalues of B−1
e Ae in ascending order. The matrix B is a M-matrix and

has a special block structure with diagonal blocks being diagonal matrices, see
Fig. 1(b). These blocks correspond to nodal lines and plains for variants B1 and
B2, respectively. Lexicographic node numbering is used. This allows a stable
MIC(0) factorization and efficient parallel implementation. It is important, that
A and B are spectrally equivalent, and the relative condition number κ(B−1A)
is uniformly bounded [1].

3 Parallel Algorithm

3.1 Description

The PCG algorithm is used for the solution of the linear system (3). Let us
assume that the parallelogram domain Ω is decomposed into n × n × n equal
nonconforming hexahedral elements. The size of the resulting nonconforming
FEM system is N = 9n2(n + 1). To handle the systems with the preconditioner
one has to solve three times systems L̃y ≡ (X − L)y = v, X−1z = y and
L̃Tw = z, where L is the strictly lower triangular part of the matrix B. The
triangular systems are solved using standard forward or backward recurrences.
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This can be done in kB1 = 2n2 + 2n and kB2 = 2n + 1 stages for variants B1
and B2, respectively. Within stage i the block yi is computed. Since the blocks
L̃ii, are diagonal, the computations of each component of yi can be performed
in parallel. Let the p ≤ n/2 processors be denoted by P1, P2, . . . , Pp. We
distribute the entries of the vectors corresponding to each diagonal block of B
among the processors. Each processor Pj receives a strip of the computational
domain. These strips have almost equal size. Elements of all vectors and rows of
all matrices that participate in the PCG algorithm are distributed in the same
manner. Thus the processor Pj takes care of the local computations on the j-th
strip.

3.2 Parallel Times

On each iteration in the PCG algorithm one matrix vector multiplication Kx,
one solution of the preconditioner system Cx = y, two inner products and three
linked triads of the form x = y+αz are computed. The matrix vector multiplica-
tion can be performed on the macroelement level. In the case of rectangular brick
mesh, the number of non-zero elements in the macroelement stiffness matrix is
1740. The number of operations on each PCG iteration is:

N it = N (Kx) +N (C−1x) + 2N (< ., . >) + 3N (x = y + αz)
N it ≈ 24N +N (C−1x) + 2N + 3N, N it

B1 ≈ 40N, N it
B2 ≈ 38N

An operation is assumed to consist of one addition and one multiplication. Es-
timations of the parallel execution times are derived with the following assump-
tions: a) executing M arithmetical operations on one processor lasts T = Mta,
b) the time to transfer M data items between two neighboring processors can
be approximated by T comm = ts + Mtc, where ts is the startup time and tc is
the incremental time for each of the M elements to be transferred, and c) send
and receive operations between each pair of neighboring processors can be done
in parallel. We get the following expressions for the communication times:

T comm(Kx) ≈ 2ts +
4
3
N2/3tc,

T comm(C−1
B1x) ≈ 2

3
N2/3ts +

8
3
N2/3tc, T comm(C−1

B2x) ≈ 2
9
N1/3ts +

8
3
N2/3tc.

Two communication steps for the matrix vector multiplication are performed to
avoid duplication of the computations or extra logic. For the solution of the trian-
gular systems, after each nodal column (variant B1) or each nodal plain (variant
B2) of unknowns is commputed some vector components must be exchanged.

The three systems of the preconditioner (one for each displacement) are solved
simultaneously. Thus no extra communication steps for different displacements
are required. The above communications are completely local and do not depend
on the number of processors. The inner product needs one broadcasting and
one gathering global communication but they do not contribute to the leading
terms of the total parallel time. The parallel properties of the algorithm do not
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depend on the number of iterations, so it is enough to evaluate the parallel
time per iteration, and use it in the speedup and efficiency analysis. As the
computations are almost equally distributed among the processors, assuming
there is no overlapping of the communications and computations one can write
for the total time per iteration on p processors the following estimates:

T it
B1(p) =

40N
p

ta +
2
3
N2/3ts + 4N2/3tc, T it

B2(p) =
38N
p

ta +
2
9
N1/3ts + 4N2/3tc

The relative speedup S(p) = T (1)/T (p) and efficiency E(p) = S(p)/p, will grow
with n in both variants up to their theoretical limits S(p) = p and E(p) = 1.
Since on a real computer ts � tc and ts � ta we can expect good efficiencies
only when n � p ts/ta. The efficiency of Variant B2 is expected to be much
better than the one of Variant B1, because about 3n times fewer messages are
sent.

4 Benchmarking

4.1 Convergence Tests

The presented numerical tests illustrate the PCG convergence rate of the studied
displacement decomposition algorithms when the size of the discrete problem
and the coefficient jumps are varied. The computational domain is Ω = [0, 1]3

where homogeneous Dirichlet boundary conditions are assumed at the bottom
face. An uniform mesh is used. The number of intervals in each of the coordinate
directions for the finer grid is n.

A relative stopping criterion (C−1ri, ri)/(C−1r0, r0) < ε2 is used in the
PCG algorithm, where ri stands for the residual at the i-th iteration step,
and ε = 10−6. The interaction between a soil media and a foundation ele-
ment with varying elasticity modulus is considered. The foundation domain is
Ωf = [3/8, 5/8]× [3/8, 5/8]× [1/2, 1]. The mechanical characteristics are Es = 10
MPa, νs = 0.2 and Ef = 10J MPa, νf = 0.2 for the soil and foundation respec-
tively. Experiments with J = 0, 1, 2, 3 are performed. The force acting on the top
of the foundation is 1 MN. In Tables 1 and 2 the number of iterations are col-
lected for both variants B1 and B2 for Algorithms MP and MV respectively. In
Table 1 also is added Variant B0 corresponding to the application of the MIC(0)

Table 1. Algorithm MP, number of iterations

J
0 1 2 3

n N B0 B1 B2 B0 B1 B2 B0 B1 B2 B0 B1 B2

32 304 128 161 147 113 186 173 130 227 253 189 361 343 247
64 2 396 160 264 223 162 284 262 186 428 391 271 565 523 357

128 19 021 824 367 331 230 424 389 264 638 581 385 843 780 509
256 151 584 768 486 327 570 377 852 542 1 148 725



Parallel DD-MIC(0) Preconditioning of Nonconforming Rotated Trilinear 751

Table 2. Algorithm MV, number of iterations

J
0 1 2 3

n N B1 B2 B1 B2 B1 B2 B1 B2

32 304 128 173 255 197 280 313 348 405 411
64 2 396 160 295 648 310 744 486 904 630 1069

128 19 021 824 471 916 536 1 053 778 1 281 1 013 1 517
256 151 584 768 730 1 282 857 1 486 1 198 1 813 1 600 2 154

factorization directly to the matrix A. Note that this is possible only for the Al-
gorithm MP (because of the positive offdiagonal entries in A in algorithm MV)
and only in a sequential program. One can clearly see the robustness of the pro-
posed preconditioners. The number of iterations is of order O(n1/2) = O(N1/6).
It is remarkable that for Algorithm MP, the number of iterations for Variants
B2 is less than that number for Variant B1, and it is even less than the number
of iterations obtained without the modification of the matrix A.

4.2 Parallel Tests

Here we present execution times, speedups, and efficiencies from experiments
performed on three parallel computing platforms, referred to further as C1, C2,
and C3. Platform C1 is an “IBM SP Cluster 1600” consisting of 64 p5-575 nodes
interconnected with a pair of connections to the Federation HPS (High Per-
formance Switch). Each p5-575 node contains 8 Power5 SMP processors at 1.9
GHz and 16 GB of RAM. The network bandwidth is 16 Gb/s. Platform C2 is
an IBM Linux Cluster 1350, made of 512 dual-core IBM X335 nodes. Each node
contains 2 Xeon Pentium IV processors and 2 GB of RAM. Nodes are intercon-
nected with an 1 Gb Myrinet network. Platform C3 is a “Cray XD1” cabinet,
fully equipped with 72 2-way nodes, totaling in 144 AMD Opteron processors at
2.4 GHz. Each node has 4 GB of memory. The CPUs are interconnected with
the Cray RaidArray network with a bandwidth of 5.6 Gb/s.

Since the parallel properties of the algorithm do not depend on the discretiza-
tion type and the number of iterations, experiments only for Algorithm MP and
for the case with the strongest coefficient jumps are performed. In Table 3 se-
quential execution times T (p) are shown in seconds. The relative speedups S(p)
and efficiencies E(p) for various values of n and number of processors p are col-
lected in Table 4. Results for both variants B1 and B2 are included. For a fixed
number of processors the speedup and efficiency grow with the problem size.
Conversely for fixed n, the efficiency decrease with the number of processors.
This is true for all platforms and confirms our analysis.

For Variant B1, reasonable efficiencies are obtained, only when n/p is suffi-
ciently large. And again, as we expected, for a given p and n Variant B2 performs
far better even for smaller ratios n/p. It is clearly seen, how reducing the num-
ber of communication steps in the solution of the preconditioner improves the
parallel performance.
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Table 3. Sequential times

Variant B1 Variant B2

n C1 C2 C3 C1 C2 C3

32 52.18 30.87 29.47 28.16 18.61 21.18

64 578.4 336.8 347.6 336.1 228.4 224.2

128 6596 3793 3556 3887 2556 2610

Table 4. Parallel speedups and efficiencies

Variant B1 Variant B2

C1 C2 C3 C1 C2 C3

n p S(p) E(p) S(p) E(p) S(p) E(p) S(p) E(p) S(p) E(p) S(p) E(p)

32 2 1.49 0.74 1.31 0.66 1.77 0.88 1.93 0.96 1.33 0.66 1.97 0.99
4 1.83 0.45 1.49 0.37 2.40 0.60 3.53 0.88 2.08 0.51 3.25 0.81
8 2.11 0.26 1.22 0.15 3.34 0.42 5.78 0.72 3.07 0.38 5.20 0.65

16 1.61 0.10 0.92 0.06 3.22 0.20 9.45 0.59 3.93 0.25 7.63 0.48

64 2 1.68 0.84 1.38 0.69 2.02 1.01 2.02 1.01 1.35 0.68 1.77 0.88
4 2.46 0.61 1.98 0.49 3.17 0.79 3.92 0.98 2.49 0.62 3.50 0.87
8 3.27 0.41 1.93 0.24 4.26 0.53 7.38 0.92 4.21 0.52 5.91 0.73

16 3.78 0.23 2.06 0.13 6.03 0.38 12.83 0.81 6.53 0.40 8.64 0.54

128 2 1.82 0.91 1.51 0.76 1.56 0.78 2.00 1.00 1.49 0.74 1.93 0.96
4 2.96 0.74 2.40 0.60 2.73 0.68 3.90 0.98 2.54 0.63 3.72 0.93
8 4.50 0.56 2.70 0.34 5.34 0.67 7.33 0.92 4.59 0.57 7.30 0.91

16 5.83 0.36 3.64 0.23 7.64 0.48 12.73 0.80 7.51 0.47 12.21 0.76
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Kápolnai, Richárd 470
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